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Abstract—Vulnerability of modern integrated circuits (ICs) to
hardware Trojans has been increasing considerably due to the
globalization of semiconductor design and fabrication processes.
The large number of parts and decreased controllability and ob-
servability to complex ICs internals make it difficult to efficiently
perform Trojan detection using typical structural tests like path
latency and leakage power. In this paper, we present new accurate
methods for Trojan detection that are based upon post-silicon
multimodal thermal and power characterization techniques. Our
approach first estimates the detailed post-silicon spatial power
consumption using thermal maps of the IC, then applies 2DPCA
to extract features of the spatial power consumption, and finally
uses statistical tests against the features of authentic ICs to
detect the Trojan. To characterize real-world ICs accurately,
we perform our experiments in presence of 20% - 40% CMOS
process variation. Our results reveal that our new methodology
can detect Trojans with 3-4 orders of magnitude smaller power
consumptions than the total power usage of the chip, while it
scales very well because of the spatial view to the ICs internals
by the thermal mapping.

I. INTRODUCTION

The ever-increasing cost of manufacturing Integrated Cir-
cuits (ICs) in small-scale CMOS technology has led to the
eminence of third party foundry business practice. While
the practice saves cost by utilizing the economy of scale, it
exposes the chips by authentic designers to threats including
hardware malware (Trojan) insertion, unlicensed IP handling,
and IP piracy [1], [2]. Since the ICs form the core for the
computing and communication systems used in contemporary
personal, commercial, and government affairs, their exposure
endangers the full systems built upon them. Therefore, grant-
ing trust in presence of unreliable third-party fabrication has
become a major challenge.

IC Trojans are implemented by unsought chip modifications
during the third-party fabrication process; they traitorously
change or tamper with the chips to provide opportunities for
later exploits including controlling, monitoring, or spying the
chip contents or secret keys [1], [3]. Trojans can be very hard
to detect, due to the increasing complexity of the contemporary
chips and lack of controllability/observability to the post-
silicon chip internals. Also, they may be often inactive, only
triggered as needed in special time intervals. Thus, devising
noninvasive methods for examining the ICs and detecting
Trojans has been recognized as an important research problem.

Our objective is to provide a novel methodology for Trojan
detection using multimodal post-silicon spatial thermal and
power estimates. Chips can be thermally characterized using
infrared emissions from the backside of silicon die, which then
can be processed to get detailed spatial power maps [4]. These
thermal and power maps provide a much higher resolution
Trojan detection method than previous current-based methods.
This detection procedure is easily scalable and does not require
test vectors. The major contributions of this paper are as
follows.

• We propose a multimodal characterization framework
which includes thermal maps and power maps to detect
and locate IC Trojans. Our detection framework includes
acquiring post-silicon thermal maps and applying thermal
inversion methods.

• Using the multimodal characterization, we provide 2-
dimensional principal component analysis (2DPCA)
framework for Trojan detection which can accurately
detect very small size Trojan using the thermal and power
maps.

• To create realistic chips, we add 20-40% process vari-
ations (PV) to gate lengths, widths and oxide thickness
which can hide Trojans. To cover a wide range of vari-
ations, in our experiment we set five different PV levels
with different standard variances which are obtained from
realistic spatial variability models.

• We design virtual Trojans with power consumption vary-
ing from 0.05% to 0.2% of total IC power consumption
placing the Trojans in different locations.

• We present an extensive set of simulation results with
three different benchmarks with realistic chips and very
small Trojan sizes. We show that our proposed methods
are able to detect and locate Trojans as small as 0.05%
of the total power consumption very efficiently and
accurately.

The organization of this paper is as follows. Section II
provides the necessary background. In Section III we provide
the framework for our proposed Trojan detection procedure.
In Section IV we describe our experimental setup and present
our experimental results to demonstrate the effectiveness of
our approach, and finally, Section V summarizes our main
results and discusses future direction.978-3-9815370-0-0/DATE13/ c© 2013 EDAA



II. RELATED WORK

Reports of instances of malware in military chips have
triggered further research and investigations into the Trojan
detection problem [2]. One of the early work in this area
[5] utilized the dynamic current (power) measurements by
destructive testing of a few ICs from the design to build signa-
tures. The assumption was that the fingerprint did not contain
any malware. The existence of Trojan(s) in other chips was
verified by non-invasively comparing against the signatures
formed by destructive testing. In another approach, verification
and functional testing method simulates the inputs and then
checks the corresponding outputs for the desired patterns [6].
Functional testing suffers from state-space explosion and lack
of targeted verification output, and therefore, its scope and
effectiveness are rather limited.

A number of Trojan detection methods have focused on
detecting based on structural test measurement and analysis
such as delay or current [7], [8], [9]. The typical assumption
for these Trojan detection approaches is that a golden model of
the chip can be formed by post-layout simulations. The struc-
tural properties of the manufactured chips under investigation
are then compared with this model. An effective technique
pursued in this category is gate-level characterization [8], [9]
which measures the chip’s delay or current for a number of
test vectors. Assuming that the currents (delays) linearly add
up, a linear system is then constructed from the measurement
set. Solving the system of linear equations translates the side-
channel characteristics to smaller gate-level structural proper-
ties. While effective, this technique does not perform well for
larger chips with more gates, higher accumulated measurement
noise, and more sophisticated process variation models. The
approaches based on regional testing of accumulated current
which have a higher resolution only work for certain types of
packaging and measurement probes [7], [10].

The thermal to power inversion procedure involves infrared
imaging from the backside of the silicon die, and then con-
verting the thermal image to spatial power maps. While some
of these works have been very successful in estimating the
spatial power maps accurately [4], none of the previous works
have utilized the spatial power maps to detect Trojans. Our
proposed method utilizes these very high resolution thermal
and power maps in order to detect IC Trojans which results
into a very high sensitivity Trojan detection technique.

III. DETECTION FRAMEWORK

A. Spatial Temperature and Power Characterization
In this paper, we present a novel Trojan detection method

based on multimodal post-silicon spatial temperature and
power characterization. The first mode corresponds to using in-
frared techniques to obtain very high resolution thermal maps
by running various workloads in the chip. These thermal maps
can be used to obtain accurate and detailed corresponding
spatial power maps which corresponds to the second mode.
Our proposed method utilizes both thermal and power maps
to detect and locate Trojans which consumes as small power
as 0.05 - 0.2 % of total power consumption of the chip.

1) Temperature Characterization: For real chips, we can
use infrared imaging techniques to obtain the thermal maps of
post-silicon chips for Trojan detection. We can obtain optical
access to the die through the silicon backside by removing the
packages’s heat spreader. Silicon is transparent in the infrared
spectral region and this transparency allows the capturing of
thermal infrared emissions using infrared imaging techniques.

For the purpose of this paper, we first apply random
vectors to the ICs and get the estimated power trace of each
block by Primetime-PX and then use HotSpot [11] simulation
tools to create the steady state thermal maps of various test
bench circuits as described in Section IV-B. For real chips,
it typically takes less then 60s to reach the steady state. We
denote the steady-state thermal maps obtained using design-
time simulations and Monte-Carlo simulations at various PV
corners of the original chip by A1,A2, ... and the thermal
maps from chips under test by using infrared imaging by
T1,T2, ... We use authentic thermal maps as the training set
and perform our method of 2DPCA on the thermal maps under
tests for Trojan detection as described in Section III-B

2) Power Characterization: The chip power and tempera-
ture are related by the heat equation, which can be discretized
as follows by linear matrix formulation,

Rp + e = t, (1)

where the 2-D thermal map T is represented by a vector t that
gives the measured temperatures at every pixel of the imaging
system, and the continuous power signal is represented by a
vector p that gives the power density at a set of discrete die
locations and the vector e denotes measurement noise in the
infrared imaging system. The matrix R represents the thermal
resistivities between different locations [4]. For each specific
chip, the matrix R can be estimated either by analytical
methods, by simulation or experimentally on the real chip.
We create matrix R by HotSpot simulation, by dividing the
chip into 10 × 10 blocks, and exciting each block at a time.
Thermal map corresponding to one excited block represents
one column in the matrix R. The lower bound of the block
size is limited by the precision of infrared camera. Detection
accuracy increases as the block size decreases. There is a trade-
off between the size of the blocks and computation time.

Given the thermal map vector t and matrix R, the objective
is to find the best power map vector p that minimizes the total
squared error between the temperatures as computed from the
estimated power p and the thermal measurements. For our
case, we first subtract the thermal maps tmin corresponding to
minimum estimated design time power pmin, from the thermal
maps t of chips under test, where tmin = Rpmin, and then
invert the residual thermal maps, tr to get the residual power
estimates pr.

tr = t− tmin,

argpr
min ‖ Rpr − tr ‖2, (2)

s. t. pr ≥ 0,

where || · || indicates the L2 norm. We apply 2DPCA analysis
on the residual power map pr for Trojan detection.



Figure 1(a) and 1(c) shows MIPS (Microprocessor without
Interlocked Pipeline Stages) processor thermal maps generated
by HotSpot. We divide the chip into 10x10 blocks and estimate
the spatial power maps using above optimization formulation,
shown in Figure 1(b) and 1(d). The Trojan location is shown
in both the thermal and power maps.

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
(a) (b) 

1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 (c) (d) 

53.40 
 
53.35 
 
53.30 
 
53.25 

53.25 
 
53.20 
 
53.15 
 
53.10 

Trojan 
Location 

Trojan 
Location 

 C°  mW 

Fig. 1. MIPS processor Thermal Map (C◦) and Estimated Power map (mW)
a) Thermal map without Trojan, b) Estimated power map without Trojan, c)
Thermal map with Trojan, and d) Estimated power map with Trojan

B. 2-Dimensional Principal Component Analysis

1) Algorithm: Principal Component Analysis (PCA) is a
classical feature extraction and data representation technique
widely used in the areas of pattern recognition and computer
vision. PCA is mathematically defined as an orthogonal linear
transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of
the data comes to lie on the first coordinate (called the
first principal component), the second greatest variance on
the second coordinate, and so on. Two-dimensional principal
component analysis (2DPCA) developed by J. Yang is an
image projection technique that makes use of the spatial
correlation information to achieve better performance than
conventional one-dimensional PCA [12]. The basic idea of
2DPCA is to project image A, an m×n random matrix, onto
a projection vector x by the following linear transformation:

y = Ax (3)

The discriminatory power of x is evaluated by the total scatter
of the projected samples where the following criterion is
adopted:

J(x) = tr(Sx) (4)

Sx is the covariance matrix of the projected feature vectors
of the training samples and tr(Sx) is the trace of Sx. The
covariance matrix Sx is given by the following equation:

Sx = E[(y − Ey)(y − Ey)T ]

= E[((A− EA)x)((A− EA)x)T ]

(5)
So,

tr(Sx) = xTE[(A− E(A))T (A− E(A))]x = xTGtx (6)

where Gt is the image covariance (scatter) matrix. Suppose
there are totally M image samples for training, then

Gt =
1

M

M∑
j=1

(Aj − Ā)
T
(Aj − Ā) (7)

The optimal projection axes, xopt,1,xopt,2, ...,xopt,d, are the
eigenvectors of Gt corresponding to the largest d eigenvalues.

2) Feature Extraction and Identification: In our exper-
iment, 1000 thermal maps, A1,A2, ...,A1000, of authen-
tic chips are used to evaluate the optimal projection axes
xopt,1,xopt,2, ...,xopt,d. Then the extracted thermal feature
matrix B is defined by

B = [Āxopt,1, Āxopt,1, ..., Āxopt,d] (8)

For a given set of testing ICs, a feature matrix Bi is obtained
for each IC after the transformation by 2DPCA. Then the dis-
tance between the testing feature matrix Bi and the authentic
feature matrix B is calculated by

d(B,Bi) = ‖Bi −B‖2 (9)

where ‖Bi −B‖2 is the Euclidean distance between Bi and
B. If the distance is larger than a certain threshold, the testing
IC is identified as Trojan inserted.

C. Trojan Localization

The inherent low-pass filter of heat conduction function
makes it hard to accurately locate the Trojan, since most of
the high frequency components are lost in the thermal maps
[4]. With the detailed spatial power characterization technique
these frequency components are well recovered in the power
maps. We use the estimated residual power maps to locate the
trojans in the chip by finding the maximum power location in
the trojan detected chips.

IV. EXPERIMENTAL SETUP AND RESULTS

To test our proposed Trojan detection methods we provide
sophisticated simulation results which mimic a realistic ex-
periment setup with process variation, and test three different
benchmarks. We vary trojan sizes and locations across the
chips. We provide the experimental results of two approaches.
First, the thermal map based method which is more efficient
in terms of computation time but less accurate; this does
not require the thermal-to-power inversion procedure which
increases detection time. Second, the detailed spatial power
based method which is very accurate and can detect and locate
very small Trojan; this requires the thermal-to-power inversion
procedure.



Fig. 2. Gate parameter scale with 40% PV

A. Process Variation

To characterize real-world ICs accurately, we add 20−40%
Process Variation (PV) to the gates’ parameters. We use multi-
level quad-tree approach to model the spatial within-die PV
[13]. Higher levels of the quad-tree structure reflect the spatial
correlations in larger scale while lower levels reflect the spatial
correlations in smaller scale [13]. Figure 2 demonstrates the
PV profile generated by an 8-level quad-tree. The effect of
PV on dynamic power is neglected in our experiment since
it is insignificant compared to the effect of PV on leakage
power. Since Isub is the dominant component of leakage
power, we assume that the leakage current is equal to sub-
threshold current. We add PV to gates’ length, gates’ width
and gates’ oxide thickness as [14]. In our experiment we set
5 different PV levels with variation of 20%, 25%, 30%, 35%
and 40%, which introduces ±0.5% to ±3% variation to total
power consumption.

B. IC Benchmarks

Three benchmarks from Opencores that are developed with
Hardware Description Language (HDL) are used in our anal-
ysis: 1) 128-bit Advanced Encryption Standard (AES) cipher,
2) 32-bit MIPS Processor, 3) Reed-Solomon Decoder. Table I
gives the basic information of benchmarks including number
of gates, core size and total power consumption with standard
voltage 1.1V at 1GHz. We used Design Compiler synthesis
tool from Synopsys to map the benchmarks to Nangate 45nm
library and used Primetime-PX from Synopsys to estimate the
average power consumption during a certain period with ran-
dom vectors. We used Cadence SoC Encounter RTL compiler
for floor planning, placing and routing, and Hotspot [11] for
IC temperature simulation.

C. Trojan Design and Insertion

We have designed Trojans modules with power consumption
varying from 0.05% to 0.2% total IC power consumption. Our

TABLE I
TEST BENCHES

Test bench Number of Gates Core Size (µm2) Total Power (W )

AES 10610 163× 163 0.0732

MIPS 8661 195× 195 0.0494

RS Decoder 23224 394× 394 0.12

Trojans do not have any specific functional modules but certain
power consumption that are used to evaluate the minimum
size of Trojan that can be detected. Despite the Trojan type,
sequential or combinational, the power consumption ratio of
the Trojan circuit and the IC is the only factor that impact
our detection results. The Trojan circuits are implemented
using the same standard cells as the ICs with a constant
core utilization of approximate 70%. We divide the IC area
into 10 × 10 blocks and insert one Trojan per chip into the
blank space within these blocks. The impact of core utilization
will be studied in the future work. For each benchmark at
different PV levels, 10000 chips with different sizes of Trojans
inserted in different locations are generated. So, with different
PV levels, different Trojan sizes, different Trojan locations
100,000 chips of each benchmark are generated for testing.

D. Trojan Detection with Thermal Maps

Based on the method proposed in Section III-B, we first
calculate the optimal projection vectors for each benchmark.
All the thermal maps are simulated by HotSpot in 2n × 2n

grids. n depends on the die size and the resolution of infrared
camera, 5× 5µm2. Thus, the thermal resolution of MIPS and
AES is 32× 32 grids, and RS Decoder is 64× 64 grids. The
thermal maps with resolution 2n × 2n have 2n eigenvectors
in total. The number of eigenvectors that are used for feature
extraction is determined by the magnitude of corresponding
eigenvalues. Here we use benchmark AES as an example.
We select eigenvectors corresponding to the first 10 largest
eigenvalues as the optimal projection axes. Then the average
thermal map of 1000 authentic chips are used to extract the
golden feature matrix B as shown in Figure 3. Then for
each testing chip, the distance of its feature matrix and the
golden feature matrix is computed. Figure 4 illustrates the
distance distribution of authentic ICs and Trojan infected ICs.
Figure 4(a) is an experiment with 20% PV and 4(b) is the
experiment with 40% PV and the same measurement error.
From the figure, we can clearly see that as the magnitude
of PV increases the histogram of distance begins to overlap,
which makes it hard to distinguish the authentic chips from
the Trojan infected chips. We have implemented experiments
that vary the false positive and magnitude of process variation.

Fig. 3. Golden feature matrix extraction

1) Detection Results under Different False Positive Rate:
As we mention in Section III, the testing IC instance is
identified as an authentic chip or a Trojan infected chip by
a certain threshold that is associated with detecting false



(a) AES under 20% PV (b) AES under 40% PV
Fig. 4. Feature matrix distance between testing chip and golden chip

positive. Based on the distance histogram e.g. Figure 4 of
training chips, we apply a kernel function to estimate the actual
probability distribution function (pdf) f(d) for the authentic
instances, where d denotes the distance from the golden feature
matrix. Therefore, for a certain threshold dth, the false positive
is α = 1−F (dth). By this, we fix the false positive to a certain
value and observe how the false negative changes.

Fig. 5. With fixed PV (0.2) and nominal voltage value (1.1V), the detection
rate of AES under different false positive

Figure 5 shows that as the false positive increases, the
detection rate increases while the false negative decreases.
The controllability of the threshold makes us easily adjust the
algorithm to trade off false alarm and detection rate according
to different detection requirements.

2) Detection Results under Different PV Level: The impact
of PV is the most important factor that affects the performance
of Trojan detection method. Figure 6 shows that with the
fixed false positive rate, as the magnitude of PV increases,
the detection rate decreases. The detection rate decreases in
the following order: AES, MIPS, RS Decoder. The main
difference of these three benchmarks are the total power and

the core size. If we define power density, as ρ =
P

Score
, where

P is total power and Score is the size of the core, we notice that
ρ decreases in the same order as performance, which means
ρAES > ρMIPS > ρRS . The chip with higher power density
will generate more heat during the same period, thus, a larger
temperature gradient is formed, which makes the region with
Trojan more prominent.

E. Trojan Detection and Localization with Spatial Power
Mapping

1) Detection Results under Different PV Level: We subtract
the authentic thermal maps from the thermal maps under test,

and perform thermal to power inversion on the residual thermal
maps to estimate the spatial residual power as described in
Section III-A. Figure 7 shows results from process variation
experiment which shows a similar trend as Figure 6, but we
can clearly see that the detection rate increases significantly
using the spatial power estimates.

2) Trojan Location error using 10× 10 power maps: The
Trojan location is obtained by the method proposed in Section
III-C. We compute the Euclidean distance of the estimated
location and the real location, by normalizing the distance to
the chip core dimension we get the estimation of location error.

F. Overall Sensitivity

Table II lists all the experimental results with thermal
mapping and power mapping. Overall the power mapping
approach has a much higher sensitivity than the thermal
mapping approach. From the table we can see that with the
medium PV level, 0.3, and the Trojan size larger than 0.25%
chip size, the power mapping approach achieves a detection
rate larger than 93% with a false alarm equal to 1% for all
the three benchmarks. Also, we see that if the testing IC
is identified as Trojan chip, the method can fast locate the
Trojan within 10% error to the chip dimension. The main
reason for the dramatic improvement from thermal mapping to
power mapping is the proper recovery of the high frequency
components of the power map. Also, the thermal to power
inversion is an L2 norm based approach which is very sensitive
to outliers.

V. CONCLUSION

In this paper we have investigated the use of multimodal
post-silicon spatial thermal and power maps in order to detect
and locate Trojans in modern ICs. Through an extensive set of
benchmarks and experiments, we have demonstrated that using
high resolution thermal maps increase the Trojan detection
sensitivity. To improve the sensitivity further, we have inverted
the thermal maps to get detailed spatial power maps, and
utilized the power maps for Trojan detection. These power
maps can also reveal the Trojan location very accurately.
Using proposed multimodal methods, we are able to detect
Trojans which consume power as small as 0.05% to 0.2% of
total power consumption. To create realistic chips, we have
added 20-40% process variations. For future work, we will
add measurement noise which is present in a real infrared
imaging setup to our thermal maps generated by HotSpot. To
explore the impact of ICs’ supply voltage, we plan to vary
chips supply voltage while creating the thermal maps and
decrease the Trojan sizes even further.
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