
A Power-Driven Thermal Sensor Placement

Algorithm for Dynamic Thermal Management

Hai Wang∗, Sheldon X.-D. Tan†, Sahana Swarup†, and Xue-Xin Liu†

∗School of Microelectronics & Solid-State Electronics,

University of Electronic Science & Technology of China, Chengdu, Sichuan, 610054 China
†Department of Electrical Engineering, University of California, Riverside, CA 92521 USA

Abstract—On-chip physical thermal sensors play a vital role
for accurately estimating the full-chip thermal profile. How to
place physical sensors such that both the number of thermal
sensors and the temperature estimation errors are minimized
becomes important for on-chip dynamic thermal management
of today’s high-performance microprocessors. In this paper, we
present a new systematic thermal sensor placement algorithm.
Different from the traditional thermal sensor placement algo-
rithms where only the temperature information is explored, the
new placement method takes advantage of functional unit power
information by exploiting the correlation of power estimation
errors among functional blocks. The new power-driven placement
algorithm applies the correlation clustering algorithm to deter-
mine both the locations of sensors and the number of sensors
automatically such that the temperature estimation errors can
be minimized. Experimental results on a dual-core architecture
show that the new thermal sensor placements yield more accurate
full-chip temperature estimation compared to the uniform and
the k-means based placement approaches.

I. INTRODUCTION

Because of the exponential growth of the transistor density,

excessive high temperature on chip has become the primary

constraint in today’s high-performance microprocessor design.

For the modern multi/many-core architecture, dynamic thermal

management (DTM) methods such as task migration, thread

assignments, dynamic voltage and frequency scaling (DVFS)

are used to regulate the temperature at runtime. However,

for DTM to be effective, we need to know the full-chip

thermal distribution profile instead of a few hot spots as

both hot spots and thermal gradients need to be reduced to

improve the performance and reliability of the chip. Specially,

“cool spots” are also important besides hot spots since DTM

methods such as task migration need both information to

move the load from the hot spots area to the “cool spots”

location. On-chip physical thermal sensors play a vital role for

accurately estimating the full-chip thermal profile. However,

since thermal sensors occupy many chip resources (areas,

wiring and reading circuity), it is impractical to place a large

number of thermal sensors across a chip. As a result, how to

place the thermal sensors automatically to minimize both the

This research was supported in part by NSF grant under No. NSF-0902885
and No. 1255899, and Semiconductor Research Corporation grant under No.
SRC 2009-TJ-1991 and an initial startup grant from UESTC.

(a) The traditional sensor based thermal estimation
flow and its thermal sensor placement.

(b) The power calibration based thermal estimation
with the new thermal sensor placement method.

Fig. 1. Comparison of the traditional sensor based thermal estimation flow
and the power calibration based thermal estimation flow. The thermal sensors
play completely different roles in the two approaches.

number of sensors and thermal estimation error becomes an

important topic.

Thermal sensor placement problem for microprocessors has

been studied in the past few years and several methods have

been proposed [1], [2], [3], [4], [5], [6]. In [1], the maximum

temperature difference from the hot spot to a certain spatial

point on chip is shown analytically. In [2], a systematic ther-

mal sensor placement method was proposed: an interpolation

method was introduced to recover the full-chip thermal map,

and the k-means clustering algorithm was applied to determine

the sensor locations according to the hot spot distribution.

Another thermal sensor placement work is the spatial thermal

spectral-driven method [3]. By placing more thermal sensors at

the places with high frequencies, the full-chip temperature can

be recovered with higher accuracy. An optimization technique

based thermal sensor placement method was introduced in [4].

In [5], the thermal correlation is exploited to assist the thermal

sensor placement and thermal map recovering. And in [6], the

authors proposed a sensor placement method by solving the

on-chip hot spot tracking problem.

Although quite different in details, all the existing thermal

978-3-9815370-0-0/DATE13/ c©2013 EDAA



sensor placement methods exploit only the chip thermal infor-

mation and properties. As shown in Fig. 1 (a), full-chip thermal

estimation is achieved by a full-chip temperature recovery

technique with the thermal sensor readings as input. Power

information, which is the source of the temperature, remains

un-explored for thermal sensor placement. Power information

is particularly relevant because power consumptions of many

functional blocks are correlated and this can lead to less

number of required sensors or better accuracy given the same

number of sensors. In this paper, we propose a new thermal

sensor placement method by looking into the information from

the power consumption side. As shown in Fig. 1 (b), the pro-

posed thermal sensor placement method is based on a different

thermal estimation flow with two additional components: a

performance counter based runtime power estimator and a

thermal estimator with power calibration. The new thermal

sensor placement method serves to boost the power calibration

efficiency to achieve accurate thermal estimation.

II. RUNTIME THERMAL ESTIMATION FRAMEWORK

In this section, the runtime thermal estimation framework

[7] is presented. We will first present the runtime power

estimator which provides the input to the thermal estimator and

at the same time introduces estimation error. Then, the error

correction function of the thermal sensors in this framework

is shown and how to place the thermal sensors to improve the

thermal estimation accuracy is discussed.

A. Runtime power estimation

Due to the complex behavior of the microprocessor at

runtime, accurately estimating the functional block (FB) level

dynamic power is very hard. There are several off-line FB

level power estimators available [8], [9]. They take the power

event counts and multiply the counts by their corresponding

unit powers to get the power estimations for FBs. These

power estimators are considered to be accurate, for example,

accurate to within 5% to 10% [10]. However, they are too

expensive for runtime usage because there are too many power

events to be monitored. Performance counter based runtime

power estimators [11], [10] have much smaller overhead by

monitoring only a few carefully chosen power events, and as

a trade-off, has larger errors compared to the off-line power

estimators. For example, in [11], at runtime, the power of the

ith functional block is estimated as

Ui = Ei × Pi (1)

where Ei is the count of power event at the ith FB, Pi is the

unit power per power event for the ith FB.

Although fast enough, the runtime power estimators are

usually not accurate enough to be directly used for thermal

estimation. Next, we will present how the power estimator

errors can be compensated with the help of thermal sensors.

B. Runtime thermal estimation

The heat differential equation of the chip can be spatially

discretized using finite difference method in the three di-

mensional space to generate an equivalent thermal circuit.

Mathematically, for a chip with np functional blocks, if there

are n discretized grids with specific boundary conditions, the

equivalent thermal circuit can be modeled using an ordinary

differential equation [12]

C
dT (t)

dt
+GT (t) = BU(t) (2)

where T (t) ∈ R
n is the temperature vector containing the

temperatures of the n thermal nodes, C ∈ R
n×n is the thermal

capacitance matrix, G ∈ R
n×n is the thermal conductance

matrix, B ∈ R
n×np is the position matrix of the input where

Bi,j denotes the portion of the jth functional block power

injects into the ith thermal node and U(t) ∈ R
np contains

the power dissipations of the np functional blocks, whose

estimations are shown in (1). The right hand side of (2) is

also written as

J(t) = BU(t) (3)

where J(t) ∈ R
n represents the power dissipations of n grids.

The accurate temperature T can be calculated from (2)

using accurate power input. However, this is inapplicable

because of the power estimation errors. Assume the power

estimation from a runtime power estimator is J̄ , this will result

in an inaccurate temperature estimation T̄ , which should be

corrected to the actual value T .

In [7], an error compensation term ǫ

ǫ ≈ G∆T (t) (4)

is introduced at J̄ to get the calibrated power estimation

J̃ = J̄ + ǫ (5)

which leads to a more accurate temperature estimation T̃ (t) ≈
T (t), where ∆T (t) = T (t) − T̄ (t) denotes the thermal

estimation error. This process is called power calibration as

shown in Fig 1 (b).

However, only part of T (t) and ∆T (t) is available where

there are thermal sensors located. In order to calibrate the

power with limited number of thermal sensors, the power error

correlation among functional blocks needs to exploited.

First, assume there are ns thermal sensors placed on chip.

Please note that their placement may not be optimal without

the thermal sensor placement algorithm proposed in this paper.

For convenience, we first perform matrix permutation on (2)

to group the thermal nodes with thermal sensors together as

[

C11 C12

C21 C22

]

[

dTs(t)
dt

dTu(t)
dt

]

+

[

G11 G12

G21 G22

] [

Ts(t)
Tu(t)

]

=

[

B1

B2

]

U(t)

(6)

where Ts(t) ∈ R
ns represents the temperatures at the nodes

where thermal sensors are placed and Tu(t) ∈ R
n−ns repre-

sents the temperatures at the nodes without thermal sensors.

Accordingly, (4) becomes
[

G11 G12

G21 G22

] [

∆Ts(t)
∆Tu(t)

]

=

[

ǫs
ǫu

]

(7)

The value of ∆Ts is known, but ∆Tu is unknown due to the

absence of thermal sensors. Since there are 2n−ns unknowns



with n equations, (7) is unsolvable (in the normal sense) unless

the number of unknowns is reduced. An error correlation

matrix D ∈ R
(n−ns)×ns is introduced by taking advantage

of the power correlation among different functional blocks on

chip, and ǫu is represented in terms of ǫs as

ǫu = Dǫs (8)

which will reduce the number of unknowns in (7). Sub-

sequently, the error compensation term ǫ can be calculated

for accurate thermal estimation. All FBs related to the same

thermal sensors form a new block, called sensor block.

Please note that (8) may not work well if the thermal

sensor placement is not considered. If ǫu and ǫs are strongly

correlated, then (8) will hold for all the time over a wide

variety of applications. However, if ǫu and ǫs are weakly

correlated, or even independent, there will be no D exist which

can make (8) valid. Our objective in this paper is to find the

optimal thermal sensor placement which will maximize the

correlation between ǫu and ǫs and at the same time minimize

the number of thermal sensors.

III. NEW THERMAL SENSOR PLACEMENT ALGORITHM

Our new thermal sensor placement algorithm mainly in-

cludes two steps: first, experiments, similar to [13], will be

performed on a variety of benchmarks collecting the sample

data to form a correlation graph. Then, a correlation clustering

algorithm is applied on the correlation graph. The functional

blocks are automatically clustered into sensor blocks without

pre-specifying the sensor block count (number of thermal

sensors). After the sensor placement, the correlation matrix

D is determined.

A. Correlation graph generation

Please note that instead of finding the error relation for each

thermal node as (8), it is only necessary to find the correlation

among functional blocks since the powers of the nodes inside

each functional block are extremely correlated. As a result, we

only need to find the power error relation of functional blocks

as

∆Ua = Dp∆Us (9)

where ∆Ua ∈ R
np and ∆Us ∈ R

ns represent the power error

of each functional block and the power error of the functional

blocks with thermal sensors, respectively, and Dp ∈ R
np×ns

is the functional block level correlation matrix. The final D
matrix can be calculated from Dp as shown at the end of this

section.

As the first step, the correlation graph is generated for all

the functional blocks, using the collected sample data, both

from measurement and power estimator simulation.

Assume there are b benchmarks with steady power con-

figurations. First, we run the benchmarks using the power

estimator and record the power results

Û = [Û1, Û2, . . . , Û b] (10)

where, for example, the ith sample

Û i = [ûi
1, û

i
2, . . . , û

i
np
]T (11)

since there are np functional blocks. Next, the benchmarks are

run on the test chip until the temperatures reach steady state.

The steady state temperature is measured as T . The real power

of the chip is reversely calculated as

U = [U1, U2, . . . , U b] (12)

using the measured temperatures as in [14], [15]. The errors

of the functional block powers are obtained as

∆U = U − Û (13)

The next step is to form a correlation matrix, such that

functional blocks with high power error correlations can be

identified and put into one sensor block. Using the data sam-

ples ∆U , the standard correlation matrix corr∆u ∈ R
np×np

is calculated with the element at the ith row and jth column

as
E[(∆ui − µi)(∆uj − µj)]

σ∆ui
σ∆uj

(14)

where µi is the expected value of ∆ui.

By definition, the standard correlation matrix is a symmet-

ric matrix containing the correlation values of each random

variable pair. The correlation value is a number between −1
and 1 which reveals the dependence of a random variable pair,

where 1 and −1 indicate the two random variables are fully

dependent and 0 means totally independence. In our case, the

absolute value of the correlation is taken.

The correlation graph is easily generated by observing the

correlation matrix. Assume the correlation matrix of a chip

with four functional blocks is

corr∆u =









1 0.9 0.4 0.8
0.9 1 0.3 0.8
0.4 0.3 1 0.7
0.8 0.8 0.7 1









(15)

The corresponding correlation graph is generated as shown in

Fig. 2.

B. Correlation clustering algorithm

The highly correlated functional blocks need to be clustered

into the same sensor block in order to enhance the relation in

(8). There are many clustering algorithms, such as k-means

method used in [2] (although the objective is quit different).

However, most of these clustering algorithms require the

number of clusters (in our case, the number of sensors) to

be known as a priori, which typically is not the case or

estimation needs to be performed. For example, if there are

four functional blocks, three of them are fully correlated and

the other one is independent. There are clearly only two

clusters, but k-means algorithm with k = 3 will lead to a

non-optimal result with three clusters. As a result, it is better

to determine the number of sensors in the clustering algorithm.

In this paper, we introduce the correlation clustering algorithm

[16] which can automatically determine the number of thermal

sensors and their locations based on the generated correlation

graph.



Fig. 2. A correlation clustering example for a complete undirected weighted

graph with four vertices. On each edge eij , w−

ij
is shown as red shaded while

w
+

ij
is in normal. The outputed clusters are surrounded by dashed lines filled

with yellow color.

In our case, the input of the correlation clustering algorithm

is the correlation graph generated previously, which can be ex-

pressed as a complete undirected weighted graph G = (V,E)
(see Fig. 2 for example). There are np vertices, each represents

a functional block. Let vi denote the ith vertex, eij denote the

edge (vi, vj) and the correlation on the edge is cij . There

are two weights on each edge eij , denoted as w+
ij and w−

ij ,

where w+
ij is the cost of cutting the edge and w−

ij is the cost

of keeping the edge. We use the additive weights which are

calculated as w+
ij = cij and w−

ij = 1− cij . The output of the

correlation clustering algorithm is a new graph G′ with edges

xij ∈ {0, 1}, where xij = 0 means vertices vi and vj are

assigned into the same cluster while xij = 1 means eij is cut

and vi and vj are assigned into different clusters. According

to the graph theory, the values of xij should also satisfy the

triangle inequality: xij + xjk ≥ xik.

The basic idea of the correlation clustering algorithm is to

find the optimal clusters (and the number of clusters) such that

the uncorrelations inside each cluster is minimized and at the

same time, the correlations among clusters are minimized. We

can measure the uncorrelations inside clusters as

Winside =
∑

i,j:i<j

(1− xij)w
−

ij (16)

and the correlations among clusters as

Wamong =
∑

i,j:i<j

xijw
+
ij (17)

Please note 1 − xij is 1 if vi and vj are in the same cluster

while 0 means they are separated. The total cost can be written

as Winside+Wamong and the formulation of the optimization

problem is

minimize
∑

i,j:i<j

(1− xij)w
−

ij + xijw
+
ij

subject to xij ∈ {0, 1}

xij + xjk ≥ xik

(18)

As an example, consider the graph shown in Fig. 2. Obvi-

ously, v1, v2 and v4 are highly correlated to each other and are

assigned into the same cluster. For v3, although it is relatively

correlated to v4, it is uncorrelated to v1 and v2. As a result, it

is assigned into another cluster. These two clusters minimize

the cost function in (18) and 2 is automatically determined as

the number of clusters. On the contrary, for k-means based

method, k = 3 for example, may lead to non-optimal results.

It should be noticed that sometimes the number of thermal

sensors are limited due to the design constraint. On the other

hand, it is also possible that the power errors among functional

blocks are highly independent and as a result, the clustering

correlation algorithm will generate a large number of clusters.

In order to deal with these conflicts, the correlation clustering

algorithm can be tuned by simply multiplying a scalar l to

the standard correlation matrix corr∆u, where l > 1 is used

to reduce the number of clusters until the sensor number is

smaller than the allowed number. In addition, 0 < l < 1 can

be used to increase the number of clusters in order to enhance

the accuracy, if there are still space for more thermal sensors.

The clustering correlation algorithm is NP-hard but the

complexity can be reduced by using heuristic or approxi-

mate methods [17]. Thermal sensor placement is an off-line

algorithm, time complexity is generally not a concern. In

addition, the number of functional blocks to be clustered

is usually small (dozens or hundreds). In our experiment,

the correlation clustering algorithm always finishes in a flash

(within 1 second) and the memory cost is negligibly low.

C. Locate thermal sensors

We have clustered functional blocks into sensor blocks, then

one thermal sensor has to be placed for each sensor block.

We call the functional block with a thermal sensor located

as the sensor functional block. Although several functional

blocks are clustered into the same sensor block by power

error correlations, their physical locations may be distributed

all over the chip. We decide the sensor functional block as the

one closest to the centroid of the sensor block. The thermal

sensor is then put on the center of this functional sensor block.

Please note that thermal sensors cannot always be put at the

specified location because of the design considerations and

limitations [4]. In this case, thermal sensor can be fine tuned

within the sensor functional block. If the design constraint is

not satisfied, the functional block which is the second closest

to the sensor block centroid is used as the sensor functional

block instead.

D. Error correlation matrix generation

In this subsection, we will present how to generate the error

correlation matrix D. As introduced in III-A, we have to form

Dp first, then generate D. We use the linear regression method

to find the relations among the functional blocks within each

sensor block. Assume the ith functional block is associated

with the jth sensor functional block (which means they are

clustered into the same sensor block and the jth functional

block has a thermal sensor placed), the relation

∆uj = aj∆ui (19)

is found using the sample data information

[∆u1
i ,∆u2

i , . . . ,∆ub
i ] and [∆u1

j ,∆u2
j , . . . ,∆ub

j ]. Since

the two functional blocks are clustered together, meaning they

are highly correlated, the relation (19) will be statistically



good. With (19) for each functional block without thermal

sensors, i.e. j = 1, 2, . . . , n− ns, Dp is populated with aj .

The correlation matrix D is derived by multiplying a

transformation matrix M ∈ R
(n−ns)×np as the following:

D = MDp (20)

The element at the ith row jth column of M is non-zero only

if the ith node without sensor is inside the jth FB, and the

non-zero value is

Mi,j = rui
/rsi , (21)

where rui
is the power ratio of the ith node without sensor

in the total power of its functional block (the jth functional

block), and rsi is the power ratio of the corresponding sensor

node in the total power of its functional block.

IV. EXPERIMENTAL RESULTS

The experiments are performed on a Linux server with

3.0GHz quad-core CPU and 16GB memory. A dual-core

architecture shown in Fig. 3 (a) and (b) is used. As shown

in Fig. 3 (c), a COMSOL [18] package model with the

specified chip structure is built to calibrate our thermal model

(2). The size of the chip is 10mm × 10mm × 0.7mm. The

simulation time step h is chosen to be 0.1s to balance the

speed and accuracy. The ambient temperature is set to be

35◦C. We use wattch [9] to generate the power information

with SPEC benchmarks [19]. The runtime power estimator

is built by using two most important performance counts for

each functional block power, where the parameter of each

performance count is obtained through a linear regressor with

samples from several benchmarks similar to [11], [10]. For

the correlation clustering, we use the opensource software for

[17] available at [20].

We first compare the new thermal sensor placement algo-

rithm with the simple uniform placement method. Because

in the new thermal sensor placement algorithm, the number

of thermal sensors is determined automatically, we force the

other placement methods to have the same number of thermal

sensors for a fair comparison. In order to validate the new

placement algorithm, the uniform thermal sensor placement

has the same thermal estimation flow (shown in Fig. 1 (b))

as the new placement method. The correlation clustering

algorithm inside the new thermal sensor placement method

gives 6 clusters, which means there are totally 6 thermal

sensors. For the uniform sensor placement, the thermal sensor

is placed on L2 Cache, FPAdd, and IntExec, for each core.

While for the new method, the sensors are placed on L2 Cache,

FPReg, and FPAdd.

The error snapshot plots with the bzip2 benchmark at 15s

for the uniform and the new method are shown in Fig. 4

(a) and (b). Thanks to the runtime power estimator and the

power calibrator, both the uniform and the new placement

method generate quite good thermal map estimations with

only 6 thermal sensors. However, the uniform thermal sensor

placement does not consider the power error correlation at

the sensor placement stage, such that the functional blocks

inside each sensor block are not fully correlated, resulting

in relatively large error at some positions. Since the new

thermal sensor placement algorithm automatically groups the

functional blocks with respective to power error correlations,

the power calibrator works more efficiently in this case and

generates the power map with much less error.

The new method is then compared against the existing k-

means based thermal sensor placement method with inter-

polation thermal map recovery [2] on the same benchmark.

The new thermal sensor placement method takes advantage of

the runtime power estimator which is additional information

compared to the k-means placement method. As shown in

Fig. 4 (c), the k-means method has larger error compared

to the new method because it is extremely hard (perhaps

impossible) to accurately recover the full-chip temperature

with only temperature information from 6 thermal sensors.

More accuracy comparison results on the other benchmarks

are summarized in Table I. We have also increased the num-

ber of thermal sensors by multiplying the correlation matrix

corr∆u with a constant term l as introduced in Section III-B,

where the case of 10 thermal sensors is achieved by multiply-

ing l = 0.65 and the case of 14 thermal sensors is reached by

multiplying l = 0.6. We can see more thermal sensors actually

improve the accuracy, but the number of sensors automatically

determined by the new algorithm is already fairly enough.

V. CONCLUSION

In this paper, we propose a new systematic thermal sensor

placement algorithm to optimize both the number of sensors

and the thermal estimation errors. The new placement method

explores the correlation of power estimation errors among

functional blocks to determine the best locations of physical

thermal sensors. The new algorithm applies the correlation

clustering algorithm to determine both the locations of sensors

and the number of sensors automatically in the optimal way

in terms of temperature estimation errors. Experimental results

show that the thermal sensor placements given by the proposed

method lead to more accurate full-chip temperature estimation

compared to the existing k-means based placement approach

with interpolation based thermal estimation.

REFERENCES

[1] K. Lee, K. Skadron, and W. Huang, “Analytical model for sensor
placement on microprocessors,” in Proc. IEEE Int. Conf. on Computer

Design (ICCD), 2005, pp. 24–27.

[2] S. Ogrenci Memik et al., “Optimizing thermal sensor allocation for
microprocessors,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 27, no. 3, pp. 516–527, March 2008.

[3] A. Nowroz, R. Cochran, and S. Reda, “Thermal monitoring of real
processors: Techniques for sensor allocation and full characterization,”
in Proc. Design Automation Conf. (DAC), 2010.

[4] S. Sharifi and T. S. Rosing, “Accurate direct and indirect on-chip
temperature sensing for efficient dynamic thermal management,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 29, no. 10, pp. 1586–1599, Oct. 2010.

[5] Y. Zhang, B. Shi, and A. Srivastava, “A statistical framework for
designing on-chip thermal sensing infrastructure in nano-scale systems,”
in Proc. Int. Symp. on Physical Design (ISPD), 2010, pp. 169–176.

[6] S. Reda, R. Cochran, and A. Nowroz, “Improved thermal tracking
for processors using hard and soft sensor allocation techniques,” IEEE

Trans. on Computers, vol. 60, no. 6, pp. 841–851, June 2011.



L2 Cache

Core 1 Core 2

(a) The dual-core
microprocessor
architecture.

FPQ
ITB

IntQ

IntExec

IntReg

Bpred

IntMap

LdStQ

DTB

FPMap

FPMul

FPReg

FPAdd

DCacheICache

(b) The architecture
for each core com-
posed of FBs.

(c) The package model with
specified architecture built using
COMSOL.

Fig. 3. The dual-core microprocessor architecture, with two cores and one shared L2 cache, and the package model built using COMSOL.

TABLE I
ACCURACY COMPARISON OF THE NEW THERMAL SENSOR PLACEMENT ALGORITHM WITH THE UNIFORM AND THE K-MEANS THERMAL SENSOR

PLACEMENT METHODS.

Bench 6 sensors 10 sensors 14 sensors
Uniform New k-means Uniform New k-means Uniform New k-means

avg max avg max avg max avg max avg max avg max avg max avg max avg max

bzip2 0.08 0.83 0.06 0.19 2.0 7.2 0.07 0.85 0.05 0.20 1.4 7.7 0.06 0.33 0.05 0.12 1.3 7.7
gzip 0.15 0.42 0.12 0.37 1.9 8.0 0.11 0.37 0.08 0.25 1.5 8.1 0.09 0.34 0.09 0.26 1.2 7.0
mcf 0.07 0.65 0.06 0.41 1.0 4.7 0.08 0.52 0.04 0.26 0.91 4.7 0.09 0.47 0.02 0.10 0.8 3.9

mgrid 0.04 0.66 0.04 0.22 2.3 10.4 0.04 0.48 0.03 0.16 1.7 10.4 0.03 0.31 0.02 0.12 1.5 7.6
swim 0.22 2.7 0.17 1.2 1.3 8.1 0.16 1.8 0.15 0.86 1.3 8.2 0.15 0.93 0.15 1.1 1.3 6.5
galgel 0.08 1.3 0.06 0.28 1.0 5.2 0.07 0.93 0.04 0.18 0.94 5.6 0.05 0.66 0.03 0.15 0.93 6.2

0
2

4
6

8
10

0
2

4
6

8
10

0

0.2

0.4

0.6

0.8

1

x (mm)y (mm)

E
rr

o
r 

(°
C

)

(a) Error plot of the uniform ther-
mal sensor placement.

0
2

4
6

8
10

0
2

4
6

8
10

0

0.05

0.1

0.15

0.2

x (mm)y (mm)

E
rr

o
r 

(°
C

)

(b) Error plot of the new thermal
sensor placement.

0
2

4
6

8
10

0
2

4
6

8
10

0

2

4

6

8

x (mm)y (mm)

E
rr

o
r 

(°
C

)

(c) Error plot of the k-means sen-
sor placement with interpolation
thermal map recovering.

Fig. 4. Error snapshot plot with the bzip2 benchmark at 15s. For both cases, 6 thermal sensors are placed on chip.

[7] H. Wang et al., “Full-chip runtime error-tolerant thermal estimation and
prediction for practical thermal management,” in Proc. Int. Conf. on

Computer Aided Design (ICCAD), Nov. 2011.

[8] S. Gunther et al., “Managing the impact of increasing microprocessor
power consumption,” Intel Technology Journal, vol. 5, February 2001.

[9] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. Int. Symp.

on Computer Architecture (ISCA), 2000, pp. 83–94.

[10] M. D. Powell et al., “CAMP: A technique to estimate per-structure
power at run-time using a few simple parameters,” in Proc. IEEE Int.

Symp. on High-Performance Computer Architecture (HPCA), 2009, pp.
289–300.

[11] W. Wu et al., “A systematic method for functional unit power estimation
in microprocessors,” in Proc. Design Automation Conf. (DAC), June
2006, pp. 554–557.

[12] Y.-K. Cheng et al., Electrothermal Analysis of VLSI Systems. Kluwer
Academic Publishers, 2000.

[13] H. Wang et al., “Runtime power estimator calibration for high-

performance microprocessors,” in Proc. Design, Automation and Test

In Europe. (DATE), March 2012, pp. 352–357.
[14] A. Nowroz, G. Woods, and S. Reda, “Improved post-silicon power

modeling using AC lock-in techniques,” in Proc. Design Automation

Conf. (DAC), 2011.
[15] R. Cochran, A. Nowroz, and S. Reda, “Post-silicon power characteri-

zation using thermal infrared emissions,” in Proc. Int. Symp. on Low

Power Electronics and Design (ISLPED), 2010, pp. 331–336.
[16] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine

Learning Journal, vol. 56, no. 1-3, pp. 89–113, 2004.
[17] M. Elsner and W. Schudy, “Bounding and comparing methods for

correlation clustering beyond ILP,” in Workshop on Integer Linear

Programming for Natural Language Processing, June 2009.
[18] www.comsol.com, “Comsol mutiphysics: User guide,” Version 4.1.
[19] J. L. Henning, “SPEC CPU 2000: Measuring CPU performance in the

new millennium,” IEEE computer, vol. 1, no. 7, pp. 28–35, July 2000.
[20] “Correlation clustering system,” http://www.cs.brown.edu/∼melsner/.


