Tuning Dynamic Data Flow Analysis
to Support Design Understanding

Jan Malburg*

Alexander Finder*

Gorschwin Fey*T

*University of Bremen, 28359 Bremen, Germany
{malburg, final, fey} @informatik.uni-bremen.de

fGerman Aerospace Center, 28359 Bremen, Germany
Goerschwin.Fey @dlr.de

Abstract—Modern chip designs are getting more and more
complex. To fulfill tight time-to-market constraints, third-party
blocks and parts from previous designs are reused. However,
these are often poorly documented, making it hard for a designer
to understand the code. Therefore, automatic approaches are
required which extract information about the design and support
developers in understanding the design.

In this paper we introduce a new dynamic data flow analysis
tuned to automate design understanding. We present the use
of the approach for feature localization and for understanding
the design’s data flow. In the evaluation, our analysis improves
feature localization by reducing the uncertainty by 41% to 98%
compared to a previous approach using coverage metrics.

I. INTRODUCTION

Modern chip designs are getting more and more complex.
To keep up with the complexity, the size of the design teams
increases as well. Today, design teams for state-of-the-art chips
already consist of hundreds of people [1]. To fulfill the time-
to-market constraints, more and more third-party blocks are
used or old design blocks are reused. If improvements or
bugfixes are necessary, these often relate to some specific
features of the design. Following the definition of the IEEE
Standard 829 [2], a feature is a distinguishing characteristic
of the design. Generally, a feature is related to some explicit or
implicit parts of the design’s specification. A feature is mostly
defined in terms of functionality, performance, or robustness.
In this paper we are primarily interested in functional features.

A designer, who wants to improve a feature or fix a
bug, must commence two initial steps in order to fulfill this
task. First, he must localize the place, where the feature
is implemented and second, he must understand how the
implementation of the feature works. Having a good doc-
umentation of all parts of the design, including third-party
blocks and blocks from previous designs, clearly helps with
this task. Unfortunately, in many cases there exists only a
poor documentation. Consequently, the designer is required
to manually inspect the code of the design until he finds code
belonging to a feature. Then he still has to understand the
feature’s implementation.

In this paper we present a dynamic analysis of the in-
formation flow on Hardware Description Language (HDL)-
level gathered during simulation. The only requirement for
the analysis is that the HDL code of the design is available.
This analysis can be used for different tasks while debugging
or improving a design. First, for a single use case the analysis

This work was supported in part by the German Research Foundation (DFG,
grant no. FE 797/6-1)

978-3-9815370-0-0/DATE13/©2013 EDAA

serves to visualize the data-flow and control-flow in the
full design or in parts of the design. This gives a designer
valuable insight into the implementation of features. Second,
our analysis can significantly improve the results of automated
feature localization, pinpointing the parts of the design which
implement a feature. Additionally, both approaches can be
combined allowing a designer to localize parts in the data-
and control-flow which are related to a feature.

The remainder of this paper is organized as follows: In
Section II related work is presented, followed by definitions
in Section III used throughout this paper. In Section IV we
introduce relevant subgraphs, including a brief description how
the subgraphs are computed. Section V presents how relevant
subgraphs are used for design understanding. This includes
feature localization and visualization of data- and control-flow
within the design. In Section VI we evaluate our approach.
Finally, Section VII concludes the paper.

II. RELATED WORK

Over the years several methods have been proposed to
support a developer in understanding hardware and software
designs. One of the first techniques was static program slicing,
originally introduced for software designs by Weiser [3] and
adapted for HDL-descriptions by Clarke et. al. [4]. Static
program slicing was originally proposed for debugging, but
can also be used for design understanding, as it removes
unrelated code. Static program slicing computes all statements,
which are affecting or are affected by a given set of program
positions, called slicing criterion. The resulting slice is a
subset of the original system. With respect to the slicing
criterion, the slice is functionally equivalent to the original
system, for all possible inputs of the system. However, as static
program slices must be equivalent under all inputs, they are
rather large.

To reduce the size of the slice, dynamic program slicing has
been proposed for software systems in [S]. A slicing criterion
for dynamic program slicing is a defined point in the execution
trace of the system under specific input. The resulting slice is
only required to be equivalent under that input. There exist
several types of dynamic slicing [6]: data slicing computes
only the transitive closure of dynamic data dependency. In
full slicing also the control dependencies are considered. In
relevant slicing additionally those statements are added to the
resulting slice which would influence the value of a variable
by changing the execution path. The technique presented in
this paper considers dependency in the sense of full slicing.

Similar to backward dynamic program slicing, path tracing
tries to determine the cause of a value in a concrete run of the

design. Path tracing of hardware designs was first introduced
in [7]. In the original version, path tracing works on the gate
level computing the critical path of a design by following the
controlling inputs of a gate. However, in this paper we are
interested in design understanding on HDL-level. In [8] an
approach is described to apply path tracing on HDL-level, but
that approach only considers data dependency and not control
dependency. Therefore the result is, in the sense of dynamic
program slicing, a backward data slice. Our approach however,
can be used for forward and backward full slices.

Another approach for design understanding is feature local-
ization using coverage metrics, first introduced for software
designs in [9]. Feature localization aims to automatically find
the part of the code implementing a feature. For feature lo-
calization conventionally the coverage of runs using a defined
feature is compared with the coverage of runs not using that
feature. There exist several heuristics for this comparison [10].

Feature localization for HDL-designs has first been applied
in [10]. Toggle- and statement-coverage are used as coverage
metrics for the comparison. The results are presented using a
coloring scheme of the source code, inspired by the Tarantula
tool [11]. The authors compare several different coloring
heuristics and report that the coloring heuristic based on the
Tarantula scheme yields the best results. In contrast, the tech-
nique presented here uses dynamic dependency information,
rather than coverage information, allowing a more accurate
localization of features.

III. PRELIMINARIES

The dependency graph of a design contains a vertex for
each statement in the source code of the design. Two vertices
are connected by a directed edge, iff there exists an input to
the system such that the starting point of the edge can affect
the ending point of the edge. A dependency graph of a design
can be statically computed from the source code of the system.

A simulation or emulation of a hardware design under
specific input, as well as the execution of a software system
under specific input, is called a run. Throughout this paper
we will use the following code as a running example:

1 input wire a,b,clock;
2 output reg Xx,y; 9

8 always @(posedge clock)
if(~a)

3 always @(posedge clock) 10 y<=X;
4 if (a) 11 else

5 x<=~b; 12 y<=0;
6 else

7 x<=b;

We consider an exemplary run with two clock cycles: in the
first cycle a=1 and b=1, and in the second cycle a=0 and b=1.

During a run r of an HDL design H, a statement or
expression in the source code can be executed several times.
The executions can be sequential or parallel. Let an execu-
tion point x be one single execution of a statement or an
expression, defined by its corresponding source code position,
instantiation path, and time of execution. If = corresponds to
an assignment statement, we call it an assignment execution
point. Accordingly, for a control statement we call it a control
execution point and for an expression expression execution
point. Let X be the set of all execution points in 7.

Further, let a data point d be the result of the evaluation
of an expression, the value of a constant, or the value of an
instantiated variable after an assignment to this variable'. Let
D be the set of all data points in 7.

IThe change of a primary input and setting the initial value of a variable
is also considered as an assignment in this sense.

Clock Cycle 1
The dynamic dependency graph for our running example.

Clock Cycle 2

Figure 1.

Given the design H and a run r, a directed and acyclic
dynamic dependency graph G = (V, E) can be computed.
Figure 1 shows the dynamic dependency graph for our running
example. The vertex set V' = D U X of G is the union of
the execution points X and the data points D. In contrast
to standard dynamic dependency graphs from literature [12],
we also have data points in our vertex set because in HDL
we do not have expressions reading input data. Instead the
input is given by external assignments to the primary input
pins. Hence, without the data points we would not have the
input values in our dynamic dependency graph. In Figure 1
black circles represent data points, blue circles expression
execution points, green circles assignment execution points,
and red circles control execution points.

An edge e = (v1,v2) of G is the directed connection of
its starting point v; € V and its ending point vo € V. The
edge set E of G is defined by the direct-dependent relations of
the vertices. There exist two direct-dependent relations, direct-
data-dependent and direct-control-dependent. A data point d €
D is direct-data-dependent on an execution point z € X, if
x is the assignment execution point which originally set d or
x is the expression execution point for which d is the result.
Further, z is direct-data-dependent on d, if d is an operand of
x. An execution point 1 € X is direct-control-dependent
on a control execution point x5 € X, if x2 is the control
execution point which controls the execution of the basic block
containing 1. Figure 1 shows direct-control-dependent edges
as red arrows and direct-data-dependent edges as black arrows.

A vertex v; € V is direct-dependent on a vertex vo € V,
if vy is direct-control-dependent on v, or vy is direct-data-
dependent on v,. Further, v; is data-dependent on vs if there
exists a path in G from v; to vy only consisting of direct-
data-dependent edges. A vertex vy is control-dependent on
vg if there exists a path in G from vy to vy consisting only of
direct-control-dependent edges. A vertex v; is dependent on
vg if there exists a path in G from v; to vs.

For a vertex v € V the backwardtrace(v) C V is the
set of all vertices which are reachable in G from v following
the edge direction. Correspondingly, for a vertex v € V the
forwardtrace(v) C V is the set of all vertices which are
reachable in GG from v following the edges in reverse direction.

For each assignment execution point and each expression
execution point x, there exists exactly one data point d which
is direct-dependent on x. Also for every data point d, if there
exists an expression point z on which d is direct-dependent
then x is unique and x is either an expression execution
point or an assignment execution point. We can reduce G by
merging the expression and assignment execution points with
their corresponding data points without losing information. In
Figure 1 the vertices which can be merged are shown by dotted
circles. The corresponding reduced dynamic dependency graph
is shown in Figure 2. For the rest of the paper we will consider
reduced dynamic dependency graphs.

]

o ol o

Clock Cycle 1 Clock Cycle 2

Figure 2. The reduced dynamic dependency graph for our running example.

IV. FROM DYNAMIC DEPENDENCY GRAPHS TO RELEVANT
SUBGRAPHS

In a run of an HDL-design large parts of the code are always
executed, but in fact only parts of that code affect the result
of the run. Similarly, there exists code, which influences the
result, but its effect is independent of the values that define
which features are executed. For example consider a simple
memory controller with no error checking which reads from
a memory location. Thus, the contents of the memory affects
the result of the operation, however, for the feature "reading
memory content", the content is irrelevant.

In this section we describe how to compute a subgraph of a
run, which includes those vertices and edges that are relevant
for the result of the run. In Section IV-A we present the formal
definition of such relevant subgraphs. Section IV-B describes
how the subgraphs are computed.

A. Formal definition

Given a dynamic dependency graph G = (V, E) we can
compute a relevant subgraph G, = (V,, E,), containing
those parts of the code that affect the result and those parts
of the code that are affected by the input. For this, we first
need a set of starting vertices V; C V and a set of ending
vertices V. C V. The set V; corresponds to the values at a
given point in time, deciding the features used. The set V,
represents the result of the features. In most cases the features
used are chosen by the primary inputs and the result is given
at the primary outputs. Therefore, Vs normally is a subset of
the data points at the primary inputs and V, is a subset of the
data points at the primary outputs. Given G, V., and V,; we
can compute the relevant subgraph G,,. A vertex v € V is
contained in V), iff v is element of a path from an element of
V. to an element in Vj, or formally:

YveViveV, &
(Fve € Ve, (v € backwardtrace(ve)) V (v = ve))A
(Fus € Vg, (v € forwardtrace(vs)) V (v = vg))]

An edge e € E is part of E,, iff its starting and its ending
point are part of V,,, or formally:

Ve € E,[e€ E, < (v1 € V) A (vg € V) A (e = (v1,0v2))]

Figure 3 shows the relevant subgraph for our running
example when we use the data points corresponding to the
primary inputs in the first clock cycle as V; and the data points
corresponding to the primary outputs in the second clock cycle
as V.. By construction, the set of all statements corresponding
to execution points in V,, is a subset of the statements covered
by 7. Analogously, the expressions corresponding to expres-
sion execution points in V,, are a subset of the expressions
covered by r.

Clock Cycle 1 Clock Cycle 2

Figure 3. A relevant subgraph for our running example.

B. Computation

For computing G,, we simulate an instrumented Verilog
design. Initially, the elements in V; are marked. Consecutively,
the result of an expression is marked, if at least one operand
is marked and changing the values of the marked operands
would change the result. Additionally, we store the minimal
set of marked operands, which have to change their values in
order to change the result of the expression. If several minimal
sets exist, we store the union of those sets.

A control execution point ¢ is marked if its operand is
marked or if the control execution point is marked, which
controls the execution of the basic block containing c; the
cause for marking c is also stored. The assigned value of an
assignment execution point a is marked, if the operand of a
is marked or if the control execution point which controls the
execution of the basic block containing a is marked; the cause
for marking a is stored.

Let M C V be the set of all marked elements. After
simulation, for any marked element v € M it is true that
Jus € Vi, (v € forwardirace(vs)) V (v = vg). Thus, for
our computation we never compute the complete dynamic
dependency graph, rather we only compute the forwardtrace
of the starting set. Given V, and the marked elements M,
we can compute V,, using the store information about the
marking cause to determine all elements m € M for which
Fve € Ve, (m € backwardtrace(v.)) V (m = v.) holds.

V. RELEVANT SUBGRAPHS FOR DESIGN UNDERSTANDING

In this section we will show how relevant subgraphs can be
used for design understanding. In Section V-A we show feature
localization using relevant subgraphs. Section V-B presents a
visualization for the relevant subgraph to help understanding
the data-flow of a design.

A. Feature localization

Automatic feature localization computes the likelihood of
code to be related to a feature. Feature localization requires
runs for which it is known what features of the system
are used. Conventionally, coverage metrics are used for this
computation [9]. The Tarantula-based heuristic [11] computes
the likelihood by comparing the percentage of runs using a
feature and covering a statement with the percentage of runs
not using the feature and covering the statement. This heuristic
has shown good results [10]. Therefore, we adapt this heuristic
for our technique.

In this paper we propose relevant subgraphs as basis on
which the likelihood is computed, instead of using coverage
metrics. For this, we first compute the relevant subgraph
for each run. Second, for each subgraph we compute the
set of expressions and statements corresponding to execution
points in the subgraph. Finally, we use those sets as input
for the heuristic to compute the likelihood of statements
and expressions to be related to a feature. The likelihood is
presented to the user by color-coding the source code.

Several likelihoods may be associated to an expression
or statement, because a statement can have one or more
expressions and an expression may consist of sub-expressions.

610 630

a0 70 390 510 530 550 570 590 610 630

Figure 4.

(a) A relevant subgraph, visualized by our tool. (b) Selecting a
vertex highlights its backwardtrace and forwardtrace. (c) Shows the corre-
sponding source code of the selected vertex.

The resulting color of a character in the source code is defined
by the likelihood of the smallest statement or expression,
containing the character.

This enables the user to distinguish those cases where a
statement or expression is necessary for the feature, but not all
of its sub-expressions. To illustrate this, consider the following
code snippet taken from one of our case studies:
inf_round_down_trigger <=

(out_pos_inf & round_to_neg_inf) |

(out_neg_inf & round_to_pos_inf) |

(out_inf_trigger & round_to_zero);

This code from a floating-point-unit decides if an infinite
value should be rounded to a concrete number. Based on
the rounding-mode requested, the condition applied for this
decision is different. Each part of the disjunction corresponds
to the condition for a different rounding mode. Such that the
assignment is part of each of those rounding modes. However,
for each rounding mode there is exactly one sub-expression
which is related to the rounding mode.

In [10] automatic file ranking is described, which has been
adapted in our approach. The file ranking gives the user an
overview of the files belonging to a feature. The file ranking is
computed by ranking those files highest, which contain source
code with the highest likelihood to belong to a feature. If there
are files with source code, with equal high likelihoods, the file
is ranked highest which relatively contains more code with
such a likelihood.

B. Presenting the graph

A further use for relevant subgraphs is visualizing the data-
flow within the design. Such a visualization can further help in
understanding the design. Especially, we combine the presen-
tation with feature localization, such that the different vertices
in the graph are colored corresponding to their likelihood to
be related to a feature. Hence, our presentation of the graph
supports the user to find features within the design’s data-flow.

Figure 4 illustrates an example of a relevant subgraph.
Figure 4(a) shows the graph. The vertices are colored with
respect to their likelihood to be part of the feature. Vertices
with the same time of execution are grouped together by gray
rectangles. The time is shown above the rectangles. As a clock
cycle, depending on the use case, can take more than one time
unit, or a value may stay inside a register for several clock
cycles before it is read again, only that points in time are
shown which contain vertices. To simplify navigation through
the graph, the backwardtrace and forwardtrace of a selected
vertex are highlighted (Figure 4(b)). As the graph by itself
does not help a designer to understand the HDL code, the
source code corresponding to the selected vertex is shown to
the user (Figure 4(c)).

Table 1
DESIGNS USED IN THE CASE STUDY.

Design LOC | Files | use cases | features
double_fpu_verilog | 2555 7 320 3
SD/MMC Controller | 3840 17 5 5
Table II
FILE RANKING FOR DOUBLE_FPU_VERILOG COMPARED TO
DOCUMENTATION.
Feature documentation | coverage tracing all inputs | tracing control inputs | tracing single input
Addition fpu_add fpu_sub fpu_double fpu_double fpu_double
fpu_sub fpu_add fpu_add fpu_sub fpu_sub
fpu_sub fpu_add fpu_add
Substraction fpu_sub fpu_double | fpu_double fpu_double fpu_double
fpu_add fpu_sub fpu_add fpu_sub fpu_sub
fpu_add fpu_sub fpu_add fpu_add
Multiplication fpu_mul fpu_mul | fpu_mul fpu_mul fpu_mul
Division Tpu_div Tpu_div Tpu_div Tpu_div Tpu_div
round to nearest even | fpu_round - fpu_exceptions fpu_exceptions fpu_exceptions
fpu_exceptions fpu_round fpu_round fpu_round
round to zero fpu_round fpu_exceptions fpu_round fpu_round
fpu_exceptions fpu_round fpu_exceptions fpu_exceptions
round to +INF fpu_round fpu_exceptions | fpu_exceptions fpu_exceptions
fpu_exceptions fpu_round fpu_round fpu_round
round to -INF fpu_round fpu_exceptions fpu_exceptions fpu_round
fpu_exceptions fpu_round fpu_round fpu_exceptions

VI. EVALUATION

For our evaluation we used two designs from the
OpenCores.org-website. Table I gives an overview over the
designs. Due to space limitation we compare in detail feature
localization using our analysis to feature localization using
coverage metrics [10], but we omit the evaluation for the graph
presentation.

A. Design: double_fpu_verilog

The floating-point-unit double_fpu_verilog provides
eight features in total: four arithmetic operations and four
rounding modes. An arithmetic operation and a rounding
mode must always be used together, hence, there are totally
16 different combinations of features. An operation takes up
to 71 clock cycles and the design indicates the end of the
operation by asserting a ready signal. For the use cases we
used 20 different sets of operand values, 14 randomly chosen
and 6 chosen such that they contain special values (zero,
denormalized numbers, infinite, near infinite). Each of the
input sets is applied to each of the 16 different combinations
of features, resulting in a total amount of 320 use cases.

We also evaluated how the marking of different in-
puts affects the quality of the result. For this, we con-
ducted the case study with different starting sets. For the
double_fpu_verilog design, there are special primary
input pins to choose the arithmetic operations and the rounding
mode. The first starting set contains all data points correspond-
ing to primary inputs. The second set contains all data points
corresponding to primary inputs, which define the features to
be used. The final set contains all data points corresponding to
the single primary input, which defines the usage of a certain
feature. For the last set we executed each use case twice.
Once, with only data points in the starting set corresponding
to primary inputs, which decide the arithmetic operation, and
once, with only data points corresponding to primary inputs
deciding the rounding mode. For all cases, as ending set we
used the values at the primary outputs after the design has
indicated the end of the operation.

Improving file ranking

First, we compared file ranking of feature localization using
our analysis to coverage metric based file ranking. The result
of this comparison is shown in Table II. We only consider files
for file ranking with likelihoods larger than 0.5. Otherwise for

Table IIT
REDUCTION OF UNCERTAINTY FOR DOUBLE_FPU_VERILOG.

Starting set containing all inputs Starting set containing feature inputs Starting set containing single input
Common by coverage uncertain by coverage Common by coverage uncertain by coverage Common by coverage uncertain by coverage

Feature related unrelated related unrelated related unrelated related unrelated related unrelated related unrelated
#stm | # % # % || #stm | # % # % | #stm | # %o # % || #stm | # %o # G | #stm [#] % # % || #stm | # %o # %

Addition 330 [0 0% | 270 | 82% 413 3| <1% | 310 | 75% 330 | 0 0% | 317 | 96% 413 | 1| <1% | 368 | 89% 330 | 0| 0% [324 | 98% 413 | 1| <1% | 375 | 91%
Subtraction 314 0 0% | 262 | 83% 397 0 0% | 305 | 77% 314 | 0 0% | 304 | 97% 397 | 1| <1% | 358 | 90% 314 0| 0% | 311 99% 397 | 1| <1% | 365 | 92%
Multiplication 368 [0 0% | 308 | 84% 390 1| <1% | 317 | 81% 368 [0 0% | 342 | 93% 390 | 1| <1% | 358 | 92% 368 | 0 [0% | 349 | 95% 390 | 1| <1% | 367 | 94%
Division 285 | 11 4% | 231 | 81% 336 | 13 4% | 259 | 71% 285 | 0 0% | 278 | 98% 336 | 2 1% | 313 | 93% 285 | 0 | 0% | 285 | 100% 336 | 2 1% | 320 | 95%
Round to -infinite 626 1| <1% | 263 | 42% 637 1| <1% [264 | 42% | 626 | 1| <1% | 391 | 62% 637 | 1| <1% | 392 | 62% | 626 | 0 [0% | 620 | 99% 637 | 0| 0% | 622 | 98%
Round to +infinite 619 0 0% | 257 | 42% 638 0 0% | 264 | 41% 619 | 0 0% | 384 | 62% 638 | 0 0% | 392 | 61% 619 | 0|0% | 613 99% 638 | 0 0% | 621 | 97%
Round to zero 620 [O 0% | 262 | 42% 633 0 0% | 268 | 42% 620 | 0O 0% | 389 | 63% 633 | 0 0% | 396 | 63% 620 [0 [0% | 615 99% 633 | 0 0% | 621 | 98%
Round to nearest even 634 1| <1% | 265 | 42% 638 1| <1% | 265 | 42% 634 | 0 0% | 389 | 61% 638 | 0 0% | 391 | 61% 634 | 0|0% | 618 | 97% 638 | 0 0% | 620 | 97%

the coverage metric based approach all files would be included
and the ranking of the additionally added files would only
depend on how much of the code is always executed, such that
the ranking would be independent of the feature considered.

For the arithmetic operations, both approaches determine the
modules the documentation relates to the feature. Addition and
subtraction are special cases in the design. Based on the signs
of the operands, a subtraction can be executed in the addition
unit and vice versa. The decision, which unit is used to execute
the operation, is made in the top module (fpu_double).
Hence, for all subgraph-based experiments the fpu_double
is ranked highest because the corresponding code is always in
the relevant subgraph when the feature is used. For addition
the coverage metric based approach does not relate this code
to the feature, considering these parts of the code commonly
used for all features.

When comparing the different starting sets, the main dif-
ference is that feature localization, using the starting set with
all inputs, relates some reset code for internal registers to the
arithmetic features. However, this code is considered unrelated
to any feature using the other starting sets.

When considering the rounding mode features, the coverage
metric based approach does not rank any files. In contrast,
for all starting sets the file ranking of the subgraph-based
approach yields exactly those files, the documentation relates
to the features. Even as the different starting sets yield the
same file ranking, there are differences between them, when
considering the result on statement and expression level. For
the rounding modes, the design first checks if any type of
rounding should be performed. Then the concrete rounding is
applied using identical code for all rounding modes. When
comparing the starting set, including all inputs, with the set,
only including inputs deciding the features, the first one marks
parts of the code as commonly used for all features, which the
second set does not consider at all. The third set improves the
result, as it distinguishes between the code common for all
rounding modes and code not related to rounding at all.

Detection of irrelevant code

Next we measured how many of the statements, which
the coverage metric based approach relates to features, our
approach has shown to be unrelated to any features. There
are 641 statements which the coverage metric based approach
relates to some feature. Using the starting set with all inputs,
263 of those statements are determined to be unrelated to any
feature. This is a reduction by 41%. The statements removed
in this way can be categorized into two groups. The first group
contains statements, resetting registers. However, those resets
only affect the behavior of the design at a point where the
specification has no restriction upon the affected outputs. The
second group belongs to the handling of Quiet Not a Number-
values (QNaN) as operand values. In such a case the design

immediately outputs QNaN without executing any arithmetic
or rounding operation. Hence, this group is clearly not part of
the desired features.

The other two starting sets remove 392 or 61% of the
statements, respectively. The additionally removed statements
are remaining parts of the reset- and initialization-code. This
shows nicely that the starting set should be chosen based on
the feature definition: If reset and initialization are defined
as a part of the feature, the reset input should be included
to the starting set. However, if the feature is defined as a
pure computation, the reset signal should be excluded from
the starting set.

Reduction of uncertainty

In addition, we measured how much of the code, which
the coverage metric based approach considers as part of all
features, our approach can decide if it belongs to a feature or
not. We perform this comparison on statement level. First, we
need comparable likelihoods between the two types of feature
localization. To relate both approaches to statement level, we
used the following rules:

1) For our approach we used the maximum likelihood of a
statement and its sub-expressions.

For the coverage metric based approach statements with
a likelihood lower than 0.5 by statement coverage, the
likelihood by statement coverage is used. Otherwise, the
maximum of the likelihood by statement coverage and all
likelihoods by toggle coverage for variables used in the
statement is applied.

The intention behind the first rule is that a statement commonly
used for all features, but with a sub-expression specifically
used by one feature, is worth inspecting. And a statement
used by a feature with one sub-expression not used by the
feature, is still part of the feature?>. With the second rule we
followed the observation in [10] that statement coverage gives
a broad overview and toggle coverage allows to distinguish
code, which statement coverage considers as commonly used
for all features. Thus, our implementation for the coverage
based feature localization is an improvement in comparison to
the approach presented in [10] as it removes the inconsistency
between the two different coverage metrics.

Table III shows the results of measuring the amount of code
our approach can relate or exclude from a feature, which the
coverage metric based approach could not classify. Column
1 gives the name of the feature. Columns 2-11 give the
comparison with the starting set containing all inputs. Here,
Column 2 gives the number of statements which the coverage
metric based approach considers to be shared with the other
features (likelihood equals 0.5). In Column 3 we give the
absolute number of statements for which our approach is

2)

ZNote the case that a statement is not used for a feature but one of its
sub-expressions is impossible by the construction of subgraphs.

highly confident, that they belong to the feature (likelihood
larger than 0.9), but the coverage metric based approach
relates to all features. Column 4 gives the percentage of
those statements. Column 5 gives the absolute number of
statements, which our approach is highly confident that they
are unrelated to a feature (likelihood less than 0.1 or irrelevant
to all features), and the coverage based approach relates to
all features. Column 6 gives the relative percentage of those
statements. Additionally, in Columns 7-11 we consider code
where the coverage metric based approach is non-conclusive if
the code is related to a feature or not (likelihood between 0.25
and 0.75). Again, we checked how many of those statements
our approach can definitely relate to a feature (Columns 8-
9) and how much of those code our approach shows to be
unrelated to the feature (Columns 10-11). Columns 12-21
show the results of the starting set containing only the input
values selecting the desired features and Columns 22-31 show
the results for the starting set containing only one single input
value.

The feature localization using our approach reveals for a
large amount of code, considered as common to all features
by the coverage metric based approach, that it is unrelated
to a feature. Since completely unrelated code needs not to
be considered, feature localization using relevant subgraphs
reduces the code which a designer has to inspect, when
improving or bugfixing a feature.

B. Design: SD/MMC Controller

For the second evaluation we used the design SD/MMC
Controller. This design is a controller for an SD-card
connected to the controller via an SPI-bus. Besides the primary
inputs and outputs for the SPI-bus, the controller implements a
Wishbone-interface for receiving commands and sending data.
As use cases we utilize the original test bench of the design.

Again, we compare coverage metric based feature local-
ization with feature localization using relevant subgraphs and
different starting sets. The first starting set contains all primary
inputs excluding the clocks. The second starting set contains
only the inputs of the Wishbone-interface, such that the
contents on the SD-card are not part of the starting set. In all
cases, as ending set the values of the primary outputs are used.
However, the first and second starting set result in exactly the
same likelihood computed for every source code position. Out
of this reason, in the following only the results for the first
starting set are discussed.

For three of the features provided by the design, the file
ranking of the two approaches are identical. For the other two
features, the documentation of the design was not clear enough
to decide which of the two approaches yields a better result.

In this evaluation again much of the code which feature
localization using coverage metrics relates to some feature,
is shown to be unrelated to any feature by our approach. In
numbers these are 354 out of 767 statements, or a reduction
by 46%. The reason is that the design assigns a value to all
registers during a clock cycle. In many cases these statements
are placed in deeply nested conditions related to a feature.
For the coverage metric based approach those statements are
considered as part of the feature. However, in most cases
the value is never read before the register gets a new value
assigned. In contrast, our approach is able to detect this.

As for the previous design, we measured how much of the
code, which the coverage metric based approach considers as
part of all features, can be related to a feature or excluded

Table IV
REDUCTION OF UNCERTAINTY FOR SD/MMC CONTROLLER.

common by coverage uncertain by coverage

Feature related unrelated related unrelated

#stm [# % | # % | #stm [# [% # %o
Register access 89 |1 1% | 84 | 94% 115 1| 1% | 108 | 94%
SPI Bus access 74 {2 3% [59 | 80% 191 3[2% [118]| 62%
Init SD Card 56 0| 0% | 55 | 98% 235 0| 0% | 229 | 97%
SD card read 40 0] 0% [39]98% [217 3 [1% [163 | 75%
SD Card write 40 | 9| 23% | 30 | 75% 231 |19 | 8% | 108 | 47%

from that feature, respectively. The result of this measurement
is given in Table IV.

On average 94% of the code which feature localization using
coverage metrics considers as part of all features can definitely
be related to a feature or excluded from the feature. For
code where feature localization using coverage metrics is non-
conclusive, our approach still can decide for on average 78%
if the code belongs to the feature or not. Overall, our approach
can exclude a large amount of code from consideration, which
feature localization with coverage metrics includes.

VII. CONCLUSION

In this paper we present a new data flow analysis approach
for HDL-designs based on dynamic dependency graphs. We
showed two application scenarios for design understanding:
feature localization and graph extraction for dynamic data
flow within the design. The second application can be used
to navigate through the source code along the designs data-
flow. Additionally, both scenarios can be combined allowing
the user to find parts of the data-flow relevant to a feature.

We compared feature localization using our analysis against
feature localization using statement- and toggle-coverage. The
evaluation clearly shows the advantage of our approach, reduc-
ing uncertainty by 41% up to 98% for the considered designs.

The presentation of the data flow graph improves design
understanding as it nicely shows the relation between different
statements, not clear from the pure code alone.

REFERENCES

[1] ITRS Working Group, International Technology Roadmap for Semicon-
ductors 2009 Update System Drivers, ITRS Std., 2009.

[2] IEEE Standard for Software and System Test Documentation, Std for
Software Test Documentation Working Group Std., 2008.

[3] M. Weiser, “Program slicing,” in Proceedings of International Confer-
ence on Software Engineering, 1981, pp. 439-449.

[4] E. Clarke, M. Fujita, S. Rajan, T. Reps, S. Shankar, and T. Teitelbaum,
“Program slicing of hardware description languages,” in Correct Hard-
ware Design and Verification Methods, ser. Lecture Notes in Computer
Science, 1999, vol. 1703, pp. 72-72.

[5] B. Korel and J. Laski, “Dynamic program slicing,” Information Process-
ing Letters, vol. 29, pp. 155 — 163, 1988.

[6] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evaluation of
using dynamic slices for fault location,” in Proceedings of International
Symposium on Automated analysis-driven debugging, 2005, pp. 33-42.

[71 M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing -
an alternative to fault simulation,” in Proceedings of Design Automation
Conference, 1983, pp. 214-220.

[8] M.-C. Lai, C.-H. Lee, B.-H. Ho, and J.-S. Tsai, “Active trace debugging
for hardware description languages,” US Patent 6 546 526, 2003.

[9] N. Wilde and M. C. Scully, “Software reconnaissance: Mapping program

features to code,” Journal of Software Maintenance: Research and

Practice, vol. 7, no. 1, pp. 49-62, 1995.

J. Malburg, A. Finder, and G. Fey, “Automated feature localization for

hardware designs using coverage metrics,” in Proceedings of Design

Automation Conference, 2012, pp. 941-946.

J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault

localization,” in Proceedings of the Workshop on Software Visualization,

2001, pp. 71 -75.

H. Agrawal and J. R. Horgan, “Dynamic program slicing,” ACM

SIGPLAN Notices, vol. 25, no. 6, pp. 246-256, Jun. 1990.

[10]

[11]

(12]

