
Toward Polychronous Analysis and Validation for
Timed Software Architectures in AADL*

Yue Ma, Huafeng Yu, Thierry Gautier
Paul Le Guernic, Jean-Pierre Talpin

INRIA Rennes
35042 Rennes Cedex, France
{firstname}.{lastname}@inria.fr

Loı̈c Besnard
IRISA/CNRS

Campus de Beaulieu
35042 Rennes Cedex, France

loic.besnard@irisa.fr

Maurice Heitz
Communication & Systems (C-S)

ZAC de la Grande Plaine
31506 Toulouse Cedex, France

maurice.heitz@c-s.fr

Abstract—High-level architecture modeling languages, such as
Architecture Analysis & Design Language (AADL), are gradually
adopted in the design of embedded systems so that design choice
verification, architecture exploration, and system property check-
ing are carried out as early as possible. This paper presents our
recent contributions to cope with clock-based timing analysis and
validation of software architectures specified in AADL. In order
to avoid semantics ambiguities of AADL, we mainly consider the
AADL features related to real-time and logical time properties.
We endue them with a semantics in the polychronous model of
computation; this semantics is quickly reviewed. The semantics
enables timing analysis, formal verification and simulation. In
addition, thread-level scheduling, based on affine clock relations
is also briefly presented here. A tutorial avionic case study,
provided by C-S, has been adopted to illustrate our overall
contribution.

Keywords-AADL; MDE; Polychrony; timing analysis

I. INTRODUCTION

High-level standardized modeling languages, such as Ar-
chitecture Analysis & Design Language (AADL) [2], the
UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) [3], and Systems Modeling
Language (SysML) [4], are gradually adopted for system
modeling and specification due to issues of system complexity,
time to market, validation, etc. These languages, particularly
AADL, permit the fast yet expressive modeling of a system,
including software architecture, execution platform, and their
binding. Early-phase analysis and validation can be therefore
rapidly performed [5], [6], [7], [8], [9], [10].

Although AADL provides a fast design entry, there are
still some critical challenges, such as unambiguous semantics,
timing analysis, formal verification and co-simulation. To ad-
dress these issues, expressive formal models and complete tool
chains are required, based on which the previously mentioned
verification and validation are enabled.

In our proposed approach, we first analyze the tim-
ing semantics of AADL, from which the formal poly-
chronous/multiclock semantics is derived thanks to the multi-
clock nature of AADL specifications. Thus users are not suf-
fered to find and/or build the fastest clock in the system. This

*This work is partially supported by European ITEA2 project OPEES [1].

distinguishes from [11], [6], where synchronous semantics is
a prerequisite. This polychronous semantics is then expressed
via a polychronous model of computation (MoC) [12] covering
both AADL software, execution platform, and their binding.
In addition, AADL thread-level scheduling is also explored
and integrated according to affine clock relations [13]. With the
scheduler synthesis, the translated AADL model is complete
and executable, and can be used for the following analysis and
validation.

Polychrony [14], a software environment dedicated to the
trustworthy design of synchronous/polychronous embedded
systems, provides the back-end semantic-preserving transfor-
mation, scheduling, code generation, formal analysis and ver-
ification, architecture exploitation, and distribution [15]. More
precisely, the following concrete techniques are considered in
our work: 1) static analysis, including determinism identifica-
tion and deadlock detection; 2) profiling-based analysis of real-
time characteristics of a system [16]; 3) affine clock calculus
to analyze the affine relations between clocks [13]; 4) real-
time scheduling and allocation through the Syndex tool [17];
5) co-simulation of AADL specifications and demonstration
using the VCD technique [18].

An automatic tool chain, called ASME2SSME, has been
developed to support our work. A tutorial avionic case study,
initially provided by C-S Toulouse, is adopted in this paper
to show the effectiveness of our contribution. This case study,
considered as a general design pattern, has been developed
and demonstrated in the framework of the OPEES project [1].

Outline. Section II briefly introduces AADL via the case
study. Section III gives a short introduction to the poly-
chronous MoC. Section IV presents our main contribution,
and exemplifying it with the case study in Section V. Some
related works are summarized in Section VI, and conclusion
is drawn in Section VII.

II. INTRODUCTION TO AADL

AADL is the Society of Automotive Engineers (SAE)
standard dedicated to modeling embedded real-time system ar-
chitectures. Based on a component modeling approach, AADL
describes the structure of systems as an assembly of soft-
ware components allocated on execution platform components
together with timing semantics. Three distinct component978-3-9815370-0-0/DATE13/ c©2013 EDAA

categories are provided in AADL: software application com-
ponents (process, thread, thread group, subprogram, and data),
execution platform components ((virtual) processor, memory,
device, and (virtual) bus), and composite component (system).

In the following, a tutorial avionic case study, called Pro-
ducerConsumer and initially provided by C-S Toulouse for
the OPEES project, will be used as a general design pattern,
to illustrate progressively these AADL models. In this case
study, a typical generic component takes charge of producing
and consuming data through a shared data resource. It is
implemented by different components, allowing the producer
and consumer to communicate and to access data.

Fig. 1. The prProdCons process in the AADL ProducerConsumer example

The system is composed of a process prProdCons (in Fig. 1)
that communicates with two subsystems: sysEnv (models
the environment) and sysOperatorDisplay (informs when a
timeout occurred on data production or consumption). The
prProdCons process is executed on a processor Processor1. It
contains four threads: thProducer, thConsumer, thProdTimer
and thConsTimer. Thread thProducer produces shared data in
Queue, which in turn is consumed by thread thConsumer. The
timer thProdTimer (resp. thConsTimer) manages timer services
for thProducer (resp. thConsumer). It permits to start, stop
timer and send a timeout event (pTimeOut) when the timer
has expired.

Properties are specified to provide more information about
model elements. We are interested in timing properties, such
as Input Time (resp. Output Time) of ports, that assure an
input-compute-output model of thread execution. We will
analyze the timing semantics and associated timing properties
in Section IV-A.

III. THE POLYCHRONOUS MODEL OF COMPUTATION

Synchronous languages are dedicated to the design of
synchronous reactive systems [19]. Their mathematical basis
favors the trusted design of safety critical real-time systems.
Among these languages, the SIGNAL language stands out for
its capability to describe circuits and systems with multi-
clock relations [12], and to support refinement [20]. The
multiclock/polychronous semantics of SIGNAL makes it more
approximate to AADL semantics than other pure synchronous
or asynchronous models, and thus simplify the system mod-
eling, transformation, and validation.

The polychronous MoC of SIGNAL handles unbounded
series of values in the domain Dx, where x = (xt)t∈N,
called signals, implicitly indexed by discrete time. At any
instant, a signal is either present and holds a value v in Dx;
or absent and holds an extra value, denoted by ⊥. The set
of instants when a signal x is present represents its clock.
Two signals are said to be synchronous if they are both
present (or absent) at the same instants (they have the same
clock). Operations on signals include: step-wise functions,
delay, sampling, deterministic merging, etc. More details can
be found in [15]. SIGNAL is associated with the Polychrony
design environment [14], which provides a formal framework
for the trustworthy system design. From a polychronous MoC,
Polychrony automatically synthesizes the fastest simulation
clock and can make the non-determinism caused by multiclock
transparent to users.

IV. AADL MODELING AND ANALYSIS FRAMEWORK

The AADL time model allows the specification of both
logical and chronometric clocks in the system. In addition,
each component can be associated with timing properties,
which indicate their expected real-time characteristics. In
general, this timing information is checked by schedulability
analysis or simulation at runtime, on an informal basis. We
propose to perform formal timing analysis via a different yet
efficient approach based on the polychronous MoC.

A. AADL timing execution model

The thread component and its polychronous execution tim-
ing semantics is mainly involved and presented here. A thread
is dispatched either periodically, or by the arrival of data
or events on ports, or by the arrival of subprogram calls,
depending on the thread type. Several timing properties can
thus be assigned to a thread, e.g.:

Dispatch_Protocol => Periodic;
Period => 4 ms;
Deadline => 4 ms;

Three event ports are predeclared: dispatch, complete and
error (Fig. 2). A thread is activated to perform the computation
at start event, and has to be finished before deadline. A
complete event is sent at the end of the execution.

Fig. 2. Illustration of execution time modeling for an AADL thread

Input-compute-output model. The received inputs are
frozen at a specified point (Input Time), by default the dis-
patch time, which means that the content of the port that
is accessible to the recipient does not change during the
execution of a dispatch even though the sender may send
new values. For example, the two values 2 and 3 (in Fig. 2)

arriving after the first Input Time will not be processed until
the next Input Time. As a result, the performed computation
is not affected by a new arrival input until an explicit request
for input. Similarly, the output is made available to other
components at a specified point of Output Time, by default
at complete (resp. deadline) time for out port if the associated
port connection is immediate (resp. delayed) communication.

B. AADL vs Polychrony time models

Due to the different timing semantics, modeling embedded
systems specified in AADL with POLYCHRONY raises some
difficulties:

AADL takes into account execution latency and commu-
nication delay, which are defined on chronometric clocks.
Conversely, the synchronous semantics of POLYCHRONY only
considers atomic instantaneous actions: instantaneous execu-
tion on logical clock. Possible solutions to bridge between
these different time models have been presented in [10], where
additional discrete events are added to model latency and
delay.

The multiclock feature of SIGNAL allows to model systems
with several clocks, where each component holds its own
activation clock, as well as single-clocked systems, in a
uniform way. This feature suits well for the component-based
architecture design in AADL.

Periodic clocks can be modeled in SIGNAL using affine
clock relations. Thus, synchronizability analysis can be carried
out between multi-period threads.

Data can be shared, read or written by different components
at different time instants in AADL. It is possible in SIGNAL
to have several expressions associated with one signal by
partial definitions [15]. The clock calculus computes sufficient
conditions to guarantee that the overall definition is consistent
and total.

C. AADL time model in Polychrony

The key idea for modeling the AADL computing latency
and communication delay in SIGNAL is to keep the ideal
view of instantaneous computations and communications mov-
ing computing latency and communication delays to specific
“memory” processes, that introduces delay and well suited
synchronizations [10].

A “memory” process o = fm(i, b) repeats the input signal
i on the instants of Boolean signal b. The result o contains
values of i when i is present and b is true, and the value of
previous i when i is absent and b is true:

o = fm(i, b)
def
≡

∀t > 0 : ot =


it if it 6=⊥, and bt = true
ipred(t) if it =⊥, and bt = true,

pred(t) = max{k < t | ok 6=⊥}
⊥ otherwise

Input freezing. Let f(x) represent the result of the behavior
f of a given in port to its input signal x, e.g., f can be a FIFO

to represent queued event or event data port. A port y = f(x)
gives the available output y from the currently received input
x. It defines an elementary process such that:

y = f(x)
def
≡ ∀t > 0 : (xt 6=⊥⇔ yt 6=⊥) ∧ (yt = f(xt)).

x is frozen at t is a function that takes an input x, a frozen
time event t, and produces a new signal z at time t. It is noted
as x I t:

z = x I t
def
≡ z = fm(f(x), t).

Thread activation. We use th(z1, z2, . . .) to represent the
original computation of thread th with the frozen inputs
z1, z2, . . . The thread th is activated to perform computation
at “start”, which is denoted as th′(z1, z2, . . . , start), where
its inputs z1, z2, . . . are memorized at start. It is defined as
follows:

th′(z1, z2, . . . , start)
def
≡ th(z′1, z

′
2, . . .)

where z′i = fm(zi, start)
Output sending. Similar to the in port, g(y) represents the

behavior of an out port. The send function defines a process
such that the generated output of g(y) is hold and sent out at

time t. This is noted as y B t: w = y B t
def
≡ w = fm(g(y), t).

D. Thread-level scheduler synthesis

An AADL model is not complete and executable if the
thread-level scheduling is not resolved. Some scheduling tools,
such as Cheddar [5], are well connected to AADL for
schedulability analysis, scheduler synthesis and simulation
inside these tools. However, they do not completely satisfy our
demands for the following reasons: 1) logical and chronomet-
ric clocks are easily transformed into each other for formal
and real-time analysis; 2) more events, such as input/output
frozen events are also involved in the analysis; 3) static and
periodic scheduling rather than stochastic/dynamic scheduling
is expected due to predictability and formal verification; 4)
the scheduling is easily and seamlessly connected to affine
clock systems [13] so that formal analysis can be performed in
Polychrony. Affine clock relations yield an expressive calculus
for the specification and the analysis of time-triggered systems.
A particular case of affine relations is the case of affine
sampling relation expressed as y = {d · t + φ | t ∈ x}
of a reference discrete time x (d, t, φ are integers): y is a
subsampling of positive phase φ and strictly positive period d
on x.

We therefore propose a static scheduler synthesis process
including the following subprocesses: 1) calculate hyper-
period from the periods of all the threads according to the
least common multiple principle; 2) perform the scheduling
based on the hyper-period, and valid schedules are calculated
according to a static, non-preemptive, and single-processor
scheduling policy. More precisely, discrete events of each
thread, such as dispatch, input/output frozen time, start and
complete, are allocated in the hyper-period on condition that
all their timing properties are satisfied. Affine clock relations
of these events are ensured during the calculation. In the cal-
culation process, different scheduling policies are considered,

such as EDF and RM; 3) export schedules to SIGNAL affine
clocks in a direct way.

E. A complete and automatic tool chain

A tool chain for modeling, scheduling, timing analysis, and
verification of AADL models in the polychronous MoC has
been developed in the framework of Eclipse. The AADL
model with timing properties, which conforms to the AADL
metamodel, is captured in the OSATE toolkit [21]. A model
transformation ASME2SSME allows to perform analysis on
ASME models (AADL Syntax Model under Eclipse) and gen-
erate corresponding SIGNAL SSME models (SIGNAL Syntax
Model under Eclipse). An AADL2SIGNAL library provides
common SIGNAL processes reducing significantly the trans-
formation complexity and cost. With the SIGNAL and binary
code generated from the SSME model, analysis and validation
is carried out in the framework of Polychrony.

Scalability of this tool chain is considered in the following
aspects: 1) in the framework of Eclipse EMF, the tool chain
defines a CoL (Concept high Level) API to access the MoL
(Model low Level) API. In this way, model transformations
are independent of different low-level metamodels and het-
erogeneous models are easily integrated into the tool chain; 2)
most AADL components are considered in order to handle
large-sized systems, such as thread, process, subprogram,
(shared) data, processor, bus, system, port, parameter, data
access, subprogram access, and subcomponent; 3) in the
framework of Polychrony, analysis, verification, simulation,
profiling techniques are considered as independent functions
connected to the Polychrony core, i.e., other functionality can
be also integrated if necessary; 4) several thousand clocks
can be handled by the clock calculus; 5) more than ten
case studies have been tested, and there is no special size
limitation on transformation. Limitation exists only in some
formal validation techniques, such as model checking. In
addition, a simple but efficient mechanism of traceability has
been implemented in the tool chain, i.e., the names of high
level models are either preserved as names or preserved in
annotations in the model transformation and code generation.

V. A CASE STUDY

In this section, we illustrate the translation process from a
high level description in AADL to a synchronous description
using the ProducerConsumer case study introduced above.
The timing semantics and properties are processed during the
transformation.

The SIGNAL process resulting from the system implemen-
tation is given in Fig. 3: an instance of a SIGNAL process
model of the processor Processor1 communicates with two
process instances that represent the systems sysEnv and sysOp-
eratorDisplay. Subprocesses that represent system behavior
(ProducerConsumer others System behavior()) and property
(ProducerConsumer others System property()) are added.

Processes (e.g., prProdCons) will be bound to a proces-
sor (e.g., Processor1) for their execution, that supports the
dispatch protocol required by the contained threads. This

Fig. 3. An AADL system modeling example in SIGNAL: ProducerConsumer

protocol is provided by Actual Processor Binding property:
Actual_Processor_Binding =>
Processor1 applies to prProdCons;
The processes bound to this processor are implemented as

SIGNAL subprocesses of the SIGNAL process that represents
the processor.

Fig. 4. An AADL thread modeling example in SIGNAL: thProducer

A. Thread

An AADL periodic thread is implemented as a SIGNAL
process composed of its behavior, properties, ports, subcom-
ponents (if data or subprogram subcomponents exist) and
connections. Some additional timing signals are added (Fig. 4):
• An input bundle signal ctl1 (a bundle represents a

polychronous tuple of signals) contains event signals,
Dispatch, Resume and Deadline, which are implicit pre-
declared ports or added simulation signals.

• An input bundle signal time1 that provides the clock of
the frozen time and output time for the event ports, e.g.,
pProdStart Frozen time event.

• An output bundle signal ctl2 for the events Error and
Complete (predeclared ports in AADL).

• An output signal Alarm that triggers an event when the
properties are not satisfied.

Computing latency and communication delay, allowing to
produce data of the same logical instants at different imple-
mentation instants, is taken into account in the thread. Those

instants are precisely defined in the port and thread properties.
Therefore, the ports of a thread are implemented as SIGNAL
processes instead of simply input/output signals.

The port is a logical connection point for the directional
exchange of data/events between components. A thread port
has special timing semantics: the in (resp. out) port is frozen
(resp. sent out) at Input Time (resp. Output Time). Incoming
events (the event data ports are similar, and the data ports
modeling can be found in [10]) may be buffered in event ports
with queues. The queue size can be explicitly declared by
Queue Size property, by default it is 1. Queues will be serviced
according to the Queue Processing Protocol, by default in a
First In First Out order (FIFO).

in_fifo
write_flow

Frozen_time_event

read_flow

pProdStart_InEventPort_Property{...}(...) =

Reference_time_event

pProdStart_InEventPort_Behavior{}()

InEventPort_Behavior{}()

pProdStart_InEventPort

(| Input_Time_Property
 {Time_Units#ns, Time_Units#ns, 0.0, 0.0}(...)
 | Queue_Size_Property{1}()
 | ...
 |)

frozen_fifo

Fig. 5. An AADL in event port modeling example in SIGNAL: pProdStart

In event port: two FIFOs are provided: in fifo for
storing the received events, and frozen fifo for storing the
frozen events (Fig. 5). The actual items of the in fifo are
frozen (moved to frozen fifo) at Input Time (presented as
Frozen time event).

Out event port: for an out event port (e.g., pProd-
StartTimer), the values are stored in a fifo, and sent out at
Output Time.

B. Shared data

Components can have shared access to data subcomponents,
where the data act as a critical region and mutual exclusion
access clocks are required to assure only one access at a time.
Therefore, in contrast with other categories of components,
e.g., thread, which are translated into different instances of
SIGNAL processes, the shared data is represented as a single
FIFO instance that can be read/written by different components
at different time instants. Depending on the type of access that
is associated with data (i.e., read only, write only), a clock at
which a thread reads, writes or resets the data is provided if
the thread requires access to this data.

The data Queue in the prProdCons process which is shared
by threads thProducer and thConsumer is represented as a
FIFO process instance fifo reset() (equation eq1 in Fig. 6). The
values to be read or written in the FIFO (Queue r, Queue w,
Queue reset) are declared as shared variables, so that they
can be accessed by different threads. To write (or reset) a data
into the FIFO, a partial definition (such as equation eq4) is
provided (e1 is a time instant at which the thread writes data).

Fig. 6. An AADL data modeling example in SIGNAL: Queue

C. Formal analysis and simulation

Based on the polychronous MoC, an AADL specification
is translated into the SIGNAL language. Polychrony is used to
formally analyze and verify the corresponding model, which
includes: static analysis, simulation, performance analysis, etc.
We only give a brief description here. Clock calculus has been
applied, in the compiling stage, to analyze clock relations and
identify the determinism in the AADL model. For example,
the automaton of the thProducer thread has been checked:
without correct priority properties specified on the transitions,
the automaton is found to be non-deterministic. Other static
analyses are also available, such as deadlock detection and
model checking, which will not be illustrated here.

In the case study, all the threads are periodically dispatched,
e.g., the periods of the four threads (thProducer, thConsumer,
thProducerTimer, thConsumerTimer) are 4ms, 6ms, 8ms and
8ms respectively. A thread-level scheduler is first built consid-
ering SIGNAL affine clocks, which implements synchronizabil-
ity rules based on properties of affine relations, against which
synchronization constraints can be assessed. The generated
valid schedules are then seamlessly translated into SIGNAL
for validation and simulation purposes. Our approach to verify
scheduled models makes the main difference compared to
other AADL scheduling tools like Cheddar.

Profiling has been used for performance evaluation, once a
specific hardware architecture is chosen and the corresponding
temporal specification of the SIGNAL program is defined on
this architecture [16]. In addition, code distribution can also
be implemented considering a distributed architecture [15].
Syndex has equally been connected, taking into account soft-
ware, hardware and their binding, to perform low-level static
scheduling, considering real-time, architectural, and allocation
characteristics [17].

VI. RELATED WORK

AADL has been connected to many formal models for
analysis and validation. The AADL2Fiacre project [22] and
the Ocarina project [23] mainly focus on model transformation
and code generation, in other words, formal analysis and veri-
fication are performed externally with other tools and models.

The AADL2Sync project [11] and the Compass Approach [6]
provide complete tool chains from modeling to validation,
but they are generally based on the synchronous semantics,
which is not approximate to AADL timing semantics. We
consider neither error model in [6] nor a more complete
scheduling of shared resources like in [11]. However, con-
nections to allocation and code distribution are not reported
in these works. AADL2Maude [9] introduces a real-time
rewriting logic semantics only for a behavioral subset of
AADL. AADL2BIP [8] allows simulation of AADL models,
as well as application of particular verification techniques, i.e.,
state exploration and component-based deadlock detection. In
comparison of all these projects, we provide a more natural
and closed timing modeling with regard to AADL multiclock
timing semantics, as well as a rich connection to various
formal methods for verification and validation, to support
system-level codesign.

In addition, there are other similar work in the automotive
domain, such as [24], [25], which are from the TIMMO-2-USE
project [26]. They mainly consider AUTOSAR (AUTomotive
Open System ARchitecture) [27] and its complement EAST-
ADL [28]. A language, called TADL2 [26], has been proposed
to deal with timing characteristics and analysis. In comparison,
we concentrate on a clock-based timing modeling and analysis,
rather than event chain constraints and probabilistic models.

VII. CONCLUSION

In this paper, we present a polychronous semantics of
AADL that considers both software and execution platform of
a system, as well as timing properties of AADL components.
The goal of our approach is to benefit both from the high-level,
domain-specific language AADL for the system-level design,
and the Polychrony toolset, based on the synchronous language
SIGNAL, for timing analysis and validation. A tutorial case
study was presented and used to demonstrate our approach. A
perspective of our work is related to modes in AADL. SIGNAL
automata have been proposed to easily handle modes as well
as AADL behavior annex.

Despite the apparent complexity of the process and nota-
tions, but thanks to model engineering techniques and avail-
ability of integrated tool and technology platforms through
initiatives like OPEES, this approach is contributing towards
the dissemination and use of formal verification techniques in
industry.

REFERENCES

[1] Open Platform for the Engineering of Embedded Systems (OPEES
Project), http://www.opees.org/.

[2] SAE Aerospace (Society of Automotive Engineers), “Aerospace Stan-
dard AS5506A: Architecture Analysis and Design Language (AADL) ,”
2009.

[3] Object Management Group (OMG), “The UML Profile for MARTE:
Modeling and Analysis of Real-Time and Embedded Systems,” http:
//www.omg.org/spec/MARTE/1.1/PDF, September 2011.

[4] “Systems Modeling Language (SysML),” http://www.sysml.org/specs.
[5] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Scheduling and mem-

ory requirements analysis with AADL,” in ACM SIGAda international
conference on ADA (SigAda’05), 2005.

[6] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and
M. Roveri, “Safety, Dependability, and Performance Analysis of Ex-
tended AADL Models,” The Computer Journal, vol. 54, no. 5, pp. 754–
775, 2011.

[7] P. Feiler and J. Hansson, “Flow Latency Analysis with the Architecture
Analysis and Design Language (AADL),” Carnegie Mellon University,
Tech. Rep. CMU/SEI-2007-TN-010, 2007.

[8] M. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Translating AADL
into BIP - Application to the Verification of Real-Time Systems,” in
Models in Software Engineering, M. R. Chaudron, Ed. Springer-Verlag
Berlin, 2009, pp. 5–19.

[9] P. Ölveczky, A. Boronat, and J. Meseguer, “Formal Semantics and
Analysis of Behavioral AADL Models in Real-Time Maude,” in Formal
Techniques for Distributed Systems, J. Hatcliff and E. Zucca, Eds.
Springer, 2010, vol. 6117.

[10] Y. Ma, H. Yu, T. Gautier, J.-P. Talpin, L. Besnard, and P. Le Guernic,
“System Synthesis from AADL using Polychrony,” in Electronic
System Level Synthesis Conference, 2011. [Online]. Available: http:
//hal.inria.fr/inria-00594943

[11] E. Jahier, N. Halbwachs, and P. Raymond, “Synchronous Modeling
and Validation of Priority Inheritance Schedulers,” in Fundamental
Approaches to Software Engineering (FASE’09), 2009.

[12] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for System
Design,” Journal for Circuits, Systems and Computers, vol. 12, pp. 261–
304, 2002.

[13] I. M. Smarandache, T. Gautier, and P. Le Guernic, “Validation of Mixed
SIGNAL-Alpha Real-Time Systems through Affine Calculus on Clock
Synchronisation Constraints,” in World Congress on Formal Methods,
1999.

[14] The Polychrony Toolset, http://www.irisa.fr/espresso/Polychrony/.
[15] L. Besnard, T. Gautier, P. Le Guernic, and J.-P. Talpin, “Compilation of

polychronous data flow equations,” in Correct-by-Construction Embed-
ded Software Synthesis: Formal Frameworks, Methodologies, and Tools,
S. Shukla and J.-P. Talpin, Eds., 2010.

[16] A. Kountouris and P. Le Guernic, “Profiling of SIGNAL Programs and
its Application in the Timing Evaluation of Design Implementations,”
in IEE Colloquium on the Hardware-Software Cosynthesis for Recon-
figurable, 1996.

[17] Y. Sorel, “SynDEx: System-Level CAD Software for Optimizing Dis-
tributed Real-Time Embedded Systems,” ERCIM News, vol. 59, pp. 68–
69, 2004.

[18] H. Yu, Y. Ma, Y. Glouche, J.-P. Talpin, L. Besnard, T. Gautier,
P. Le Guernic, A. Toom, and O. Laurent, “System-level Co-
simulation of Integrated Avionics Using Polychrony,” in ACM
Symposium on Applied Computing (SAC’11), 2011. [Online]. Available:
http://hal.inria.fr/inria-00536907/en/

[19] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years Later,”
Proceedings of the IEEE, 2003.

[20] J.-P. Talpin, P. Le Guernic, S. Shukla, F. Doucet, and R. Gupta,
“Formal Refinement Checking in a System-level Design Methodology,”
Fundamenta Informaticae, vol. 62, no. 2, pp. 243–273, 2004.

[21] OSATE V2 Project, http://gforge.enseeiht.fr/projects/osate2/.
[22] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-

fillet, F. Lang, and F. Vernadat, “Fiacre: an Intermediate Language
for Model Verification in the Topcased Environment,” in 4th European
Congress Embedded Real Time Software (ERTS’08), 2008.

[23] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the Prototype to
the Final Embedded System Using the Ocarina AADL Tool Suite,” ACM
Transactions in Embedded Computing Systems (TECS), vol. 7, no. 4, pp.
1–25, 2008.

[24] M.-A. Peraldi-Frati, A. Goknil, J. DeAntoni, and J. Nordlander, “A
Timing Model for Specifying Multi Clock Automotive Systems. The
Timing Augmented Description Language V2.” in 17th IEEE Conf. on
Engineering of Complex Computer Systems (ICECCS), 2012.

[25] S. Quinton, R. Ernst, D. Bertrand, and P. Meumeu Yomsi, “Challenges
and New Trends in Probabilistic Timing Analysis,” in Design, Automa-
tion, and Test in Europe (DATE), Dresden, Germany, 2012.

[26] TIMMO-2-USE Project, “TADL2 deliverable,” http://www.
timmo-2-use.org/.

[27] AUTOSAR (AUTomotive Open System ARchitecture), http://www.
autosar.org/.

[28] EAST-ADL, http://www.east-adl.info.

