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Abstract—In event triggered control systems, events occur
aperiodically. For the real-time analysis of such systems, an
appropriate approximation of the events’ stimulation is necessary.
Upper bounds have already been found for event triggered
systems. For now, lower bounds have been assumed zero within
the real-time analysis of event triggered systems. This work
derives an approximated lower bound representing the maximum
inter-sampling time. The bounds depend on the control system
and the event generating mechanism. The beneficial effect is
shown by analyzing an event triggered control system in a real-
time analysis framework.

I. INTRODUCTION

One part of the real-time analysis is to integrate insights of

control theory to obtain tighter bounds, schedulability and the

corresponding response time of tasks. In control engineering,

normally sensors are used to measure the output performance

of the device being controlled. These measurements are used

to give feedback to the input actuators that can make cor-

rections toward desired performance. One common way to

integrate digital control systems in real-time analysis bases

on a periodically sampled sensor. On advantage of a periodic

stimulation is the simple implementation. After a counter

exceeds a pre-defined threshold, the sensor value is gathered.

The threshold can be obtained by satisfying the Nyquist

theorem [1]. This theorem states, that the sampling rate must

be at least two times faster than the highest frequency that

may occur in the control loop. The mathematical model of a

system is represented by differential equations. This allows to

obtain directly the threshold. In general, the physical system

is oversampled to reach a better response on disturbances

and changes in the reverence value. The integration of a

time triggered event stream into the real-time analysis is very

effective and therefore very common.

As in most cyber-physical systems, timing effects the func-

tional behavior. On the one hand, if the control loop is

triggered too infrequently, the system can become unstable.

On the other hand, additional sensor readings will not increase

the stability of the system significantly. Especially in network

controlled systems a big effort is to reduce communication.

In contrast to time triggered control systems, event triggered

control systems can guarantee a stable system with the least

amount of sensor events. Event triggered control mechanisms

reduce the resource usage and the utilization.

In an event triggered control systems a sensor generates an

event when a system state exceeds a defined threshold. This

technique has a more efficient usage of system resources than

conventional periodic sampling [2]. Events in event triggered

control systems occur due to environmental circumstances.

In consequence events do not occur in a strictly periodic

manner anymore but occur aperiodic. To obtain an upper and

lower bound of occurring events for the real-time analysis, a

specification of the stimulation is needed. In literature, mostly

bounds for the minimum inter-sampling times are regarded.

In figure 1 the y-axes shows the absolute value of the state

vector. This value shows the absolute deviation from the last

sampled state value to the current state value. The current

value of the state vector is indicated by the solid red line.

When the deviation exceeds a defined threshold |x(t)| at point

xi, an event is triggered. This event leads to a correction of

the input actors, which correct the output performance of the

device towards the desired performance. Hence, the deviation

goes back to zero. In a stable system, the threshold |x(t)| is

monotonically decreasing.

The specification of the stimulation tries to find an ap-

proximation for a minimum inter-sampling time and for a

maximum inter-sampling time. With knowledge of the system,

a minimum inter-sampling time (green dotted line in figure 1)

and a maximum inter-sampling time (blue dashed line in figure

1) can be obtained. With the specifications of the stimulations,

an upper bound (∆tmax) and a lower bound (∆tmin) for the

real value (∆ti) are obtained which are be used in the real-

time analysis of the system. This work will introduce the

approximation for the maximum inter-sampling time (blue

dashed line in figure 1) and therefore a lower bound (∆tmin)

for the real-time analysis. For now the the lower bound is

assumed to be zero.

The paper is structured as follows. The following section

gives a brief overview of the related work. On the one hand

the work that has been done to connect control systems and

the timing behavior of the underlying hardware architecture.

On the other hand the research in the filed of event-triggered

control systems. In the third section models are introduced

which characterize the occurrence of events over time. The978-3-9815370-0-0/DATE13/ c©2013 EDAA



Fig. 1. Characteristics of a event triggered control system and its approxi-
mations.

control system model and its event generation mechanism

lead to the problem formulation in this section. Section four

derives a maximum inter-sampling time from the dynamics

of the control system. The maximum inter-sampling time

is equivalent to the minimum stimulation in the real-time

analysis. Section five shows the benefits of our approach in

a distributed system architecture. Our experimental results

in section six demonstrate the positive effect in embedded

system architectures, when a minimum stimulation for an

event-triggered control system is available for the real-time

analysis of such systems. This work closes with a conclusion.

II. REALTED WORK

The recent years have brought significant improvements

in integrating control systems into the underlying hardware

platform. This research focuses towards networked control

systems and sensor actuator networks. Both find their ap-

plication in a wide field of cyber physical systems. Most

publications in this field deal with the influence of the delays.

The delays are caused by the hardware and the scheduling of

the control performance [3] [4]. Real-time analysis methods

allow to obtain guaranteed bounds for the delays in a control

loop. In [5], a functional model is connected to a real-time

analysis model by using a bijective mapping. All so far stated

methods presume periodic sampling, which is not resource

friendly.

As mentioned before, event triggered control systems use

system resources more efficiently than conventional periodic

sampling [2]. There are different approaches to implement

event triggered control systems [2] [6] [7]. This work focuses

towards the input-to-state stability (ISS) triggering mechanism

from [7]. The proof of ISS for the event triggered control

system is an useful and significant property, as it guarantees a

minimum control performance. This proof is used in our work

to show that the norm of the state space is decreasing over

time. Our methods can also be adapted for similar triggering

conditions as for example in [8].

The real-time analysis allows to validate schedulability of

a system and to calculate the response times of its tasks and

messages. For this analysis, we need an implementation of

an event triggered control system on a distributed system

architecture. For control systems with a periodic sampling,

the representation of events is very basic because the tasks

are stimulated strictly periodical. For event triggered control

systems, events are generated aperiodically. This requires a

more complex representation of the stimulation. Models that

provide this additional degree of freedom are the event model

from Gresser [9] and the arrival curves, as used by Wandeler

[10].

III. MODEL AND PROBLEM

FORMULATION

A time delay in a closed-loop control system has a direct im-

pact on the control performance of networked control systems.

In embedded systems these time delays are mainly induced

by tasks which do not hold resources exclusively. Therefore,

tasks or messages can be blocked or interrupted by other

tasks or messages which lead then to time delays, which are

denoted as response times. One possibility to determine these

times is to perform a real-time analysis delivering absolute

bounds for the worst-case and best-case response times. A

methodology to obtain these response times is the modular

performance analysis (MPA) as introduced in [10]. The idea

behind the MPA is the convolution between curves, that

describe the available capacity (β) for a task and the incoming

stimulation (η). As an output, the mathematics behind the real-

time calculus determines system properties as tasks response

times, needed buffer size and remaining resource capacity of

lower prior tasks.

The arrival curves are a specification of the tasks stimula-

tion. For every time window, the arrival curves map to the

corresponding number of events that can occur in that time

interval. Thereby, the arrival curve is composed of two curves

(η+(∆t), η−(∆t)), describing the maximal and minimal event

density. Arrival Curves originate from the network calculus

[11] and describe in our context stair function. The upper

arrival curve (η+(∆t)) is defined as the maximum number of

events, that may occur in an arbitrary time interval with length

∆t+ ǫ, with ǫ as marginal small value. Therefore, in the time

interval of zero seconds, one event can occur. In contrast to the

upper arrival curve, the lower arrival curve (η−(∆t)) denotes

the minimum number of events that may occur in the time

interval ∆t.

As additional information, the real time calculus requires a

specification of the computation capacity of the tasks. When

multiplying the arrival curves with the execution time of the

task, we obtain the requested computation time. The available

computation time can also be described in the time interval



Fig. 2. Structure and interaction of signals in an event triggered control
system.

domain. This is done by service curves (β+(∆t), β−(∆t)).
Upper and lower service curves are defined analog to the

arrival curves. The upper service curve defines the maximum

amount of computation time, that can be provided a task in

a given time interval. Respectively, the lower service curve

defines the minimum calculation time available for a certain

task.

For ordinary control systems, there exist stimulation models

that can be applied to the arrival curves. These are stimulations

with a strict periodic event generation. Considering event

triggered control systems, events are generated depending on

the dynamic behavior of the system. In the context of control

systems, an event is represented by the sampled sensor value,

which is afterwards propagated over a network. In [7] the

existence of a lower bound for inter-sampling times (∆tmin)
was proven. This lower bound can be direct transformed to a

valid upper arrival curve by

η+(∆t) =

⌈

∆t

∆tmin

⌉

(1)

This upper arrival curve is not an exact solution but is a

valid bound, due to the overestimation. What is still missing

is a description of the lower arrival curve. One valid lower

arrival curve would be zero, which could be assumed, when

there is no further knowledge of the control system. Based

on the minimum dynamics of the control system we derive

a minimum stimulation, which leads to an improved lower

arrival curve (η−(∆t)).
In this paper we derive a valid lower arrival curve for an

event triggered control system. Based on the system parame-

ters of the control system and the event generating mechanism,

we present a way to derive the lower arrival curve with small

overestimation. For the sake of simplification, we assume a

linear time-invariant systems without transport delays, which

is stabilized by a state space controller. The dynamics of

the system, that needs to be controlled can be modeled as

differential equations. For linear systems, these differential

equations can be combined to a matrix differential equation,

which has in undisturbed case the form

ẋ(t) = Ax(t) +Bu(t) (2)

with x(t) as state vector, x0 as initial state vector, u(t) as

system input A and B as system matrices with appropriate

Fig. 3. Characteristics of the norms |x(t)| and |e(t)| for a undisturbed stable
control system.

matrix dimensions. Thereby, the system matrix A is quadratic

and invertible. The system is controlled by an event triggered

control mechanism, as described by Tabuada et al. [7]. In the

work of Tabuada, a new control value

u(t) = K · xi (3)

is applied to the system at time ti. As previously described,

this happens, when the norm of an error |e(t)| exceeds the

norm of the state variable |x(t)| multiplied by a factor ρ. The

structure of such an event triggered control system is sketched

in figure 2. An event is generated when the following equation

holds

|e(t)| = ρ · |x(t)| (4)

The error is defined as e(t) = xi−x(t), where xi is previous

sampled state vector at time-step ti. As a consequence the

norm of the error |e(t)| after the event generation is zero. The

relation between the signals characteristic and the times an

event is generated, is sketched in figure 3. By choosing an

adequate factor ρ, this control method satisfies input-to-state

stability, even for small enough transport delays, as shown in

[7].

Based on the state space equations of the control system

and the event generation rule, we approximate a valid lower

bound of the arrival curve in the next chapter.

IV. APPROXIMATION OF STIMULATION

The goal of this paper is to find a valid lower bound

of the arrival curve η−(∆t). This is done by determining

the maximum time interval ∆tmax between two consecutive

events. First, we consider the state space representation of the

controlled system in the time interval ∆ti. In this time interval

the control value is held constant according to equation (3),

leading to the state space representation of the close loop

control system based on equation (2)

ẋ(t) = Ax(t) +BKxi ∀ ti ≤ t < ti+1 (5)

The solution of the ordinary matrix differential equation (5)

in the time interval ∆ti can be calculated by solving



x(t) = e(t−ti)Axi +

∫ (t−ti)

0

eτABKxi dτ ∀ ti ≤ t < ti+1.

(6)

To obtain the state xi+1 when the next event is generated we

need to replace (t− ti) with ∆ti in the previous equation

xi+1 = e∆tiAxi +

∫ ∆ti

0

eτABKxi dτ (7)

leading to

xi+1 = e∆tiAxi + (e∆tiAA−1 −A−1)BKxi

= (e∆tiA(I +A−1BK)−A−1BK) · xi

= (e∆tiAF +H) · xi (8)

with F = I + A−1BK, H = −A−1BK and I as identity

matrix. A−1 is the inverse matrix of A.

Equation (8) calculates the next sampled state xi+1 depend-

ing on the time interval ∆ti, the previous sampled state xi and

the system matrices.

As we want to calculate the maximum on this time interval,

we need an extra constraint, given by the event triggering

mechanism from equation (4). Substituting the solved ordinary

differential equation from equation (8) in the event triggering

mechanism gives us the following equation:

|xi+1| =
1

ρ
|xi − xi+1|

∣

∣

(

e∆tiAF +H
)

· xi

∣

∣ =
1

ρ

∣

∣

(

I − e∆tiA
)

F · xi

∣

∣ (9)

Unfortunately, this equation is hard to dissolve to ∆ti, so

we need make an approximation. The approximation is done

in a way, to reach an upper bound on ∆ti. Based on the

characteristics of |x(t)| and |e(t)| for a stable system, we can

make the assumption that the norm of the state vector |x(t)|
is decreasing and the norm of the error |e(t)| increasing over

the considered time interval. The inter-sampling time ∆ti can

be seen as intersection between the function |x(t)| and
|e(t)|
ρ

as displayed in figure 3. Consequently, to get an upper bound

on ∆ti, we have to find an upper bound for the left side of

equation (9).

Theorem 4.1: The left part of equation (9) can be approxi-

mated as |xi+1| = |(e∆tiAF +H) · xi| ≤ |xi|
Proof: As mentioned above, the event generation mech-

anism forces the system to fulfill ISS. Thus, the norm of

the states |x(t)| is a decreasing function [12] and therefore

|xi+1| < |xi|. In other words, the right part of equation (9)

is bounded by the norm of the previous sampled state vector

|xi|.

Based on the upper theorem and equation (9), we reformu-

late the problem by the following inequality

|xi| ≤
1

ρ

∣

∣

(

I − e∆tiA
)

F · xi

∣

∣ (10)

Our goal is to find a ∆ti as small as possible which

satisfies inequality (10). As our solution should be universally

applicable, we separate the state space vector xi from equation

(10). This is done as we apply the approximation

|Mx| ≥
|x|

M−1
(11)

to the upper inequality leading to the following equation

1 ≤
1

ρ

∣

∣

∣

((

I − e∆tiA
)

F
)−1

∣

∣

∣

−1

ρ
∣

∣

∣

(

e∆tiAF − F
)−1

∣

∣

∣
≤ 1. (12)

It is easy to see, that an evanescent time interval ∆ti would

violate the inequality, whereas with a large time interval ∆ti
the left part of equation (12) tends to zero.

The norm of equation (12) is the spectral norm of the

included matrix, which is defined as their maximum singular

value. Equation (12) can be written as

ρ · σ
(

(

e∆tiAF − F
)−1

)

≤ 1 (13)

with σ(M) as maximum singular value from matrix M .

To eliminate the inverse matrix operation from within this

equation we make use of a singular value property. Due to

the singular value definition, it can be shown that following

property for singular values hold

σ(M) =
1

σ(M−1)
(14)

with σ(M) as the minimum singular value of M . For equation

(13) this results in

ρ ·
1

σ (e∆tiAF − F )
≤ 1

σ
(

e∆tiAF − F
)

≥ ρ (15)

The left part of equation (15) maps the scalar ∆ti to the

minimal singular value of the matrix function M(∆ti) =
(e∆tiAF − F ).

∆ti → σ(M(∆ti)) (16)

Finally, our problem of finding a valid maximum inter-

sampling time is equivalent to finding a time interval ∆ti.

Hence all singular values of M(∆ti) have to be greater than

ρ. Related to our problem, in mathematics there is the inverse

singular value problem (ISVP). The ISVP tries to find a

c ∈ R
n for which a matrix L(c) ∈ R

nxn has a specific set

of singular values σ1 . . . σn. In [13] the authors describe a

method to solve the ISVP. Our problem differs from ISVP in

some aspects. First, our singular values should only exceed

a threshold σ1 . . . σn ≥ ρ and not equal predefined singular

values. The second difference to the ISVP is, that our matrix

function M(∆ti) only depends from a scalar ∆ti ∈ R.



V. INFLUENCE ON DISTRIBUTED SYSTEM ARCHITECTURE

This section shows the effect of the improved minimum

stimulation for event triggered control systems we derived

in the last chapter. In a distributed system architecture, the

timing of tasks and messages are coupled. This is because an

extended or reduced execution time effects the start time of

the next task in the task chain. A second reason is the shared

resource usage of multiple tasks. The timing properties can

be calculated by the above mentioned modular performance

analysis from Wandeler [10]. This analysis framework extends

the network calculus [11], which describes the flow of events

through a network, whereas the real-time calculus focuses

on the characteristics of embedded systems. The network

calculus theory relies on the max-plus algebra. In the max-

plus algebra, the convolution and deconvolution computations

can be defined, which is used by Wandeler to calculate

outgoing arrival and service curve based on their incoming

correspondents.

η+out = min((η+ ⊗ β+)⊘ β−, β+) (17)

η−out = min((η− ⊘ β+)⊗ β−, β−) (18)

β+
out = (β+ − η−)⊘ 0 (19)

β−
out = (β− − η+)⊗ 0 (20)

The meaning of the upper equations and the definition of

the convolution and deconvolution operations ⊘,⊗,⊘,⊗ can

be found in [10]. Arrival curve and service curve yield to the

maximum response time over following equation

r+ ≤ sup
λ≥0

(inf(τ ≥ 0 : η+(λ) ≤ β−(λ+ τ))) (21)

Baohua et al. proofed in [14] the isotonicity property of

the convolution operator in the max-plus algebra. Isotonicity

means, that if an operand of the convolution is increased,

the result is increased. We use this property to determine the

influence of an improved lower arrival curve.

Based on equation (18) the outgoing lower arrival curve

(η−out) is increased, if the incoming lower arrival curve (η−)
of the task is increased. In other words, all tasks in the task

chain of the event triggered control system have a higher

minimum stimulation. Equation (19) says, the remaining upper

service curve is decreased, if the incoming lower arrival curve

is increased. This has an influence to all tasks on the same

resource with smaller priority.

The upper equations (18) - (21) can be transferred in

a simplified representation, showing only the direction of

influence

η+out ↓ if β+ ↓ or η+ ↓ or β− ↑

η−out ↑ if β+ ↓ or η− ↑ or β− ↑

β+
out ↓ if β+ ↓ or η− ↑

β−
out ↑ if β− ↑ or η+ ↓

r+ ↓ if β− ↑ or η+ ↓
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Fig. 4. Comparison of simulated upper and lower arrival curves (η+, η−)
and corresponding calculated bounds.

VI. EXPERIMENTAL RESULTS

In this section we present the effect of the improved arrival

curves, we extracted from the dynamics of the event triggered

control system on the timing of the distributed system. The

system, that we want to control has the following state-space

equation

ẋ(t) =

[

0 1
−2 3

]

x(t) +

[

0
1

]

u(ti) (22)

The system is stabilized by the feedback controller u(ti)

u(ti) =
[

1 −4
]

x(ti) (23)

and the event generation mechanism e(t)

e(t) = 0.05 · x(ti) (24)

With the usage of equation (15) we can calculate the

maximum time between two events as ∆tmax = 80.9ms.

Similar to equation (1) we obtain the lower arrival curve as

η−(∆t) =

⌈

∆t

∆tmax

⌉

− 1, ∀∆t > 0 (25)

Figure 4 displays the arrival curves, that were obtained

from a simulation of the event triggered control system for

a duration of 10 seconds. The upper bound on the arrival

curve was calculated from the lower bound on the inter-

sampling time (28ms) as described in [7]. The lower curve

was calculated using our method applying equations (25) and

the solution of equation (15).

The effect of the improved arrival curve approximation

is shown for a small distributed system architecture. The

architecture is composed as displayed in figure 5. The task

chain consisting of τ1 over c1 to τ2 represents a distributed

event triggered control system. The source (S1) stimulates a

sensor-task with the above described arrival curve, build as

composition of two periodic stimulations, such as the upper

and lower curve in figure 4. Afterwards the sensor value
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specification of the minimum stimulation of the event triggered control system.

is transmitted over a network, scheduled with time division

multiple access (TDMA) policy. In task τ2 the control value

is calculated and allied to the plant. CPU1 and CPU2 are

scheduled with fix priorities. The appropriate priorities and

execution times are denoted under the appropriate task in

figure 5.

As the arrival curve propagates through the distributed

system architecture, we also see a higher lower bound on

the stimulation on task τ2. As discussed above, this results

in a reduction of the maximum remaining service curve, as

displayed in figure 6. Due to the smaller priority of task

τ3 compared to τ2, the available service curve for τ3 is the

remaining service curve of τ2. Task τ3 is stimulated by a

source with a period of 10ms and a jitter of 500ms. With

the mathematics of the real time calculus, we can calculate

a reduced outgoing upper arrival curve of task τ3. Finally we

can see a huge effect on task τ4, where the maximum response

time is reduced to 18ms. The same system without knowledge

of the lower arrival curve would cause a four times higher

response time on task τ4 of 72ms.

As consequence, we can calculate less conservative, but still

valid values for the system’s time behavior by introducing

a more realistic specification on the lower stimulation of an

event triggered control system. With the new intelligence of

the system, it may hold stronger deadlines or would allow a

higher utilization.

VII. CONCLUSION AND FUTURE WORK

When applying event triggered control systems to real

applications, it is necessary to perform a real-time analysis

to obtain valid values for the timing behavior of the system.

In distributed system architectures the timing behavior of one

component affects the performance of the whole system. So it

is necessary to define the inter-sampling time and therefore the

stimulation of tasks as realistic as possible. We could show in

our paper, that a disregarded minimum stimulation of tasks or

a minimum stimulation of zero is an inadequate bound. Hence,

we describe a method to calculate an improved minimum

stimulation. This gives a system engineer the possibility to

increase the utilization of the whole system.

As our lower bound on arrival curve is obtained from

the maximum inter-sampling time it can be represented as a

stepwise straight line. In our future work, we are interested

in fining a lower bound on the arrival curve, which is closer

to the real event density of the event generator. We are also

interested in adopting our methods on systems with nonlinear

system behavior and finding a relation between a disturbance

specification of the control system and the resulting arrival

curves.
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