
Compositional Analysis of Switched Ethernet Topologies

Reinhard Schneider, Licong Zhang, Dip Goswami, Alejandro Masrur, Samarjit Chakraborty
Institute for Real-Time Computer Systems, TU Munich, Germany
(reinhard.schneider@rcs.ei.tum.de, licong.zhang@rcs.ei.tum.de,
dip.goswami@tum.de, masrur@rcs.ei.tum.de, samarjit@tum.de)

Abstract—In this paper we study distributed automotive con-
trol applications whose tasks are mapped onto different ECUs
communicating via a switched Ethernet network. As traditional
automotive communication buses like CAN, FlexRay, LIN and
MOST are gradually reaching their performance limits because
of the increasing complexity of automotive architectures and
applications, Ethernet-based in-vehicle communication systems
have attracted a lot of attention in recent times. However,
currently there is very little work on systematic timing analysis
for Ethernet which is important for its deployment in safety-
critical scenarios like in an automotive architecture. In this
work, we propose a compositional timing analysis technique that
takes various features of switched Ethernet into account like
network topology, frame priorities, communication delay, mem-
ory requirement on switches, performance, etc. Such an analysis
technique is particularly suitable during early design phases of
automotive architectures and control software deployment. We
demonstrate its use in analyzing mixed-criticality traffic patterns
consisting of messages from performance-oriented control loops
and timing-sensitive real-time tasks. We further evaluate the
tightness of the obtained analytical bounds with an OMNeT++
based network simulation environment, which involves long
simulation time and does not provide formal guarantees.

I. INTRODUCTION

The use of Ethernet as an in-vehicle communication tech-
nology has lately attracted a lot of attention within the
automotive electronics domain. This is primarily because of
the recent developments in unshielded twisted pair Ether-
net by Broadcom (blog.broadcom.com) and other companies
(www.its-jp.org), which makes Ethernet deployment in cars
much more cost effective, and hence feasible, compared to
other technologies that require shielded cables to prevent
electromagnetic interference. However, there is very little work
on timing analysis of Ethernet, whereas tight timing bounds
are required to map safety-critical control tasks on a distributed
automotive architecture with multiple communicating ECUs.

In this paper we propose a timing and performance analysis
technique for full-duplex switched Ethernet networks in dis-
tributed automotive architectures (see Fig 1). The performance
of control applications mapped onto such architectures de-
pends on the delays experienced by the control-related signals,
which in turn depend on the topology of the network, and the
specific characteristics of the switches that are used.

We also show that the Ethernet topology, frame priori-
ties, and switch parameters have a significant influence on
control performance, and therefore need to be systematically
determined. The timing analysis technique proposed in this
paper can serve as an important design tool for configuring
both the Ethernet network and switch parameters, and may
also drive task mapping and priority assignment decisions
for the applications. Our main focus in this paper is the
timing analysis technique; its use for task mapping, priority
assignment and other related design decisions in the context of
Ethernet based architectures will be a subject for future study.

ECU

SW

ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU

SWSW SW SW SWSW

3

1 2

4 3

1 2

4 3

1 2

4

1 1 2 1 2 3 4

(a) (b) (c)

Fig. 1. Switched Ethernet topologies: (a) Star topology (b) Twin Star
topology (c) Line topology.

A. Related work
In spite of several advantages, the major bottleneck in

applying Ethernet based networks in real-time and safety-
critical domains is to provide performance guarantees such as
worst-case delays, jitter, and control performance. Recently,
there have been significant efforts on timing and performance
analysis of Ethernet networks from both industrial [1] and
academic [2]–[4] communities. Another important research
question is the impact of such timing/performance properties
on the feedback control loops [3], [5], [6]. While these works
have made notable contribution in this area, many of them are
ad-hoc solutions for a specific network and communication
pattern. Moreover, the design problem becomes significantly
more complex when the mixed-criticality traffic such as real-
time and feedback control applications are implemented to-
gether over such networks. A big challenge here is to establish
a compositional approach that scales to different network
topologies, communication patterns, and provides safe yet not
too pessimistic performance guarantees.

In this context, the common system-level performance anal-
ysis tools are real-time calculus (RTC) [7], network calcu-
lus [8]–[10] and SymTA/S [2], [11]. In [9], [10], the tim-
ing analysis frameworks are presented to model an Ethernet
switch. In these works, the timing bounds are derived based on
the assumption of maximum frame size for each frame (i.e,
each frame is assumed to have a maximum frame length).
In general, such assumption introduces pessimism, which is
further aggravated in the case of compositional analysis.

B. Contributions
In this work, we present a compositional analysis technique

for switched Ethernet networks that allows studying the per-
formance of automotive systems at early design phases. A
model of an Ethernet switch is presented to compute the worst-
case delays and the memory requirement in a switch for a
given frame priority assignment. Next, we utilize this switch
model to conduct performance analysis of various Ethernet
topologies. We consider a traffic pattern consisting of real-
time frames and control-related frames. Our analysis is based
on RTC and is especially useful to compare different network
topologies regarding multiple performance properties such as:

• the memory requirement on Ethernet switches,
• the performance of distributed feedback control applica-

tions closed over the network978-3-9815370-0-0/DATE13/ c©2013 EDAA

Input
Port

...

...

FCS Check,
Forward Decision, ...

...

...

…

…

Switch Fabric

Output
Port

Switch Model

Processing and fabric delay Queuing delay
Switch delay

O
ut

pu
t

S
ch

ed
ul

er

Output
Port O

ut
pu

t
S

ch
ed

ul
er

 Prio 1
Prio 2

Prio 3
Prio 4

Prio 1
Prio 2
Prio 3
Prio 4

Fig. 2. Switch model under consideration.

• the communication delays of data paths (routes) across
multiple switches in various topologies.

Towards evaluating the tightness of our analysis, we developed
a simulation environment using OMNeT++, a discrete-event
simulation tool. The main focus in this paper lies on exploring
a number of relevant design parameters and their impact on
various performance measures. The proposed analysis tech-
nique is fully compositional and scalable, paving the way
for optimizing design procedures to improve performance of
future automotive systems based on Ethernet networks.

II. FULL-DUPLEX SWITCHED ETHERNET

In this work, we are concerned with a full-duplex switched
Ethernet (IEEE 802.1D1) featuring priority operation and
100Mbps links. In the setting under consideration, multiple
ECUs are connected in a network consisting of Fast Ethernet
(100Mbps) full-duplex links and a number of switches. The
full-duplex operation allows the separation of incoming and
outgoing traffic and thus contention on the links can be
avoided. In such a network, an ECU can be either directly
connected to another ECU or via one or more switches (which
is a more common configuration). The network can employ
different topologies, including star, twin star, line (see Fig. 1),
ring and other topologies. The switches forward the Ethernet
frames to their corresponding destination ECUs and mainly
consist of the following components as depicted in Fig. 2:

• Input ports: Each switch has multiple ports, which can
normally both serve as input ports and output ports. These
ports are capable of receiving frame streams from the
connected Ethernet link.

• Processing and switch fabric: The stream of frames
received by input ports are then processed (e.g., FCS
checks, forwarding decisions, etc.), and forwarded to the
corresponding output port(s) through the switch fabric.

• Output ports: An output port is composed of a number
of queues and an output scheduler. The frames received
by the switch have pre-defined fixed priorities (there can
be at most 8 priorities). Frames with different priorities
are stored in separate queues and are transmitted on an
output port according to the output scheduler.

Depending on the topology, a frame from a sender ECU
passes through one or more switches to reach a receiver ECU.
For example, a frame from ECU1 to ECU4 travels through
only one switch in the star topology (Fig. 1(a)) while the
same frame passes through two switches in the twin star

1It should be noted that our proposed model and result is also valid for
networks with VLAN operations (IEEE802.1Q) and can be adapted to the
AVB standards. In addition, we only consider the performance up to the Data
Link Layer, i.e., we do not include protocols like TCP, UDP and IP. However,
the model and result of this paper also applies to networks with such protocols
implemented.

topology (Fig. 1(b)). In this process, the communication delay
experienced by a frame consists of two components:
(i) Transmission delay: This is the transmission time over
the Ethernet links. It depends on the link’s bandwidth, the
frame size, and the number of links in the data path (which
again depends on the topology). For example, a 100-byte-
frame from ECU1 to ECU4 in the star topology (Fig. 1(a))
experiences a transmission delay of 8μs per link and a total
transmission delay of 16μs. Therefore, the transmission delay
of a particular frame is constant for a given topology. Further,
the transmission of two consecutive frames is separated by an
inter-frame gap (IFG) of 12 bytes. In our analysis, we take
this into account by extending the frame size by 12 bytes.
(ii) Switch delay: This refers to the delay in the switches (see
Fig. 2). The switch delay is made up of two parts:

• Processing and fabric delay: This can be modeled as a
constant delay and is usually in the range of 3 to 10 μs.

• Queuing delay: As described above, the frames with
different priorities are stored in the corresponding out-
put queues, and are transmitted according to an output
scheduling policy. This scheduler can follow any arbitra-
tion policy (e.g. weighted round robin or fixed priority
non-preemptive).

III. MATHEMATICAL BACKGROUND

In this section, we present the theoretical background of
RTC [7] which we use for our analysis.

Event model: Data streams are modeled using a count-based
abstraction where an arrival pattern of a stream is modeled
as a cumulative function R(t) denoting the number of events
that arrive during the time interval (0, t]. The maximum and
minimum number of events that are recorded during any
time interval of length Δ is represented by a pair of arrival
functions α = (αu, αl) defined as

∀Δ ≥ 0, ∀ t ≥ 0 : αl(Δ) ≤ R(Δ + t)−R(t) ≤ αu(Δ).

Arrival curves allow for an expressive characterization of event
streams which are able to represent standard event models,
e.g., periodic, periodic with jitter and sporadic, as well as
arbitrary arrival patterns. Further, α can also be expressed in
terms of resource units available in any time interval of length
Δ according to workload transformations [12]:

ᾱu = Wu
α(α

u), ᾱl = W l
α(α

l) (1)

where Wu
α(e) and W l

α(e) are functions denoting the
maximum and minimum number of resource units (e.g.,
processor cycles) required to process e consecutive events.

Resource model: Similarly, resource capacities are captured
by a cumulative function C(t) denoting the number of events
that can be processed by a resource in the time interval (0, t].
The maximum and minimum number of events that can be
processed in any time interval of length Δ can be bounded by
a pair of service functions β = (βu, βl) defined as

∀Δ ≥ 0, ∀ t ≥ 0 : βl(Δ) ≤ C(Δ + t)− C(t) ≤ βu(Δ).

Similar to resource-based arrival curves, β can also be
expressed in terms of the maximum and minimum number
of available resource units:

βu = Wu
β (β̄

u), βl = W l
β(β̄

l) (2)

.

.

.

.

.

.

J F

.

.

.

.

.

.

arbitrary
processing

Fig. 3. Join (J) and fork (F) operations on the structured event stream α. The
corresponding ECCs γi of sub-streams αi remain unaffected after arbitrary
processing of the structured event stream α.

where Wu
β (r) and W l

β(r) denote the maximum and minimum
number of successive events that can be processed with r
resource units.

Performance analysis: The bounds on the output arrival
functions α′ = (αu′

, αl′), and remaining service functions

β′ = (βu′
, βl′) for a greedy processing component can be

computed as follows:

αu′
= min

{(
αu ⊗ βu

)� βl, βu
}

(3)

αl′ = min
{(

αl � βu
)⊗ βl, βl

}
(4)

βu′
=

(
βu − αl

) � 0 (5)

βl′ =
(
βl − αu

) ⊗ 0 (6)

where the (min,+) convolution ⊗ and deconvolution � opera-
tors are defined as: ∀t ∈ R

+

(
f ⊗ g

)
(t) = inf

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}
,(

f � g
)
(t) = sup

{
f(t+ u)− g(u) | u ≥ 0

}
.

The (max,+) convolution ⊗ and deconvolution � operators are
defined as: ∀t ∈ R

+

(
f⊗g

)
(t) = sup

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}
,(

f�g
)
(t) = inf

{
f(t+ u)− g(u) | u ≥ 0

}
.

The maximum memory space B that is required to buffer the
input stream α, and the worst-case delay D experienced by
the input stream α are given by

B(αu, βl) = sup
λ≥0

{
αu(λ)− βl(λ)

}
(7)

D(αu, βl) = sup
Δ≥0

{
inf

{
τ ≥ 0 : αu(Δ) ≤ βl(Δ + τ)

}}
(8)

Join and fork of event streams: In [13], Perathoner et
al. introduced a compositional method to merge and extract
sub-streams based on event type information. One of their
main results is the concept of Event Count Curves (ECC)
which involves join (J) and fork (F) operations on event
streams to compose and decompose structured event streams.
A structured event stream composed of n single event streams
with arrival curves α1, ..., αn is defined as

α(Δ) = [αl(Δ), αu(Δ)] =
[∑

i

αl
i,
∑
i

αu
i

]
,Δ > 0 (9)

and a set of upper and lower ECCs γi(n) =
[γl

i(n), γ
u
i (n)], n ≥ 0, one for each event type ei. The

lower and upper ECCs, γl
i(n) and γu

i (n), characterize the
minimum and maximum number of events of type ei in any
sequence of n ∈ N events of the structured stream. It is worth
mentioning that ECCs are not affected by stream processing,

i.e., ECCs store information about the resulting structured
event stream α(Δ) after joining several event streams αi(Δ).
After arbitrary processing of the joint stream α(Δ), we again
use the ECCs to decompose the structured stream into the
corresponding sub-streams (see Fig. 3)

αl
i(Δ) = γl

i(α
l(Δ)), αu

i (Δ) = γu
i (α

u(Δ)). (10)

IV. PROPOSED SWITCH MODEL

Essentially, an Ethernet frame experiences transmission
delays and switch delays while being transmitted over the net-
work. As already described, the computation of transmission
delays is straight forward. However, the switch delay depends
on the queuing time in the output queues. This queuing time
further depends on the traffic pattern, and the scheduling policy
employed by the output scheduler. In this section, we describe
how to compute the delay in the switches.

We consider a switch which has m input/output ports and
receives n frame streams as inputs, denoted as αi, where
i = 1 . . . n. Each frame stream is associated with a priority
assignment πi, and a destination port εi (obtainable from the
destination address of the frame and the address table of the
switch). As output, we obtain output arrival functions α

′
i for

each single frame stream, the maximum delay Di (switch
delay + output transmission delay) and total switch memory
requirement B. Further, the switch has a constant processing
and fabric delay of Dfab, and each output port is associated
with an Ethernet service function βeth. Alg. 1 shows the
proposed procedure for the performance analysis of a switch,
which is also illustrated in Fig. 4. Fig. 5 visualizes the data
paths in the switch model with five input frame streams.

Algorithm 1 Generic Ethernet switch model

Input: {αi}, {πi}, {εi}, πmax

Output: {α′
i}, {Di}, B, where i = 1 . . . n and for all j

Parameters: Dfab, m, βeth
Indexing: i = 1 . . . n, j = 1 . . . πmax, p = 1 . . .m
Initialization: Di = 0, B = 0

1: outp = GS(αi, εi)
2: Di = FAB(Di, Dfab)
3: {outp.prioj} = SGS(outp)
4: β̄eth = WLT(βeth), ᾱi = WLT(αi)
5: [ᾱoutp.prioj , {γi}] = JOIN(outp.prioj),

where αi ∈ {outp.prioj}
6: [ᾱ

′
outp.prioj

, {Dp,j}, Bp,j] = FPNP(ᾱoutp.prioj , β̄eth)

7: ᾱ
′
i = FORK(ᾱ

′
outp.prioj

, {γi}),
where αi ∈ {outp.prioj}

8: α
′
i = IWLT(ᾱ

′
i)

9: Di = Di +Dp,j ,
where αi ∈ {outp.prioj}

10: B =
∑

Bp,j

11: return α
′
i, Di, B

• Grouping streams: (line 1) First, the incoming frame
streams αi are grouped into sets outp according to their
destination ports εi.

• Passing through the switch fabric: (line 2) The streams
then pass through the switch fabric. In this process, each
stream experiences a processing and fabric delay Dfab.
This value is added to the total delay of each stream.

• Sub-grouping streams: (line 3) When the streams are
forwarded to the output ports outp, they are further

IN IN IN
…

IN

Passing through switch fabric (FAB)

Grouping streams (GS)

Processing and Switch Fabric

Joining Streams (JOIN)

FPNP outputting (FPNP)

Forking Streams (FORK)

Inverse WLT (IWLT)

OUT OUT OUT … OUT

Output Queuing and Transmission

Sub-grouping streams (SGS)

Workload Transformation (WLT)

… IN IN IN

…

…

…

… OUT OUT

…

… …

…

WLT

JOIN

prio1 prio2

… … FORK

OUT

IWLT

FPNP

WLT

out1 out2 out3

out1 out2 out3

out1

prio1 prio2

Fig. 4. Schematic of the proposed Alg. 1.

J

FPNP

F

OUT1

IN1 IN2 IN4 IN3 IN5

J

F

OUT2 B1 B2

WLT WLT WLT WLT WLT

IWLT IWLT

FAB

FPNP

B1 B2

F

IWLT

Fig. 5. This figure shows the data path of streams in a switch model.

sub-grouped according to their priorities πi into sets
outp.prioj .

• Workload transformation: (line 4) The arrival functions
of all streams αi are then transformed into their resource-
based counterparts ᾱi according to their frame sizes in
bits. Similarly, the service function βeth of the Ethernet
output port is transformed into β̄eth according to the
available bandwidth. The workload transformations are
performed using (1) and (2).

• Joining streams: (line 5) The streams belonging to the
set outp.prioj are joined to form ᾱoutp.prioj for each
priority (queue) using (9). For each stream, a set of ECCs
γi is obtained, which will be used to identify and retrieve
each single stream after processing.

• Outputting according to FPNP: (line 6) We assume
an output scheduler employing the fixed-priority non-
preemptive scheme with ᾱoutp.prioj as input functions

and β̄eth as service functions. The output functions
ᾱ

′
outp.prioj

, the delay Dp,j , and memory requirement
Bp,j for each queue in an output port can be obtained
according to (7) and (8). Dp,j consists of two parts, (i)
the queuing delay, and (ii) the transmission delay on the
output port.

• Forking streams: (line 7) After processing of each

(priority) stream, the output arrival functions for each
individual frame stream are retrieved from the joint output
stream ᾱ

′
outp.prioj

using the ECCs γi according to (10).
• Inverse Workload transformation: (line 8) The pro-

cessed streams ᾱ
′
i are again transformed into the event-

based functions α
′
i, and serve as the switch output. The

queuing and transmission delay of each set outp.prioj is
added to all the delay Di of all streams belonging to this
set. The total switch memory requirement B is the sum
of all Bp,j .

The output functions α
′
i may serve as input arrival functions

to the next switch in the path in a compositional manner. To
improve readability, we only describe uni-cast frames in the
algorithm. It should be noted that the algorithm also supports
multi-cast operation, in which case the incoming arrival func-
tions are duplicated in the SG part and forwarded to multiple
output ports. Since the proposed model is compositional and
independent of the switch configuration and traffic patterns,
it can be used to conduct performance analysis of Ethernet
networks with different topologies and traffic patterns.

Technical distinction from previous works
In this context, network calculus has been used for modeling

and analysis of similar design aspects of Ethernet switches [9],
[10]. The major difference between the previous works and our
analysis is illustrated in Fig. 6. When two streams, e.g., αi and
αj , have the same priority but different data paths, the previous
works essentially do not explicitly analyze individual frame
streams. Rather, they consider them together as a single flow. If
the frames are considered as a single stream, and not properly
separated, the joint stream is required to be used for further
analysis. This introduces considerable analysis pessimism than
if the streams are treated independently. It becomes more
prominent when a larger and more complex network topology
is considered. In our work, we could retrieve the individual
frame streams after they pass through the switch. This way,
we could avoid the analysis pessimism that can be noticed in
the works based on network calculus [9], [10].

V. CASE STUDY

In this section, we apply the proposed analysis technique to
a relatively small yet meaningful Ethernet based automotive
system. In this setup, we consider 4 ECUs and a task set
τ consisting of 10 tasks, as shown in Table I. All 10 tasks

SW 2 SW 1

(a) Our approach (b) Previous works [9], [10]

SW 2 SW 1

Fig. 6. Two stream of αi and αj with same priority and different destination
(a) our approach (b) previous works.

0 20 40 60 80 1007

7.05

7.1

7.15

7.2

7.25

7.3x 104

J al
l

Fig. 7. Star Topology: Jall at 100 randomly generated priority assignments.

are mapped onto different ECUs as indicated by the sender
and receiver column in Table I. Each task sends an Ethernet
frame of size ci to one or more receiver ECUs according
to a period pi. Tasks T5,rt and T6,rt are mapped onto one
sender ECU each (ECU1 and ECU2 respectively) and send
frames to two receiver ECUs (ECU3 and ECU4) by a multi-
cast operation. All other tasks have only one single receiver.
The tasks are further categorized as feedback control tasks
Ti,ct ∈ τ , and real-time tasks Ti,rt ∈ τ . We assume a strictly
priority-based output scheduling on the switches. Further, four
global priorities are considered π = {1, 2, 3, 4} (1 denoting the
highest priority) whereas each Ethernet frame is associated
with one priority πi ∈ π. We study three different network
topologies: star, twin star, and line topology (see Fig. 1).

Control applications and performance: We consider four
feedback control tasks Ti,ct ∈ τ and use the following
sampled-data model for the feedback control loops [14]:

x[k + 1] = Ax[k] +B0(D)u[k] +B1(D)u[k], (11)

where x[k] is the vector of feedback states and u[k] is the
control input. (A,B0(D), B1(D)) are system matrices which
are constant for a given sensor-to-actuator delay D. Often, the
performance of a feedback loop is measured by a quadratic
cost function,

J =
∑

(x[k]′x[k] + u[k]′u[k]), (12)

which depends on D, as indicated by equation (11). Intuitively,
the performance of a feedback loop deteriorates with increas-
ing delay D. In this case study, we assume that Ti,ct ∈ τ
performs measure operation periodically and sends the sensor
reading x[k] on an Ethernet frame over the network. The
compute and actuate operations are performed at the receiving
ECU, which is a typical automotive configuration. The actuate
operation is performed periodically with the same period
as Ti,ct in a time-triggered fashion, and with an offset D
which is the worst-case sensor-to-actuator delay D for the
corresponding control loop. Thus, for a given control task

Ti Sender Receiver pi[ms] ci[bytes] πi
T1,ct ECU1 ECU3 1 80 π1
T2,ct ECU1 ECU4 5 80 π2
T3,ct ECU2 ECU4 2.5 94 π3
T4,ct ECU2 ECU3 1 94 π4
T5,rt ECU1 ECU3, ECU4 10 130 π5
T6,rt ECU2 ECU3, ECU4 20 158 π6
T7,rt ECU3 ECU4 5 180 π7
T8,rt ECU3 ECU4 5 180 π8
T9,rt ECU3 ECU4 20 180 π9
T10,rt ECU3 ECU4 10 180 π10

TABLE I
TASK SET SPECIFICATION

6000 7000 8000 9000 10000 11000 12000 13000

0.8

1

1.2

1.4

1.6

1.8

2x 105

Total Switch Memory Requirement [bytes]

J al
l

Fig. 8. Line Topology: Jall vs. total memory requirement.

Ti,ct ∈ τ , D needs to be obtained analytically but it is
a constant value (i.e., the worst-case value). To this end,
we consider the following overall performance as a design
parameter (which should be minimized for a better design),

Jall =
∑

Ti,ct∈τ

J. (13)

A. Experimental Results
We implemented the proposed analysis technique in

MATLAB using the RTC based model described in
Section III for the three topologies in Fig. 1. We used
4 priorities {1, 2, 3, 4} for the Ethernet frames πi ∈ π
(i = 1, 2...10). Towards demonstrating the impact of priority
assignment, we generated 100 priority sets, and evaluated
the system-level performance for each such priority set
for the different topologies. Further, we have simulated
the above network topologies using OMNeT++ framework
(www.omnetpp.org) to evaluate our analysis. Table II shows
the analytical bounds (A), the simulated worst-case (S), and
average delay (Avg) for each frame.

Communication delay: As described above, 10 tasks send 10
periodic frames and T5,rt, T6,rt are duplicated by multi-cast
operation. Table II shows the communication delay for the
priority set resulting in the best control performance (among
the 100 generated priority sets). For each topology, we also
simulated the network behavior with the same priority set
corresponding to the best control performance. We conducted
each simulation run with 56 combinations of randomly gener-
ated offsets to account for different release patterns.

Comparing the simulation with analytical results, we
can observe that: (i) All the analytical delay upper bounds
are larger than or equal to the worst-case communication
delays in the simulation. Clearly, the analytical bounds are
safe. (ii) For the frames with relatively shorter delays (e.g.,
all frames in star and twin star topology, some frames in
line topology), we can see that the simulated worst-case is

Topology
Communication delay [μs] {π1 . . . π4} Min Jall

T1,ct T2,ct T3,ct T4,ct T 3
5,rt T 4

5,rt T 3
6,rt T 4

6,rt T7,rt T8,rt T9,rt T10,rt

Star
A 33.32 72.69 37.32 54.44 57.32 118.94 51.11 78.93 111.64 80.69 111.64 122.94

{1, 2, 1, 4} 7.040e+4S 33.32 47.34 37.32 54.24 48.53 77.51 50.82 56.03 73.41 60.05 69.88 66.92
Avg 19.90 19.86 22.22 22.02 27.74 27.82 32.23 32.28 35.77 35.77 35.75 35.76

Twin
Star

A 33.32 138.33 37.32 81.53 57.32 269.70 78.19 101.49 239.38 146.33 239.38 273.70
{1, 2, 1, 4} 7.041e+4S 33.32 68.89 37.32 64.40 48.65 80.92 69.38 56.03 78.16 78.16 77.90 90.31

Avg 19.90 32.36 22.22 35.52 27.74 44.22 50.83 32.28 56.13 56.13 56.11 56.12

Line
A 57.04 280.07 66.16 81.70 88.68 612.67 78.19 212.01 434.60 256.85 434.60 585.49

{1, 2, 1, 4} 7.151+e4S 47.41 101.68 57.68 64.40 64.97 115.31 69.35 76.39 99.81 98.52 98.88 110.67
Avg 32.33 57.32 35.96 35.52 44.10 77.00 50.83 50.89 76.49 76.49 76.47 76.48

TABLE II
A: ANALYTICALLY COMPUTED WORST-CASE DELAY, S: SIMULATED WORST-CASE DELAY, AVG: SIMULATED AVERAGE VALUE, T 3

5,rt : T5,rt SENT TO

ECU3 , T 4
5,rt : T5,rt SENT TO ECU4 , T 3

6,rt : T6,rt SENT TO ECU3 , T 4
6,rt : T6,rt SENT TO ECU4

close to the analytical one. (iii) For the frames experiencing
larger delays, the analytical worst-case delay differs from the
simulated one by a higher margin. A possible explanation is
that the worst-case requires a combination of factors (e.g.,
synchronized releases at different stages in the network) that
are unlikely to happen in the simulation.

Control performance: Depending on the priority assignment
and topology, the resulting overall control performance Jall
changes. In Fig. 7, we have plotted how the overall control
performance Jall varies with 100 priority sets in the star
topology. We can see that the best control performance is
achieved with priority set #92 where the control tasks are
assigned relatively high priorities (π1 = 1, π2 = 2, π3 =
1, π4 = 4). On the other hand, the priority set #49 with
(π1 = 3, π2 = 3, π3 = 3, π4 = 4) results in the worst control
performance since the sensor-to-actuator delay D increases
when the control-related frame priorities are low. Moreover,
we can notice from Table II that the control performance
degrades from the star to the twin star topology, and similarly
from the twin star to the line topology (since Jall increases).
The control frames pass through only one switch in star
topology whereas they might pass through more than one
switch in the other topologies depending on the data paths.
Intuitively, the control frames experience shorter delays in star
topology compared to the other two. As already mentioned,
the control performance does not only depend on the topology
but also on the priority of the control-related frames.

In general, the control performance improves when the
communication delay is less. Intuitively, assigning higher
priorities to control tasks leads to a better performance.
However, the priority assignment for the best overall control
performance also depends on the nature of the controlled
plants (e.g., their sensitivity to the sensor-to-actuator delay,
control algorithms). Thus, assigning the highest priority to
the all control tasks does not necessarily result in the best
performance since it can possibly lead to a higher delay for
some of the more delay-sensitive control plants. Therefore,
the priority assignment problem for such a task set with
multiple intertwining factors such as timing requirements of
real-time tasks, performance requirements of control tasks
is a complex problem on its own. In this work, we are
rather concerned with introducing an analysis technique that
allows investigating these design factors than with providing
a concrete solution to the priority assignment problem.

Memory requirement: Similarly, we have obtained the total
switch memory requirement in the different topologies. In
the case of star topology, the total memory requirement is
constant and equal to the sum of the sizes of all frames. This
is because each frame passes through only one switch and

requires a memory space equal to its frame size at the output
ports. In the other two topologies, the memory requirement
varies with the priority assignment. Here some frame streams
pass through multiple switches. As a result, the arrival frame
stream at a switch depends on the output stream from the
previous switch, which obviously depends on the frames’
priorities sharing the same output port. In Fig 8, we have
plotted memory requirement for various priority assignments
in the line topology. In general, a greater total delay of frames
corresponds to more total memory space, since frames with
greater delays require more buffer space at the switches.

VI. CONCLUSIONS

In this work, we presented a design and analysis technique
for full-duplex switched Ethernet topologies that explores the
relation among a number of design considerations – network
topology, frame priorities, communication delays, memory
requirements, performance of distributed feedback controllers.
The proposed technique is a foundation for advanced design
and analysis problems such as optimal priority assignment
for frames, suitable topology selection, optimal positioning
of switches, optimizing performance of the feedback control
loops, optimizing task mapping on ECUs, etc.

REFERENCES

[1] M. Rahmani, K. Tappayuthpijarn, B. Krebs, E. Steinbach, and R. Bo-
genberger, “Traffic shaping for resource-efficient in-vehicle communi-
cation,” in Industrial Informatics, 2009.

[2] J. Rox, R. Ernst, and P. Giusto, “Using timing analysis for the design of
future switched based ethernet automotive networks,” in DATE, 2012.

[3] K. C. Lee, S. Lee, and M. H. Lee, “Worst case communication delay
of real-time industrial switched ethernet with multiple levels,” 2006.

[4] C. W. Wu, S. Fischmeister, and G. Carvajal, “Evaluation of communi-
cation architectures for switched real-time ethernet (pre-print),” 2012.

[5] Q. Zhang and W. Zhang, “Priority scheduling in switched industrial
ethernet,” in ACC, 2005.

[6] V. Hassani, H. Talebi, M. Shafiee, and H. Taheri, “Priority scheduling
in switched industrial ethernet,” in European Control Conference, 2007.

[7] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system design-
s,” in DATE, 2003.

[8] J. L. Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. New York, NY, USA: Springer-Verlag
New York, Inc., 2001.

[9] J.-P. Georges, T. Divoux, and E. Rondeau, “Network calculus: applica-
tion to switched real-time networking,” in International ICST Conference
on Performance Evaluation Methodologies and Tools, 2011.

[10] A. Mifdaoui, F. Frances, and C. Fraboul, “Full duplex switched ethernet
for next generation ”1553b”-based applications,” in RTAS, 2007.

[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[12] W. Haid and L. Thiele, “Complex task activation schemes in system
level performance analysis,” in CODES+ISSS, 2007.

[13] S. Perathoner, T. Rein, L. Thiele, K. Lampka, and J. Rox, “Modeling
structured event streams in system level performance analysis,” in
LCTES, 2010.

[14] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-
triggered implementations of mixed-criticality automotive software,” in
DATE, 2012.

