
LFSR Seed Computation and Reduction Using
SMT-Based Fault-Chaining*

Dhrumeel Bakshi and Michael S. Hsiao
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

{dvb, mhsiao}@vt.edu

Abstract—We propose a new method to derive a small number
of LFSR seeds for Logic BIST to cover all detectable faults as
a first-order satisfiability problem involving extended theories.
We use an SMT (Satisfiability Modulo Theories) formulation
to efficiently combine the tasks of test-generation and seed-
computation. We make use of this formulation in an iterative
seed-reduction flow which enables the “chaining” of hard-to-test
faults using very few seeds. Experimental results demonstrate
that up to 79% reduction in the number of seeds can be achieved.

Index Terms—LFSR Reseeding, Logic BIST, Test generation,
Satisfiability Modulo Theories.

I. INTRODUCTION

LBIST (Logic Built-in Self Test) refers to a technique which
enables a chip to test itself. As the size and complexity of
functional logic being built into chips keep increasing, the cost
of conventional ATE (Automated Testing Equipment) based
testing becomes more challenging. LBIST can help to either
reduce ATE complexity or eliminate ATEs altogether. In BIST,
generation of test patterns and analysis of output responses are
both performed on-chip. BIST allows for at-speed testing of
the chip which is needed to test performance-related defects.
Additionally, as test mechanisms are embedded into the chip,
BIST has a better access to the core logic to be tested as
compared to external testing. Finally, a self-testable chip can
test itself even after it is part of a system.

While BIST offers the aforementioned advantages, there
are challenges that come with it. Insertion of BIST circuitry
on chip may reduce the circuit performance and increase
area from the test structures such as the TPG (Test Pattern
Generator) and ORA (Output Response Analyzer). To reduce
the costs of BIST, low hardware-overhead TPG structures
capable of producing pseudo-random patterns are preferred.
However, the patterns produced by these structures are not
optimal. Most critically, achieving a high fault-coverage is a
challenging problem for circuits containing random-pattern-
resistant and/or hard-to-test faults. Various solutions have
been proposed to tackle this problem. Some solutions involve
modification of the circuit by redesigning or by test-point
insertion to improve the fault coverage. Others propose the
use of weighted-random patterns to increase the probabilities
of detecting random-pattern-resistant faults ([1], [2], etc.). A
third category uses what is commonly known as mixed-mode
BIST. This technique involves testing the circuit first using
pseudo-random patterns followed by deterministic methods to
cover faults missed by the random patterns.

*This work was supported in part by SRC grant 2011-TJ-2134.

This paper proposes novel techniques for a sub-class of
mixed-mode BIST called reseeding, in which test-patterns are
encoded as initial states or seeds of a TPG based on an LFSR
(Linear Feedback Shift Register). A great amount of work
has been done on computing seeds for LFSR-based pattern-
generation. Most of these techniques attempt to compute seeds
from pre-computed ATPG patterns. We propose a new way
to look at the problem of reseeding, wherein the seeds are
computed by considering target faults rather than target test
patterns. We shall show that this approach can help us cover
all faults in the circuit using very few number of seeds.

In our proposed method, we cast the problem as a first-order
satisfiability problem involving extended theories. For solving
this kind of a constraint-problem, we make effective use of
SMT-solving (Satisfiability Modulo Theories). SMT allows us
to encode our problem by combining the domains of Boolean
logic and the theory of Bit-Vectors, allowing us to try to chain
faults instead of pre-computed vectors. Results show that we
can achieve high quality solutions with low computational
costs - up to 79% reduction in seeds can be achieved.

The rest of the paper is organized as follows: we shall first
give some background and specifics of the LFSR-reseeding
problem followed by a discussion of the motivation behind our
method in Section II. The SMT formulation and complete flow
for computing LFSR seeds will be described in Section III.
Section IV presents the experiments and results.

II. BACKGROUND AND OVERVIEW

LFSRs are a common choice for pseudo-random pattern
generation in BIST. The main advantages of LFSRs are their
low hardware overhead and high degree of randomness in
the vectors generated. For example, a maximal-length LFSR
of length 40 can produce a sequence of period greater than
one trillion vectors, while also ensuring that the generated
vectors satisfy most random-distribution tests. However, this
also means that LFSR patterns are far from optimal for
testing VLSI circuits. In order to achieve a suitable fault-
coverage, either exhaustive or a very long test sequence would
need to be applied. Thus, good quality patterns, such as
deterministic patterns, are typically ‘scattered’ over the huge
LFSR pattern space. The method of reseeding aims to alleviate
exactly this problem, by allowing a trade-off between on-
chip hardware overhead and test lengths for a desired fault
coverage. LFSR patterns, though predictable, are seemingly
chaotic. The randomness property also makes it harder for us
to reason about long sequences of LFSR patterns at a time.

LFSRs can be used in various configurations for pattern
generation and application. In this paper, we have used the Fi-978-3-9815370-0-0/DATE13/ c©2013 EDAA

bonacci LFSR configuration (aka. external LFSR). We assume
a test-per-clock scheme, where the contents of the LFSR at ev-
ery cycle constitute exactly one test-vector to be applied to the
circuit under test. However, our method is applicable to other
LFSR configurations (e.g., Internal or Galois-type LFSR), as
well as to other BIST configurations (e.g., STUMPS), via
changes to the SMT formulation discussed in Section III-A.

A. Related work

Mixed-mode BIST has been shown to be an effective
approach to alleviate the fault-coverage problem in BIST. The
biggest challenge in this method is the hardware overhead
required to store the seeds on chip, especially if the num-
ber of seeds is large. The problem of deterministic testing
using LFSRs has been widely studied. Seed computation for
deterministic testing was first described in [3]. In [4], [5],
techniques have been proposed to encode deterministic test-
patterns as seeds of an LFSR whose configuration (polyno-
mial) can be altered during test. Techniques for enhancing test-
generation for reseeding schemes have been proposed in [6],
[7]. Other methods for reducing the number of required seeds
rely on identification and reduction of seeds by simulation
and seed ordering/encoding methods [8], [9]. A large number
of methods such as [10] describe techniques for efficient
hardware encoding of the seeds.

Most of the previous methods for seed computation attempt
to compute seeds based on pre-computed test patterns. This
involves grouping and ordering of test-patterns followed by
solving of linear-equations to get a seed for each group.
There exist various problems with this approach which will
be discussed in the next subsection. Our method removes
these problems by computing seeds for faults instead of pre-
computed vectors. The method described in [11] works by
identifying the exact location of test-patterns in the LFSR
state-cycle by computation of Discrete Logarithms. However,
these logarithms need to be computed for all possible vectors
for target faults, which is impractical for modern designs.

A recent work attempts to combine the processes of test-
generation and seed-computation using SMT solving [12]. As
will be discussed in Section III-A, the method in [12] is
time-consuming due to large SMT formulae and search space
involved. The method also has challenges of fault-masking due
to considerations of multiple fault injections in each frame. In
this paper, we propose a hybrid method based on simulation
and SMT analysis which eliminates these problems and makes
the search tractable for larger circuits.

B. Motivation/Idea

Most of the existing approaches to the computation of
LBIST seeds attempt to chain a set of pre-determined test
vectors. There are inherent problems with such approaches,
which we describe using the following terms. We use the
term LFSR to represent an LFSR configuration along with its
polynomial.

L-Distance Given a test set, T , comprising K vectors
{T1, . . . , TK} (the vectors may contain don’t-care bits), and
an LFSR, we define the L-Distance of the set T with respect to

the given LFSR to be no greater than an integer L if and only
if there exists a seed, S, which can generate all the vectors of
T in any order, when the LFSR is run for L number of cycles.

F-Distance Given a set of K faults, F , {F1, . . . , FK}, and
an LFSR, we define the F-Distance of the set F with respect
to the LFSR to be no greater than an integer L if and only if
there exists a seed, S, such that the LFSR can produce a set
of test-vectors sufficient to detect all faults in F , in any order,
when run for L cycles starting from S,

Chainability A set of test-vectors (faults) is defined to be
chainable within L cycles of a given LFSR if and only if the
L-Distance (F-Distance) of the set is no more than L.

Note that the term F-Distance implicitly assumes that a
specific fault-model has been selected for consideration. We
have assumed the LFSR to be used to generate tests using a
test-per-clock scheme where the contents of the LFSR in each
cycle represent one bit-vector to be used as a test-vector. The
terms may be easily generalized for other BIST architectures.

Given a stuck-fault in a circuit, there usually exist multiple
vectors that can detect the fault. For a set of hard-to-chain
faults, the choice of the exact vectors to use for chaining these
faults has a direct impact on the number of seeds needed.
Realizing that LFSR vectors are chaotic (but predictable from
an initial seed), we can see that even making slight changes in
the test-vector bits has the potential to alleviate or magnify the
problem of vector-chaining. Thus, there may exist alternatives
to vector-chaining and give smaller set of seeds.

In this work, we propose a method of seed-computation
which tries to chain faults rather than pre-computed vectors.
We believe this to be a more effective way to view the problem
of seed computation. We use an SMT formulation for fault-
chaining and integrate it into a broader cost-effective method
for computing LFSR seeds. This method allows us to select a
small set of very high quality seeds. In effect, by considering
the chainability of faults (F-distance) instead of chainability
of vectors (L-distance), we offer a tighter integration of the
test-generation process with seed computation. In addition,
this method overcomes the problems associated with vector-
chaining and gives quality solutions in significantly smaller
computational costs.

III. ITERATIVE SEED REDUCTION

A. SMT-based fault-chaining
We first describe our SMT formulation for test generation

under LFSR constraints. Given the circuit under test and a
set of single-stuck-faults to chain, we build an SMT model.
Running an SMT solver on this model can help us estimate
the F-Distance of the set of faults. In this work, we model the
problem by combining the domains of Boolean (propositional)
logic and quantifier-free bit-vector theory (QF-BV).

Suppose we have the gate-level netlist of a circuit, and a
set of K single-stuck-faults F = {F1, . . . , FK}. Also given
to us is the LFSR-structure, and a bound L which is a
heuristic bound set on the F-Distance. The SMT formulation
to determine whether the set F has an F-Distance ≤ L, is a
formula that consists of the following sub-formulae:

(a) LFSR constraints C in the theory of bit-vectors.
(b) Fault detection formula Di for every fault Fi.
(c) Constraints to connect every Di to the bit-vector variables

in C.
In (a), C consist of L bit-vector variables S1, . . . , SL. S1

represents the seed, while the rest represent the contents (state)
of the LFSR that can be derived in successive cycles. We know
that an external-LFSR can be seen as a circular shift-register
that shifts right in every cycle, with the leftmost bit defined
by the feedback XOR-network. Thus, every bit-vector variable
Si is defined in terms of Si−1 using a bit-vector right-shift
operation. Additionally, the leftmost bit of Si is a function of
some bits of Si−1. These constraints are easily expressible in
SMT, since QF-BV allows for extraction of certain bits from
bit-vectors, and specifying Boolean propositions using them.
The initial seed, S1, is also an unspecified variable, and each
one of the Si variables can potentially detect one or more of
the faults in F .

Next, in (b), each formula Di comprises a formula Gi (good
circuit) and a formula Bi (faulty circuit). The constraints in
both Gi and Bi are modeled using Boolean propositions, using
the gate-level structure of the circuit. Gi models fault-free
operation while Bi is the same formula with the node at the
fault location being replaced by constant-value drivers. Both
Gi and Bi receive the same input vector Ti. The outputs of the
two circuits are then fed, pair-wise, via XOR gates, effectively
forming a miter circuit. In this miter (of Gi and Bi), the output
is true if and only if the vector Ti causes at least one output of
Gi and Bi to differ. Further optimizations are made to reduce
the number of variables in Bi as in SAT-based test generation
methods such as [13]. In particular, we make arrangements
to remove variables for gates which do not participate in the
injection or propagation of fault Fi, by pre-computing the fan-
in and fan-out cones of influence of Fi.

The constraints in (c) effectively model the mapping be-
tween vector Ti and the Si LFSR state vectors. We add
constraints to ensure that every test vector Ti is covered by at
least one vector that can be generated by the LFSR. Formally,
the constraint

K∧
i=1

 L∨
j=1

(Ti = Sj)


ensures that every bit-vector Ti is equal to one of the Sj

variables. Along with the detection constraints Di, this ensures
that every fault in set F is detected within L cycles of
the LFSR starting from seed S1. To further constrain the
search space for the SMT solver, we add the constraint[∨K

i=1 (Ti = S1)
]

which ensures that the computed seed
(S1) detects at least one fault in F . This constraint helps avoid
(and prune from the search space) those variable assignments
in which LFSR cycles are ‘wasted’ due to fault-detection
starting at a vector Si such that i > 1.

Note that the above SMT model is satisfiable if and only
if all faults in set F are testable and the F-Distance of F
is ≤ L. Hence, the value of Si in the satisfying assignment
gives a seed that can chain the faults in F within L cycles
from the computed seed. Also, an unsat returned by the solver

would indicate that the F-Distance of F is greater than L.
The above SMT formulation for fault-chaining is the core

of our method for seed computation and reduction. It promises
significant advantages over previous approaches. First, our
method does not require test-vectors to be pre-determined
and pre-ordered, as is frequently required by methods based
on solving linear equations. In fact, it does not even impose
any restrictions on the order in which faults in set F are to
be detected. Since test-vectors are not required to be fixed
in advance, the method implicitly allows for a single LFSR
vector to potentially detect multiple faults. It also allows for
‘don’t care’ cycles between test-vectors in the LFSR cycle,
where the LFSR vector does not detect any of the faults under
consideration. Consequently, the method is very general and
gives us a better chance of finding a seed to cover a given set
of faults. Additionally, if the SMT solver returns an unsat, it
suggests that the faults in F are indeed hard-to-chain.

We now compare our method with previous work on seed
computation using SMT. The work in [12] also attempts
to combine the processes of seed computation and test-
generation. However, the problem is cast as one big SMT
formula involving L time-frames, resulting in a resource
expensive call to the SMT solver. In contrast, our method is
more cost-effective as it no longer needs to have L copies of
the circuit but is only dependent on the number of faults.

Given the SMT formulation, we need to identify the K
faults that we wish to chain. Although any set of K faults
can be chained, we would like to be more clever about it
to reduce the number of seeds obtained at the end. The next
section describes how we select these faults to be chained.

B. Fault-selection via clustering using independence graph

In order to reduce the number of seeds, a seed that can chain
those faults currently undetected by any single seed would be
helpful. We describe a fault-selection step which is critical to
the efficacy and efficiency of our overall method.

With our SMT formulation described in the preceding
section, the proposed fault-chaining method considers K faults
within an LFSR ‘window’ of length L cycles. However, a
seed returned by the SMT solver is usually able to detect
additional faults. We can determine all faults that a seed
covers by simulating the LFSR (starting from the seed) on
the entire faultlist. This also helps us identify faults which
were not explicitly considered while computing the seed, yet
are detected by the seed sequence. The idea behind fault-
selection is - we aim to generate additional seed candidates
to chain those faults currently not simultaneously detected by
any existing seed. The newly computed seed may render some
previously computed seeds unnecessary, thereby reducing the
cardinality of the set of seeds.

At every iteration in our method, we start with a certain
number of seed candidates in our pool. We fault-simulate the
candidates to obtain the faults detected by each candidate.
This information is represented in a fault-dictionary, which is
a binary matrix. A sample dictionary with 3 seed candidates
for a circuit with 5 faults is shown:

F1 F2 F3 F4 F5

Seed 1 1 0 1 1 1
Seed 2 0 1 1 1 0
Seed 3 1 0 1 0 0

In this example, seed 3 covers faults F1 and F3; fault F4 is
covered by Seed 1 and Seed 2, etc. We use this dictionary
to determine the sets of faults to be chained in the next
iteration of SMT solving. For this purpose, we build a fault-
independence graph. We define two faults in the dictionary
to be independent if there currently exists no seed candidate
which can detect both faults. We identify all pairs of indepen-
dent faults. Since each column in the dictionary represents one
fault. the dot product of any two columns gives the number
of seed candidates which detect both faults. By computing the
dot product for every pair of faults, we identify independent
faults (i.e., the columns with dot product = 0).

Algorithm 1 Clique-partitioning
Inputs: Independence graph G, Clique size bound B
Output: Set of cliques C

1: C ← φ
2: for all nodes N ∈ G do
3: Q← φ
4: if N is marked covered OR degree(N) ≤ 1 then
5: skip N and go to next node
6: else
7: Q← {N}
8: mark N covered
9: common← {n | n is a neighbor of N}

10: while |Q| < B AND |common| > 0 do
11: M ← max degree node from common
12: Q← Q ∪ {M}
13: common← common ∩ {neighbors of M}
14: end while
15: C ← C ∪Q
16: end if
17: end for

Using the dot product computed for all fault-pairs in the
dictionary, we can now build a fault-independence graph
such as the one shown in Figure 1. Each node in the graph
represents one fault. We add an edge between two faults if
and only if their corresponding dot product is 0. With the
independence-graph, we identify cliques in the graph. A clique
of size N in the independence graph represents a set of N
faults such that no pair of faults are detected by any seed
candidate in the pool. It has been shown in [14] that the size
of the largest clique (i.e., clique number) in the independence
graph is a lower bound on the single-detection test set size.

Independent-fault
cliques to be chained

Fig. 1: Example of fault independence-graph

Generalizing this result, we can see that the clique number
of the independence graph shown in Figure 1 gives the
minimum number of seeds if we were restricted to using only
those seed candidates from the current pool. This observation
suggests that we are likely to benefit from chaining together
those faults which form cliques in the independence graph.
Additionally, due to reasons described earlier, we want to
limit the sizes of these cliques. Thus, the next step in our
method is the partitioning of the independence graph into non-
singular cliques of bounded size. The clique partitions need
not be mutually independent. Algorithm 1 describes a greedy
approach used to identify cliques from the graph such that
every fault node with a non-zero degree is included in at least
one clique.

C. Seed reduction by set-covering using ILP
As seed candidates are computed using our SMT formu-

lation and added to the pool, the fault-dictionary size keeps
growing. In every iteration, following fault-simulation of the
new seed candidates, we use the dictionary to determine a
small subset of seeds that are sufficient to cover all the faults
in the circuit. The problem of selecting the minimum number
of seeds from the dictionary that can detect all faults can be
cast as a standard Set Covering problem, with the columns
being elements to cover and each row representing a subset
of elements it covers.

We use an Integer Linear Programming (ILP) formulation
for computing the set cover. Modern ILP solvers are quite
efficient at solving optimization problems of this type. The
formulation has been widely used and discussed in literature.
Optimization procedures and LP-solving have been shown to
be very effective for test compaction procedures (e.g., [15],
[16]). The integer linear programs for selecting the set cover
of seeds is described below:

minimize
NS∑
i=1

xi

under the constraints:
∀ faults Fj ,

 ∑
i∈Dj

xi

 ≥ 1

where:
NS = Number of seeds in dictionary
Dj = {i | Seed i covers fault Fj}

xi =
{

0 ⇔ (Seed i excluded from solution)
1 ⇔ (Seed i included in solution)

D. Overall procedure
The overall flow for computing a small set of sufficient

seeds is illustrated in Figure 2. An initial set of seeds (could
be random) is used. Alternatively, one may start from the test
set from an ATPG. This initial set of seed candidates is used to
build a seed-fault dictionary as described in Section III-B, by
simulating the LFSR for M cycles for each seed candidate. An
ILP solver can be applied to determine the set-cover, which
serves as an upper bound on the number of seeds needed.
However, we use this set to construct the independence graph
and compute independent faults.

Simulate seeds over
faultlist

Build fault
dictionary

Minimize using ILP
Build fault

independence
graph

SMT: Compute new
seeds for

independent faults

All tests as
initial set of

seeds

Fig. 2: Iterative seed-reduction procedure

Next, we move into the main thrust of our framework in
which we attempt to chain the currently unchained faults
into a common seed. The faults to be chained are identified
from the independence graph, as described in Section III-B.
SMT solving as described in Section III-A gives us one seed
for every group of faults chainable within L cycles of the
LFSR. We add the new seeds to our current pool of seed
candidates, and simulate these seeds to augment our fault-
dictionary. In any iteration, we do not replace the seeds from
the previous iterations. Since we keep adding new (possibly
better) seeds to the pool, the size of the solution across
iterations monotonically decreases. We can repeat this iterative
procedure until either a sufficiently low number of seeds is
selected by ILP, no edges exist in the independence graph, or
the number of seeds is constant for a number of iterations.
The following parameters are used by the method:
• LFSR - We choose an LFSR of length = NI , the number

of primary inputs of the circuit.
• LFSR polynomial - We choose a primitive polynomial

from [17] to yield a maximal-length LFSR.
• Clique-size bound B.
• LFSR window size of L cycles for SMT based chaining.
• Fault-simulation window length of M cycles - the number

of cycles after loading each new seed.

IV. EXPERIMENTS AND RESULTS

We have evaluated the proposed method on ISCAS’85,
ISCAS’89 and ITC’99 benchmark circuits, and three circuits
from OpenCores. Full-scan versions of sequential circuits were
used. The SMT solver used for the fault-chaining step was
Z3 v3.2 [18]. The ILP used for solving the set-covering was
Gurobi [19]. All experiments were performed on an Ubuntu
Linux workstation with an Intel R© Core TM i7 3.33 GHz CPU,
and 6 GB of memory.

Table I reports the results. A postfix f with a benchmark
name indicates full-scan version of the circuit. For each circuit,
the number of inputs is first reported, followed by the number
of non-easy testable faults - we perform preliminary reduction

by removing “easy” faults (faults detected by every random
seed). Next, we report M , the size of the fault-simulation
window, chosen empirically based on the value of NI . We
report three sets of results relevant to our method. First, we
generate 1000 random seeds, simulate the LFSR for M cycles
followed by fault-simulation as described earlier to build a
fault-dictionary. Column 5 reports the minimum number of
seeds required from 1000 random seeds to cover all faults
using an ILP solver. Empty entries indicate that random seeds
were insufficient to detect all faults. Next, we use an ATPG
tool to generate tests for the entire faultlist. Each of the tests
is then assumed to be an LFSR seed. This set of seeds is
simulated over M cycles and reduced like the set of random
seeds just described. Columns 6 and 7 report the number of
tests and the required number of seeds, respectively. Since an
ATPG is used, all faults could be detected. We use this set of
deterministic tests as the starting point for our method. The
last 3 columns report, for our overall procedure, the number of
iterations, total runtime and size of the final solution (number
of seeds). Our method ends when the number of seeds does not
reduce for 3 consecutive iterations. In these experiments we
have set the clique-size bound B to 3 and the LFSR window
size for SMT (L) to 100. If the SMT-solver returns unsat for
more than 90% of the number of cliques to be chained, L is
increased by 50 and the SMT solver is called again.

It can be observed that our method produces very few seeds,
with a low runtime. Many of the final solution sizes are a
single-digit number of seeds. The total number of bits to be
stored on-chip may be calculated by multiplying the solution
size by NI . The difference between the number of seeds before
and after the method (columns 7 vs. 10) demonstrates the
strength of fault-chaining. For example, for c7552, random
seeds could not detect all faults, and ILP could select 37
out of 267 pre-computed ATPG vectors as the seeds that can
detect all faults, but our method is able to obtain 10 seeds
in 5 iterations (4207 seconds). This is a seed-reduction of
78%. Likwise, in s838f, we achieved a 79% reduction in the
number of seeds (34 down to 7 seeds). When compared with
the 1000 random seeds, results are also noteworthy. In c2670,
for example, with 1000 random seeds, the ILP can select 18
as the number of seeds that can detect all faults. This is better
than the deterministic seeds which required 29 from the 150
vectors. However, our method can generate 4 seeds that can
detect all faults in less than 11 minutes of computation.

In Table II, we compare our results to a previous work on
LFSR reseeding using SMT solving [12]. SMT-based seed
computation was performed using an LFSR window size of
n + 20, where n is the number of faults under consideration
reported in Column 3. To make the comparison fair, we use
the same value for LFSR-window (L = n+20). Additionally,
we set the fault-simulation window size M equal to L. Even
with virtually everything else being the same, the proposed
method is able to produce equal or better results in most cases,
with multiple orders of magnitude in speedup. For example, in
circuit s1488f, 13 seeds were obtained in [12] taking 159,219
seconds, while our approach needed only 8 seeds in just 45
seconds. As discussed earlier, this may be attributed to the fact

TABLE I: Experimental results on ISCAS, ITC and OpenCores circuits

Circuit # PIs # Faults M
1000 Rand Seeds All tests as init. seeds Proposed Fault chaining

(NI) ILP Sol. #Tests ILP Sol. # Iterations Runtime(s) Sol.
s420f 35 430 1k - 70 8 4 12 3
s641f 54 467 2k 8 85 7 4 27 3
s713f 54 543 2k 6 85 9 4 23 3
s838f 67 857 3k - 129 34 7 434 7
s1196f 32 1242 1k 7 198 7 5 157 5
s1238f 32 1286 1k 6 222 8 3 164 6
c2670 233 2630 10k 18 150 29 3 646 4
s9234f 247 6475 10k - 592 31 11 4734 17
c7552 207 7419 10k - 269 37 5 4207 10

s15850f 611 1273 10k - 388 66 12 25417 19
b07f 50 1100 1k 5 73 7 5 61 3
b12f 126 2766 3k 13 199 13 4 825 6
b14f 275 1970 10k - 497 219 18 43534 74
b15f 485 7982 10k - 523 82 9 48230 33
spi 277 1375 10k 25 685 24 6 7296 19

tv80 372 7109 10k - 1111 93 8 34954 43
systemcaes 929 5614 5k 12 251 13 9 7670 9

’-’: the seeds were insufficient to detect all faults

that [12] relies on expensive calls to the SMT solver.
We have discussed stuck-faults in a test-per-clock scheme.

For circuits with a large number of scan elements, a test-per-
scan or STUMPS architecture with a smaller LFSR is more
suitable. Given the flexibility of expressing bitvector constructs
in SMT, the formulation may be modified to consider the
relevant test-vectors in any architecture. Note that although
fault-simulation takes a large portion of the runtime, it can
be easily and effectively parallelized. The benefits of clique-
based independent-fault identification may be utilized by any
other seed-computation method. Similarly, the SMT formu-
lation may aid seed-computation in other seed-encoding and
reduction schemes - the benefit is that our formulation is more
likely to find a seed for a group of hard-to-chain faults.

TABLE II: Experiments: Comparison with [12]

Circuit # Faults
Inj.

M
[12] Fault chaining

(n) Runtime Sol. Runtime Sol.
c880 942 21 41 6071 3 4 3
c1355 1566 28 48 30917 4 22 4
c1908 1870 84 104 73002 12 117 7
s953f 1079 117 137 183809 15 891 7
s1423f 1501 38 58 92346 9 78 6
s1488f 1486 40 60 159219 13 45 8

V. CONCLUSION

We have presented a new technique for LFSR seed computa-
tion to cover all detectable stuck-faults in a circuit. The method
works by iteratively identifying groups of faults to be chained
into a common seed, and then using SMT to compute a
new seed candidate. The proposed method computes seeds by
chaining faults instead of chaining pre-computed test vectors.
This helps us overcome many problems of vector ordering,
grouping and linear-equation solving that traditional seed
computation methods have faced. The method is general that it
can be used for any LFSR structure or configuration, coupled
with one of many different BIST architectures. Experimental
results show that the method is able to produce a very small
set of seeds with low computational cost.

REFERENCES

[1] J. A. Waicukauski, E. Lindbloom, E. B. Eichelberger, and O. P. Forlenza,
“A method for generating weighted random test pattern,” IBM J. Res.
Dev., vol. 33, pp. 149–161, Mar. 1989.

[2] H.-J. Wunderlich, “Multiple distributions for biased random test pat-
terns,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, pp. 584 –593, jun 1990.

[3] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc.
IEEE Euro. Test Conf., pp. 237 –242, 1991.

[4] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation
of vector pattterns through reseeding of multiple-polynomial linear
feedback shift registers,” in Proc. Intl Test Conf., p. 120, sep 1992.

[5] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers,” IEEE Trans. Computers,
vol. 44, pp. 223 –233, feb 1995.

[6] S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern
generation for a deterministic bist scheme,” in Proc. IEEE Intl Conf.
Computer-Aided Design, pp. 88 –94, nov 1995.

[7] A. Al-Yamani and E. McCluskey, “BIST-guided ATPG,” in Proc. Intl
Symp. Quality of Electronic Design, pp. 244 – 249, march 2005.

[8] A. Al-Yamani, S. Mitra, and E. McCluskey, “BIST reseeding with very
few seeds,” in Proc. VLSI Test Symp., pp. 69 – 74, april-1 may 2003.

[9] C. Fagot, O. Gascuel, P. Girard, and C. Landrault, “On calculating
efficient LFSR seeds for built-in self test,” in Proc. European Test
Workshop, pp. 7 –14, may 1999.

[10] C. Krishna, A. Jas, and N. Touba, “Test vector encoding using partial
LFSR reseeding,” in Proc. Intl Test Conf., pp. 885 –893, 2001.

[11] M. Lempel, S. Gupta, and M. Breuer, “Test embedding with discrete
logarithms,” IEEE Trans. CAD, vol. 14, pp. 554 –566, may 1995.

[12] S. Prabhu, M. Hsiao, L. Lingappan, and V. Gangaram, “A Novel SMT-
Based Technique for LFSR Reseeding,” in Proc. VLSI Design Conf.,
pp. 394 –399, jan. 2012.

[13] J. Silva and K. Sakallah, “Robust search algorithms for test pattern
generation,” in Proc. Intl Sympo. Fault-Tolerant Computing, pp. 152
–161, jun 1997.

[14] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of
Independent Fault Sets in the Generation of Minimal Test Sets,” in Proc.
International Test Conf., pp. 1100 –1107, 1987.

[15] P. Flores, H. Neto, and J. Marques Silva, “An exact solution to the
minimum size test pattern problem,” in Proc. Intl Conf. Computer
Design, pp. 510 –515, oct 1998.

[16] K. R. Kantipudi and V. D. Agrawal, “On the size and generation of
minimal N-detection tests,” in in Proc. 19th International Conf. VLSI
Design, pp. 425–430, 2006.

[17] M. Živkovic, “A table of primitive binary polynomials,” Math. Comput.,
vol. 62, pp. 385–386, Jan. 1994.

[18] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Proc.
TACAS, TACAS’08/ETAPS’08, pp. 337–340, Springer-Verlag, 2008.

[19] Gurobi Optimization, Inc., “Gurobi Optimizer Reference Manual,” 2012.

