
Designing tightly-coupled extension units for the
STxP70 processor

Yves Janin, Valérie Bertin, Hervé Chauvet, Thomas Deruyter, Christophe Eichwald, Olivier-André Giraud,
Vincent Lorquet and Thomas Thery

STMicroelectronics, Grenoble, France
Email: firstname.lastname@st.com

Abstract—Designed by STMicroelectronics for the embedded
market, the STxP70 processor is a small but extensible processor:
designers have the possibility to define tightly-coupled extensions
that can be reused in different designs. We explain why this
modularity has a strong impact on the toolchain, detail the
hardware/software flows and give results for two extensions.

I. INTRODUCTION

The STxP70 processor belongs to this class of application
specific instruction set processors (ASIPs) that can be seen
as a trade-off between general purpose processors and hard-
ware accelerators. From the former ones, they inherit their
programmability whereas from the latter they benefit from
the sheer power of hardware acceleration. As such, these
processors are already a real challenge for software code
generation and simulation tools. It is however often taken for
granted that each new configuration of the ASIP processor is
independent from any other one, and that it is therefore enough
to customize and rebuild each tool.

This traditional viewpoint is challenged by the STxP70
architecture. Indeed, the core configuration can be extended
with up to eight tightly-coupled extensions, the complexity
of which may range from a simple arithmetic operator to a
complex unit with fully dedicated register files. The key point
is that these extensions may be reused and shared between
several designs, which leads to obvious productivity gains.

For extension reuse to become a reality in an industrial
environment, important adaptations were required on software
tools. In this paper we give an overview of the STxP70
architecture in Section II, detail the hardware/software flows in
Section III and present performance results for two extensions
in Section IV.

II. AN OVERVIEW OF THE STXP70 ARCHITECTURE

The STxP70v4 processor implements a 32-bit RISC load
store architecture, and its variable length instruction set (16, 32
or 48-bit) is fully predicated. The processor is highly config-
urable: hardware loops, hardware contexts, program and data
caches, tightly coupled data memory, branch history buffer and
integer multiplier are optional. The minimal configuration only
implements 16 32-bit general purpose registers (GPR) and a
fully interlocked single-issue pipeline. More powerful versions
of the core support a dual-issue pipeline and 32 GPRs.

The most salient feature of the STxP70 comes from its
extension model. Extension units communicate with the core
through a well-defined hardware interface. Their instructions
may read up to two GPRs and write at most one. They
access the same memory space as the core and may have
their own (multi-level) register files. Extensions can be single-
issue or dual-issue, and in the latter configuration the two
pipelines may share resources. The range of instructions
that can be defined within an extension is large enough to
address floating point computations, DSP oriented algorithms,
or SIMD integer operators. The STxP70 has been integrated in
several products and is also the processing element of Platform
2012 [1], a many-core computing accelerator for embedded
systems-on-chips.

III. TOOLS FOR AN EXTENSIBLE AND CONFIGURABLE
PROCESSOR

A. Extension development flows and reconfiguration toolkit

CORXpert

RTL

DLLs Simu

XML data file

RTK

C / C++

Debug / Profile

Fig. 1. Schematic Design Flow of an Extension

The definition and implementation of an extension is based
on the semi-automated design flow described in Fig. 1. The
CORXpert tool designed by Synopsys [2] and specifically
tailored for the STxP70 architecture (following STMicroelec-
tronics specifications) is used by designers to capture the
definition of a new extension, its resources and instruction set.
From a first definition, CORXpert automates the generation
of an RTL implementation, and provides ways to gradually
refine the structure of the extension pipeline. CORXpert also
delivers two shared libraries that can be dynamically connected
to the STxP70v4 core instruction accurate and cycle accurate
simulators.978-3-9815370-0-0/DATE13/ c©2013 EDAA



TABLE I
VECL AND MP1X EXTENSIONS

Extension Software Architecture Technology Gate Number of
applications Max frequency count instructions

VecL Vectorial video Dual-issue / load-store CMOS 65nm LP 514 Kgates 67
Video processing applications 32 256-bit registers 430 MHz

MP1x Fract. & saturating arith. Dual-issue / load-store CMOS 65nm LP 67 Kgates 40
Media processing unit support for 64-bit int. arith. 16 64-bit registers 400 MHz

The reconfiguration toolkit (RTK) designed by STMicro-
electronics automates the generation of the software devel-
opment tools specific to an extension: C/C++ compiler, as-
sembler, linker, debugger, profiler and binary utilities. More
precisely, the RTK takes as input the XML extension database
maintained and used by CORXpert, and produces a set of
dynamic libraries allowing to reconfigure each of these tools.
As this generation process is fully automated, it is then
possible to rapidly check whether an extension definition
meets its performance, power and area constraints.

B. Extension programming model and code generation tools

The compiler stxp70cc is a critical component in the soft-
ware evaluation loop. stxp70cc automatically maps extension
instructions, provided that mapping information is available
in the compiler extension library produced by the RTK.
Complex instructions, that typically cannot be described by
composition of basic C operators, are handled by intrinsics
and require modifications in application source codes. In any
case, the compiler performs register allocation1 and instruction
scheduling.

stxp70cc is based on the Open64 [3] framework and offers a
wide range of optimizations including high level loop analysis
and transformations, interprocedural analysis and global scalar
optimizations. The compiler backend was tailored to support
predication, hardware loops and other idiosyncrasies of the
processor. Many internal data structures were adapted to the
dynamic reconfiguration process, and the low level target
information library (targinfo) that is part of the backend was
enriched to become the single intermediate representation used
by all STxP70 GNU binary utilities [4] (assembler, linker . . .).

C. Software packages for extensions

There are a lot of cases where rapidly and easily updating
tools on user’s site is much needed: a new extension or a
new version of an extension has been developed, a specific
STxP70 configuration requires two extensions . . . Software
extension packages simply wrap-up RTK dynamic libraries
and checksum information into a single component that can
be easily deployed by software developers in their toolsets.

IV. RESULTS

Table I presents results for two extensions, VecL and MP1x.
VecL is a vectorial video processing extension with a 256-bit
register file. MP1x is a DSP-oriented extension that supports

1Technically, a set of predefined instructions available for every extension
register file guarantees that spill/reload sequences can always be generated,
and therefore that register allocation is always possible.

TABLE II
MP1X SPEED-UPS - stxp70cc OPTIMIZATION LEVEL -O3

Benchmarks FFT convolution MP3
Configuration 2) ×4.6 ×1.0 ×9.3
Configuration 3) – ×3.7 ×11.6

fractional and saturating arithmetic and provide support for 64-
bit integer arithmetic. Both are fully synthesizable, integrate
a fairly large number of instructions2, and target a complete
application domain.

For VecL, speed-ups up to ×70 were measured on video
applications after rewriting code with intrinsics. For MP1x,
Table II gives speed-ups for three typical benchmarks, an
integer FFT, a convolution filter and a MP3 decoder. Three
configurations were tested: 1) out-of-the-box (OOB) code and
STxP70v4 dual-issue core, 2) OOB code and STxP70v4 dual-
issue core + MP1x, 3) code modified with MP1x intrinsics and
STxP70v4 dual-issue core + MP1x. All ratios were calculated
with respect to configuration 1).

V. CONCLUSION

The STxP70 toolset offers a high level of integration and
a very efficient software evaluation loop. It puts a strong
focus on extension reusability at an industrial level, and was
successfully used to design numerous extensions covering a
wide range of applications (audio, video, DSP processing. . . ).
Compared to other fully automated approaches, the STxP70
toolset requires human expertise in the design of an extension.
To the best of our knowledge, many instructions defined in
STxP70 extensions still exceed the possibilities of state of
art algorithms for instruction set customization and compiler
instruction selection [5]. We believe though that this kind
of approach paves the way for further improvements in the
STxP70 tools.

REFERENCES

[1] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in DATE’12, pp. 983–987.

[2] Synopsys. [Online]. Available: http://www.synopsys.com
[3] Open64. [Online]. Available: http://www.open64.net
[4] GNU Binutils. [Online]. Available: http://www.gnu.org/software/binutils
[5] C. Galluzzi and K. Bertels, “The instruction-set extension problem: A sur-

vey,” Reconfigurable Computing: Architectures, Tools and Applications,
pp. 209 – 220, 2008.

2The number of instructions reported in Table I corresponds to the number
of instructions before sub-operator expansion. For instance a single compar-
ison sub-operator expands into ten sub-instructions if one takes into account
signed/unsigned comparisons for (=, 6=, <,≤, >,≥).


