
Retiming for Soft Error Minimization Under Error-Latching
Window Constraints

Yinghai Lu
Analog Mixed Signal Group

Synopsys Inc, USA

Hai Zhou
Electrical Engineering and Computer Science

Northwestern University, USA

Abstract—Soft error has become a critical reliability issue in nano-
scale integrated circuits, especially in sequential circuits where a latched
error will be propagated for many cycles and affect many outputs
at different time. Retiming is a structural operation that relocates
registers in a circuit without changing its functionality. In this paper,
the effect of retiming on soft error rate (SER) of a sequential circuit
is investigated considering both logic masking and timing masking. A
minimum observability retiming problem under error-latching window
constraints is formulated to reduce the SER of the circuit. And an efficient
algorithm is proposed to solve the problem optimally. Experimental
results show on average a 32.7% reduction on SER from the original
circuits and a 15% improvement over the existing method.

I. INTRODUCTION

Soft error, also known as single-event upsets (SEU), caused by
radiation-induced charged particles such as alpha particles, energized
neutrons and protons created by cosmic ray, is becoming one of the
dominant reliability concerns in logic circuitry design [1]. Technology
scaling has contributed to an increasing sensitivity to naturally-
occurring radiation and the consequent soft error rates of CMOS
circuits. Moreover, more aggressive energy scaling makes the soft
error issue persist in the further technology nodes [2]. Therefore, it
is desirable to mitigate the impact of soft errors during the IC design
process.

Researchers have identified three mechanisms that will mask the
soft errors during SEU propagation in logic circuits [3]: electrical
masking occurs when SEUs are attenuated before being latched
because of insufficient glitch duration or amplitude; logic masking
occurs when SEUs stop propagating due to the lack of a sensitized
path to primary outputs or latches; and timing masking occurs when
SEUs arrive at the registers during a non-latching portion of the clock.
Various optimization techniques have been proposed to reduce the
SER of the circuit by enhancing some or all of the above three mask-
ing mechanisms. Gate sizing [4] and voltage scaling/assignment [5],
[6] are proposed to harden soft-error vulnerable components in the
circuit. Such methods trade area/power cost to reduce the SER of
the circuit. In [7], [8], partial duplication techniques are proposed
to increase the chances of logic masking, which may also incur
significant area overhead. Other approaches, such as rewiring [9], [10]
and resynthesis [11], [12] can improve the SER with less overhead.

All above studies focus on combinational circuits. Recently, the
soft error issue in sequential circuits has also drawn increasing
attention because of the following reasons. First, registers, just as
the combinational gates, are also susceptible to single event upsets.
Secondly, the SEUs latched in a register is likely to propagate
through the circuits for multiple clock cycles due to the existence of
feedback loops in the sequential circuits. Therefore, it is even more
important to address the soft error problem in sequential circuits.
One intuitive approach is to harden the registers as one does for the
gates in combinational circuits [13]. Other options include increasing
the probability of timing masking by register sizing [14] and gate
relocation [15]. In [16], the authors proposed a clock skew scheduling
based approach to drastically reduce the multi-bit upsets of the circuit.

* This work is supported by the NSF under CCF-0811270 and CCF-
1115550.
978-3-9815370-0-0/DATE13/ c�2013 EDAA

In [17], the authors use retiming technique to minimize the soft-error
susceptibility of the registers in the sequential circuits.

Retiming [18] is one of the most powerful sequential transfor-
mations which relocates the registers in a circuit while preserving
its functionality. Previous work on retiming has been focused on
minimizing the clock period or total number of registers. The pioneer
work in [17] shows the power of retiming in SER optimization. How-
ever, the approach proposed in [17] suffers from two shortcomings.
First, the overall SER of a sequential circuit is affected by logic
masking as well as timing masking. Focusing on logic masking only,
the approach in [17] may lead to larger soft-error-lathing windows
and potentially degraded SER of the circuit. Secondly, the algorithms
proposed in [17] are mixed-integer linear programs with ⇥(|V |2)
explicit path constraints, where |V | is the number of combinational
gates in circuit. The computational and memory cost to solve such
problem is very expensive [19], [20], especially in large designs.

In this paper, we propose an efficient retiming algorithm to
optimize the SER of the sequential circuit considering both logic
and timing masking. The contribution of our work is as follows.
First, We formulate the retiming problem to consider its impact
on both the logic observability of registers and on the change of
error-latching windows of combinational gates. Next, we design
an optimal algorithm to solve the proposed retiming problem. The
regular forest from [20] is modified to maintain the constraints among
the circuit with linear storage. The resultant algorithm is efficient in
terms of both performance and memory usage, as is verified by the
experimental results.

The rest of the paper is organized as follows. In Section II,
preliminary background of soft-error analysis on sequential circuit
is provided. In Section III, we discuss the optimization power of
retiming on SER reduction and the retiming for soft-error optimiza-
tion under error-latching window constraints problem is formally
formulated. Section IV describes the design of optimal algorithm for
the formulated retiming problem, where an important data structure
called regular forest is also introduced. In Section V, we briefly dis-
cuss how to obtain a valid initial retiming for the proposed problem.
Experimental results and conclusions are given in Section VI and
Section VII, respectively.

II. SOFT ERRORS IN SEQUENTIAL CIRCUITS

A soft error occurs when a flip of the signal induced by a transient
glitch at a gate in a logic circuit is propagated through a sensitized
and observable path to the input of a register and is locked by the
register during a specific interval of time around the clock switching.
Due to the three masking mechanisms explained in Section I, only a
small fraction of the soft errors will come into effect. Since electrical
masking is related to the physical property of a gate and can be
enhanced by gate hardening, we focus on logical and timing masking
in this paper, which has a global impact on the sequential circuits.
Later, we will show how retiming affects the two masking schemes
of the circuits.

We adopt the logic simulation techniques [17] to quantify the
impact of the logical masking and compute the error-latching win-
dow [15] to evaluate the impact of the timing masking on the
circuit soft error rate. To trace the soft error propagation through

the multiple register stages in sequential circuits, we use time-frame
expansion [17] during signal logic simulation.

A. Logic Masking and SER in Combinational Circuit

In [17] and [11], signal observability is used to evaluate the SER
of the circuit under logic masking. The observability at the output of
a gate g is expressed as

obs(g) = num ones(O(g))/K,

where O(g) is the observability don’t-care (ODC) mask of g, which
is computed by logic simulation method introduced in [11], [21]. K
is the length of signal sequences.

With the information of observability for each gate, the SER of a
combinational circuit C can be expressed as

SER(C) =

X

g2C

obs(g) · err(g) (1)

where err(g) is the soft error rate of gate g.

B. Extension to Sequential Circuits

The above computation process for signal propagation breaks at
the inputs of the registers or primary outputs. In a sequential circuit
C

S

, a soft error may propagate through the circuit for multiple cycles
due to the existence of feedback loops. Besides, registers, like other
gates in the combinational circuits are also susceptible to SEUs.
Time-frame expansion [17] is used to simulate and compute the
observability for every gate/register in a sequential circuit. In a n
time-frame expansion, n time frames are allocated. During each time
frame, signals are propagated through the registers into the next stage.
After the n-th time frame simulation ends, we compute O(g) for
every gate g in the circuit. Since the registers act like wires in the
n-time-frame simulation, their observabilities are the same as those
of the gates at their immediate inputs. Therefore, with the n-time-
frame expansion technique, the SER of a sequential circuit C

S

can
be expressed as [17]:

SER(C
S

, n) =
X

g2Comb(CS)

obs(g, n) · err(g)

+

X

r2Reg(CS)

obs(r, n) · err(r)

C. Timing Masking and Error-Latching Window

A transient flip of signal, even if it evades the logic masking and
arrives at the input of the a register, will cause a SEU only when it is
securely latched. For an edge-triggered D-type register, data is latched
within the timing window [� � T

s

,� + T
h

], where � is the clock
period, T

s

is the setup time and T
h

is the hold time. Given a circuit
C, the error-latching window [15] (ELW) of a gate g 2 C is defined
as the time interval within which a transient glitch, if propagated to
the registers, is latched and thus causes a soft-error. Note that the
ELW of a gate may contain multiple disjoint intervals as is pointed
out in [15]. The general form of the ELW of a gate g with l disjoint
intervals is:

ELW
l

(g) = [L1, R1] [[L2, R2] [. . . [[L
l

, R
l

]. (2)
The ELWs can be computed with a backward traverse starting from
the inputs of the registers using the following relationship:

ELW (g)=

8
<

:
[�� T

s

,�+ T
h

], g 2 ROS
f2fanout(g)

(ELW (f)� d(f)), else (3)

where g 2 RO indicates that g is either a primary output or is at
the input of a register. ELW (f) � d(f) is the operation that shifts
the ELW of f by its delay d(f). For a register, since it is treated as
a wire in the time-frame expansion, its ELW can also be computed
with (3).

The error-latching window models the window masking of the soft
errors. Incorporating this, we arrive at the final equation for SER of

a sequential circuit considering both logic and timing masking as

SER(C
S

, n) =
X

g2Comb(CS)

obs(g, n) · err(g) · |ELW (g)|
�

+

X

r2Reg(CS)

obs(r, n) · err(r) · |ELW (r)|
�

,

(4)

where |ELW (g)| is sum of all the intervals in ELW (g):

|ELW
l

(g)| =
lX

i=1

(R
i

� L
i

).

III. PROBLEM FORMULATION

As the SER of a sequential circuit is summarized in (4), we can
inspect the impact of retiming on SER by checking how it changes
the terms in (4). For the sake of clarity, we drop the time-frame
variable n in (4) in the later discussion.

A. Retiming Graph

First, we introduce the retiming graph. A sequential circuit can be
modeled by a direct graph G = (V,E) whose vertices V represent
the combinational gates and edges E represent the signals between
the gates [18]. A non-negative label d : V ! R⇤ is associated with
each vertex to give the gate delay. And a non-negative integer weight
w : E ! N on each edge represents the number of registers on it.
A special host vertex, the edges from the host to the primary inputs
and edges from the primary outputs to the host are introduced to G
to represent interface with the environment.

A retiming is a relocation of the registers in the sequential circuit
to achieve certain objectives such as clock period or area minimiza-
tion, while preserving its functionality. To present such relocation,
conventionally, Leiserson and Saxe [18] introduced a vertex label
r : V ! Z to give the number of registers moved backward over
each gate from fanouts to fanins. Given r, the number of registers on
an edge (u, v) after retiming is w

r

(u, v) = w(u, v) + r(v)� r(u).

B. The Impact of Retiming on SER

Suppose we have retimed a sequential circuit C
S

with label r.
Since in a time-frame expanded SER computation, the registers are
treated as wires, the observability of the combinational gates will not
change after retiming, i.e. the terms obs(g)’s in (4) keep constant for
any retiming. However, since the observability of a register equals
that of its driven combinational gate, a retiming of the circuit will
relocate the registers to the outputs of different combinational gates.
Using the notions of retiming graph, the sum of observability of
registers can be expressed as:X

r2Reg(CS)

obs(r) =
X

(u,v)2E

(obs(u) · w
r

(u, v)). (5)

Not only does a retiming of circuit affect the observability of
the registers, it also changes the lengths of combinational paths.
Timing information of the combinational gates will be updated and
according to (3), the ELWs of the gates will also change. It is
possible that a relocation of one register on one hand increases its
observability while on the other hand increases the ELWs of the
gates at its fanin cone. Figure 1 gives an example of such scenario.
In Figure 1, each combinational gate is represented by a circle with
its delay/observability annotated inside. A register is moved out of F
to reduce its observability from 0.6 to 0.4. However, such a relocation
increases the size of ELWs of A and B by 1. It can be verified that
the resultant circuit has a worse SER.

In summary, a retiming of a sequential circuit will not change the
observability of the combinational gates, but it can increase that of
the registers. Meanwhile, the same retiming also changes the ELWs
of the gates in the circuit. As is suggested by (4), it is inadequate to
retime a circuit for SER reduction regardless of its impact on ELWs,
as is the approach in [17].

1/
0.6

1/
0.5

3/
0.6

3/
0.4

2/
0.4

1/
0.3

1/
0.5

[5,8]→[2,4]∪[6,8]

[8,10]→[5,7]

[4,7]→[1,3]∪[5,7]

Φ=9, Ts=1, Th=1

A B

C

D

E

F G

Fig. 1. An example of impact of retiming on ELW.

C. Mathematical Formulation
To balance the trade-off between timing masking and logic mask-

ing, we formulate our retiming problem for register observability
minimization under ELW constraints.

First, we model the propagation of ELWs through combinational
paths with simpler mathematical expression since the union operation
in (3) is difficult to handle in mathematical programs. We introduce
two labels for each vertex in G, L : V ! R and R : V ! R. L
and R are computed by the longest path and shortest path constraints
respectively.

w
r

(u, v) > 0 _ u 2 PO) L(u) = �� T
s

,
R(u) = �+ T

h

w
r

(u, v) = 0) L(u)  L(v)� d(v),
R(u) � R(v)� d(v)

(6)

Note that the propagation of L and R is in the reverse order of the
signal propagation. The following theorem shows that R(v)� L(v)
bounds the size of ELW of v 2 V .

Theorem 1: With L and R defined in (6), for each v 2 V , the
following properties holds:

1) R(v) � L(v).
2) L(v) and R(v) are the left and right boundaries of the ELW at

the output of v, i.e. L(v) = L1 and R(v) = R
l

for ELW
l

(v)
defined in (2).

Next, we incorporate the ELW constraints in our problem formulation
with labels L and R. Let b : V ! R represents the reduction of the
observability of the registers if they are moved from the inputs of a
gate to its outputs. For each gate v 2 V , b(v) can be pre-computed
as b(v) = K(

P
(u,v)2E

obs(u)�P
(v,x)2E

obs(x)). The scaling of
K makes b(v) an integer. The ELW-constrained retiming problem for
sequential observability minimization is then formulated as follows:

Problem 1 (Min-Obs Retiming with ELW Constraints):

max

X

v2V

�b(v)r(v)

subject to
P0 : 8(u, v) 2 E : w

r

(u, v) � 0

P1 : 8v 2 V : L(v) > d(v)

P2 : 8(u, v) 2 E : w
r

(u, v) > 0

^�+ T
h

�R(v) > R
min

P3 : 8(u, v) 2 E : (w
r

(u, v) = 0 ^ L(u)  L(v)� d(v))

^ ((w
r

(u, v) > 0 _ u 2 PO) ^ L(u) = �� T
s

)

P4 : 8(u, v) 2 E : (w
r

(u, v) = 0 ^R(u) � R(v)� d(v))

^ ((w
r

(u, v) > 0 _ u 2 PO) ^R(u) = �+ T
h

)

The objective function maximize the reduction of register observabil-
ity, which is tantamount to minimizing the total register observability.
P3 ^ P4 is just a rearrangement of (6). Defining P1

0 , P1 ^ P3

and P2

0 , P2^ P4, we can reduce the constraints of Problem 1 to
P0 ^ P1

0 ^ P2

0.
We now explain each of the constraints. P0 enforces the validity

of the retiming, requiring number of registers on the every edge of
the retimed circuit to be non-negative. P1

0 enforces the feasibility
of the retiming with given clock period �. P2

0, on the other hand,
ensures that the length of the shortest path in the circuit is larger than

a given number R
min

. We will later discuss how to choose R
min

in
Section V. For a vertex v, the lengths of the longest path and shortest
path started at v is (��T

s

�L(v)�d(v)) and (�+T
h

�R(v)�d(v)).
For each node P1

0 and P2

0 try to bound the difference between
(��T

s

�L(v)� d(v)) and (�+T
h

�R(v)� d(v)) from opposite
directions, which equals to R(v) � L(v). According to Theorem 1,
R(v)�L(v) is the bound of ELW for v 2 V . Therefore, P2

0 together
with P1

0 enforces the ELW constraints on Problem 1.
Compared to the min-obs retiming problem in [17], our problem

considers both logic masking and timing masking and has better
control on the overall SER of a sequential circuit. It is also worth
noticing that we are solving an approximate problem by using
the ELW bounds R(v) � L(v) as constraints. However, such an
approximation at retiming stage is reasonable because accurate timing
can only be obtained after post-layout stage.

IV. ALGORITHM DESCRIPTION

In this section, we describe the design of an efficient optimal
algorithm for Problem 1.

A. Sketch of the Algorithmic Idea
We start by examining the structure of Problem 1. If we ignore

the constraints in P2

0 in Problem 1, we actually obtain a problem
equivalent to the MinObs retiming proposed in [17], which is in
turn equivalent to min-area retiming [18], [20], [22] in terms of the
problem structure.In traditional approaches, two |V | ⇥ |V | matrices
W and D are pre-computed to capture the critical timing constraints,
where for any vertex pair u, v 2 V , W (u, v) is the minimum number
of registers along any path from u to v, and D(u, v) is the maximum
delay of these paths from u to v. Then, based on the information from
W and D, the min-area or MinObs retiming is converted to the dual
of the min-cost flow problem [18], [22], of which polynomial-time
solvers exist. However, the bottleneck of this class of algorithms lies
in the ⇥(|V |2) memory space to construct W and D and the resulting
dense flow graph [19]. In [17], the MinObs retiming problem is solved
by LP solver, which also involves the construction of W and D. Their
algorithm is expensive in both run-time and memory.

Recently, Wang and Zhou [20] proposed an efficient incremental
min-area retiming with O(|E|) storage. Their iMinArea algorithm
reduces the number of registers incrementally and uses a regular
forest to dynamically maintain the critical timing constraints instead
of explicitly constructing W and D matrices. Considering the effi-
ciency of their algorithm and the similarity between the Problem 1
and the min-area retiming problem, we borrow the algorithmic idea
of iMinArea for min-area retiming and extend the regular forest data
structure to accommodate the difficulties induced by P2

0.
We now describe the basic idea of our algorithm. Let P (r) ,

P0^ P1

0 ^ P2

0 and ˆB(r) =
P

v2V

b(v)r(v). Our algorithm works
iteratively. Starting from r0 = 0, it computes a sequence of retimings
{r

j

}J1 . At j-th iteration, r
j

is updated incrementally from r
j�1,

which satisfies P (r
j

) and ˆB(r
j

) > ˆB(r
j�1). If at a certain iteration

J , no improvement on ˆB(r
J�1) can be made, the algorithm declares

that optimal solution r
J�1 has been obtained and terminates.

At each iteration, to improve ˆB(r), we select the vertices with
b(v) > 0 and decrease their r(v). However, such operations may
violate P0, P1

0 or P2

0. Suppose for a vertex x, a decrease of r(x) in-
troduces a violation of P (r). We have to decrease r(p(x)) of another
vertex p(x) to fix it. Therefore, an active constraint [20] (x, p(x))
is identified to record such dependency between the vertices, which
means that r(p(x)) should be tied to r(x) for simultaneous decrease.
In Problem 1, there are three types of active constraints which
correspond to violations of P0, P1

0 and P2

0 respectively. First, as
is shown by Figure 2(a), if w

r

(u, v) = 0, decrease of v should be
matched with decrease of u to fix ¬P0. Thus, an active constraint
(v, u) should be added. To explain the other two cases, we introduce
two labelings lt : V ! V and rt : V ! V . lt(v) and rt(v)
represent the ending nodes of the longest and shortest paths on

u v

(v,u)→A

¬P0
X

(a) ¬P0

u lt(u)

(lt(u),u)→A

¬P1'

X

(b) ¬P10

u v rt(v) y
¬P2'
X

(u,y)→A
(c) ¬P20

Fig. 2. Three types of active constraints.

which v lies. Figure 2(b) demonstrates the second type of active
constraints associated with P1

0 violations. A decrease of a vertex z
creates a a critical longest path u z. Therefore lt(u) = z and
L(u) violates P1

0. In order to fix P1

0, we need to move a register
out of u to cut the critical longest path. Thus, an active constraint
(lt(u), u) should be added. The above two cases resemble those
in [20]. However, in our problem, an additional and more complicated
case exists, which is shown in Figure 2(c). For a critical shortest path
u ! v rt(u), a decrease of r(u) may further shrink the path and
introduce a violation of P2

0. Let z , rt(u). There must exist y with
(z, y) 2 E ^ w

r

(z, y) > 0, or z cannot be rt(u). To fix P2

0, for
each y : (z, y) 2 E^w

r

(z, y) > 0, we need to move all the registers
out of (z, y) by decreasing y. A third type of active constraint (u, y)
should be added. Note that it is possible that more than one registers
need to be moved out in order to clear (z, y).

During the development of the algorithm, a set of active constraints
A is maintained to bind the vertices with b(v) > 0 and those with
b(v)  0. Let a closed set of vertices I under A be the set of vertices
such that (u, v) 2 A : u 2 I) v 2 I . At each iteration, if a closed
set I under A with maximum b(I) > 0 is found, the algorithm
decreases the vertices in I to obtain a new retiming r with better ˆB.
we use r(I) to denote this operation. If no such I can be found, the
algorithm exists with r from the last iteration as the optimal one.

B. Weighted Regular Forest

To overcome the memory bottleneck, a special data structure called
regular forest is designed in [20] to manage the active constraint set
A. The regular forest keeps at most |V | � 1 actives constraints in
A and guarantees the termination of the algorithm. Since the regular
forest is the key to the efficiency and correctness of the algorithm,
we briefly introduce the concept of regular forest and then focus on
how to employ and enhance it in our algorithm with the addition of
P2

0 constraints. The detail of the regular forest is omitted here and
can be found in [20].

A regular forest F with vertices V is composed of regular trees
T ’s. For each vertex v, there is a label B(v) = b(T

v

), where T
v

is the subtree rooted at v. The total gain of a tree T is expressed
as b(T) =

P
v2T

b(v). Edges between the vertices in a tree present
the active constraints and a label U : V ! {true, false} is used
to maintain the direction. For a non-rooted vertex v and its parent
p
v

, if U(v) = true, then (v, p
v

) is the active constraint. Otherwise,
(p

v

, v) is the active constraint. A regular tree T is a tree satisfying
the following conditions:

1) if b(T) > 0, then (U(v) ^B(v) > 0) _ (¬U(v) ^B(v)  0);
2) if b(T) = 0, then (U(v) ^B(v) > 0) _ (¬U(v) ^B(v) < 0);
3) if b(T) < 0, then (U(v) ^B(v) � 0) _ (¬U(v) ^B(v) < 0),

where v is the non-rooted vertex in T . According to the sign of b(T)
of the regular trees they belongs to , vertices V in the regular forest
F are partitioned into three sets:

1) v 2 T ^ b(T) > 0) v 2 P (F)
2) v 2 T ^ b(T) = 0) v 2 Z(F)
3) v 2 T ^ b(T) < 0) v 2 N(F)

Let V
P

(F) denote all the vertices in the positive trees, i.e. V
P

(F) ,
{v|v 2 P (F)}. It is shown in [20] that I = V

P

(F) is the closed set
under A with maximum b(I) > 0.

In [20], the min-area retiming algorithm starts with a regular
forest of |V | tree and no edges. It incrementally expands V

P

(F) by
combining the positive trees with negative or zero trees. Regularity
of the forest is enforced during the update. The key operation
is UpdateForest(F , x, p(x)), which adds a new active constraint
(x, p(x)) to the forest. After the update, I = V

p

(F) is used to update
the retiming and if V

P

(F) = ;, optimality is claimed.

C. Proposed Algorithm

Despite the similar structure of Problem 1, there is one funda-
mental difference between our algorithm and iMinArea from [20].
In iMinArea, at each iteration, the change of r(v) for each v 2 V
is at most by one while in our algorithm, we may need to relocate
multiple registers for one vertex in order to fix a P2

0 violation and
the consequent P0 violations. This fundamental difference makes
the dependencies between the vertices in A non-uniform. Therefore,
instead of directly applying the regular forest and its associated
UpdateForest routine in our algorithm, we make two majors changes,
one in data structure and the other in algorithm itself.

First, we introduce w(v) for each vertex v 2 F to record the
decrease of r(v). When the retiming r is updated by v 2 I , r(v) =
r(v)� w(v). With the weight information, the gain of a tree in the
regular forest is also modified to b(T) =

P
v2T

b(v)w(v). We call F
with w a weighted regular forest. When the algorithm starts, it does
not know how many registers it will move in. w(v) is initialized to 1

for v 2 V . The knowledge of w(v) is updated during the development
of algorithm. We extend the forest update routine UpdateForest(F ,
x, v, w) to update w(v) = w in the forest. Note that the w(v) is
updated only when it is a tree by itself so that the regularity of F
will not be violated.

u v rt(v) y x
¬P0
X

u v rt(v) y
¬P2'
X x

u v rt(v) y x

(a)

(b)

(c)

Fig. 3. An example of P -tree-and-P -tree link.

Next, the original UpdateForest routine in [20] always links a ver-
tex in a non-positive tree into a vertex in a positive tree, i.e. condition
x 2 V

P

(F) ^ ¬(v 2 V
P

(F)) always holds for UpdateForest(F ,
x, v). The dependencies between vertices from positive trees are
automatically taken care of due to the uniform update of r(V

P

(F)).
However, in our problem, due to the non-uniformity of A maintained
in F and the incomplete knowledge of w(v), it is possible that
x 2 V

P

(F) ^ v 2 V
P

(F) for UpdateForest(F , x, v, w). Figure 3
shows an example of how such a scenario comes into existence. In
Figure 3(a), each vertex constitutes a regular tree by itself. u and x
are the vertices with positive gains. If x is examined first. A decrease
of r(x) will violate PO. To fix it, r(y) is decrease by one and y is
bundled with x into a positive tree. Then, in Figure 3(b), when r(u) is
decreased. It causes a P2

0 violation and the algorithm should link u
with y, which is already in the positive tree. Such cases indicate that
previous knowledge of w(y) is incorrect and needs to be updated.
However, a update on w(y) may disable some of active constraints in
the tree it belongs to. For example, in Figure 3(c), active constraint
(x, y) is no longer needed after w(y) is changed to 2. We design
a O(|V |) BreakTree(y) routine which locates the tree T (y) that y

belongs to, changes its root to y and breaks y from its sub-trees by
deleting the edges from y to its children. Then, the w(y) is updated
along with the active constraint (u, y) into F .

Note that the root cause of positive-positive tree linking is the
incomplete weight information of the nodes. It is possible that a
non-positive to positive tree linking (x, v) also requires update of
w(v). In both cases, the BreakTree routine will resolve the problem
and update w(v).

D. Summary
The proposed MinObsWin algorithm is listed in Algorithm 1. It

follows the same structure of the min-area retiming algorithm in [20].
Operations to handle ¬P2

0 are added from Line 9-12. Line 19-21
breaks the tree and update the knowledge of w.
Algorithm 1 MinObsWin
Input: �: the clock period, R

min

: bound on shortest path
Output: optimal retiming for Problem 1
1: Initialize a feasible retiming r.
2: Init(F)
3: loop
4: p {}, q {}, w 0
5: I V

P

(F)
6: if I = ; then
7: BREAK {r is optimal.}
8: end if
9: if ¬P2 then

10: z ru(v)
11: Find y : (z, y) 2 E ^ w

r

(z, y) > 0.
12: p u, q y, w = w

r

(z, y)
13: else if ¬P0 then
14: p v, q u, w = �w

r

(u, v)
15: else if ¬P1 then
16: p lt(v), q v, w = 1
17: end if
18: if p 6= {} ^ q 6= {} then
19: if w(q) requires update then
20: BreakTree(q)
21: UpdateForest(F , p, q, w(q) + w)
22: else
23: UpdateForest(F , p, q, w)
24: end if
25: else
26: r r(I)
27: end if
28: end loop

With the same reasoning as that for iMinArea in [20], since we
decrease r monotonically and r is bounded by |V |, Algorithm 1 will
terminate with optimal solution.

Theorem 2: MinObsWin algorithm will terminate and when it
terminates, it returns the optimal solution r of Problem 1.

In each iteration, the timing analysis and BreakTree operation
takes O(|E|) time, while update of r labeling takes O(|V |) time.
So the time complexity for each iteration is O(|E|). Furthermore,
the number of iterations is bound by |V |2. Therefore, we obtain the
complexity of MinObsWin algorithm.

Theorem 3: The space complexity of the MinObsWin algorithm
is O(|E|). The time complexity of the MinObsWin algorithm is
O(|V |2|E|).
Actually, the MinObsWin algorithm inherits the superb linear mem-
ory requirement and the same time complexity from iMinArea.

V. INITIALIZATION

Algorithm 1 requires an initialization of a feasible retiming with
given � and R

min

. How to choose � and R
min

is also an interesting
problem. It is not reasonable to sacrifice the performance of the circuit
by starting Algorithm 1 with a large �. In our work, we start with a
sequential circuit retimed so that it has the minimal clock period �

sh

under setup and hold time constraints by using the method proposed
in [23]. It is possible that such a feasible retiming does not exist due

to reconvergent paths [23]. In that case, we carry out the min-period
retiming [24] and get the minimal clock period �

min

. Such clock
period constraint is very tight. So we slightly relax it by a small
factor ✏. In our work, we choose ✏ = 10%. R

min

is then chosen as
the minimal shortest path length in the retimed circuit:

R
min

= min

(u,v)2E^wr(u,v)>0
(�

sh

+ T
h

�R(v)� d(v)).

VI. EXPERIMENTAL RESULTS

We implemented the proposed MinObsWin algorithm in C++ and
tested it on a Linux machine with an Intel quad-core E5405 2.0GHz
CPU and 2GB memory. The performance and solution quality are
evaluated on ISCAS89 and ITC99 benchmarks obtained from authors
of [20]. � and R

min

are computed using the method suggested in
Section V, where T

s

and T
h

are set as 0 and 2 as is suggested
by [23]. We also implemented the SER analysis engine with time-
frame expansion from [17]. A 15 time-frame expansion is used for
each circuit to reach to steady operational state as is suggested in [17].
SER for single gate is extract from SPICE characterization using the
method in [25]. Note that when doing the SER analysis, we compute
the real size of the ELW for each gate with (3). We choose the
MinObs retiming algorithm in [17] for comparison, which minimizes
the observability without ELW constraints. Since the advantage of
the regular forest based retiming algorithm over the W/D-matrix
based ones on memory usage and CPU time is evident in [20], we
do not repeat the experiments to compare memory usage and CPU
time of the propose algorithm with the LP-based algorithm in [17].
Instead, by simply commenting out Line 9-12 and Line 19-21 in
Algorithm 1, we can reduce the proposed algorithm into an efficient
MinObs algorithm, which solve the same problem in [17] and is of
the same run-time and space bounds as the algorithm in [20].

Table I lists the comparison of the performance and SER results
on 21 largest circuits between MinObs retiming and the proposed
MinObsWin retiming algorithm, along with the statistics of the
circuits. The number of vertices (“|V |”), number of edges (“|E|”),
number of registers in the original circuits (“#FF ”), clock period
constraint (“�”) and the SER of the original circuits (“SER”) are
shown under the header of “Statistics”. The columns under “Efficient
MinObs” are results from our efficient implementation of the method
in [17] , where “�#FF

ref

” is the change of number of registers
after retiming, “tref” is the CPU time and “�SER

ref

” is the relative
improvement of SER over the original circuits. Columns with similar
titles under “MinObsWin” give similar statistics of our algorithm. In
addition, “#J” gives the number of iterations.

We compare the run-time of two retiming algorithms in the
columns of “tref”and “tnew”. The time unit is second. To be fair, we
exclude the results of b18 1 opt, b18 opt, b19 1 opt and b19 opt
when computing the average run-times because including them will
make the average run-time of MinObsWin faster than MinObs, which
is deceptive. The run-time behavior of MinObsWin on these special
cases will be explained later. Without the noisy data, we find that the
average run-time of MinObsWin is 2.5X slower than MinObs. This
is due the extra computational effort to detect and fix ¬P2

0. However,
the algorithm we used to solve the MinObs problem is much more
efficient than LP-based solvers with on average 60X speedup, as
is reported in [20]. Therefore, with the inherited memory and CPU
efficieny from [20], the proposed algorithm is very competittive
against LP-based solver in [17].

Next, we compare the optimization ability on SER between the
logic masking only retiming (MinObs) and the proposed MinObsWin
retiming. “ SERref

SERnew
” compares the resulting SERs from MinObs

retiming and from the proposed algorithm. In most of the cases, the
proposed algorithm outperforms the MinObs algorithm in term of the
resulting SER, which shows the advantage of considering both logic
masking and timing masking in the optimization process. Especially,
in circuit s38417, large |V |

#FF

ratio indicates that combinational gates
take a large part of the circuit than the registers. Although the MinObs

TABLE I
COMPARISON OF SER ON ISCAS89 AND ITC99 CIRCUITS

Circuit Statistics Efficient MinObs MinObsWin
|V | |E| #FF � SER �#FF

ref

tref �SER
ref

�#FF
new

tnew #J �SER
new

SERref
SERnew

s13207 7952 10896 1508 117 7.72E-03 -43.56% 0.19 -23.14% -24.53% 0.50 2 -47.02% 122%
s15850.1 9773 13566 1567 111 9.77E-03 -54.05% 0.26 -31.71% -54.05% 0.27 9 -31.71% 100%
s35932 16066 28588 5814 145 2.42E-02 -45.37% 0.22 -35.45% -34.76% 1.14 4 -66.75% 194%
s38417 22180 31127 2806 81 1.59E-02 11.51% 2.61 2.92% 13.61% 3.24 4 -8.62% 113%
s38584.1 19254 33060 7371 262 2.48E-02 -32.33% 0.89 -33.23% -31.96% 1.82 3 -41.96% 115%
b14 1 opt 4049 9036 2382 112 9.15E-03 -64.02% 0.48 -12.89% -64.02% 1.94 5 -32.89% 130%
b14 opt 5348 11849 2041 135 9.75E-03 -57.76% 0.51 -26.71% -50.05% 0.35 2 -6.67% 79%
b15 1 opt 7421 16946 2798 158 1.25E-02 -36.88% 0.94 -24.58% -33.84% 4.25 5 -37.12% 120%
b15 opt 7023 15856 2415 195 1.35E-02 -46.17% 0.59 -26.97% -43.22% 2.26 4 -45.74% 135%
b17 1 opt 23026 52376 8791 192 3.92E-02 -27.64% 8.77 -12.64% -37.58% 27.31 5 -36.34% 137%
b17 opt 22758 51622 7787 266 3.42E-02 -23.75% 2.05 -28.13% -19.09% 10.09 6 -45.94% 133%
b18 1 opt 68282 151746 21027 251 9.42E-02 -30.92% 45.02 -28.51% -0.05% 1.78 1 0.00% 71%
b18 opt 69914 155355 20907 255 9.56E-02 -30.92% 28.69 -32.92% 0.00% 0.96 1 0.00% 67%
b19 1 212729 410577 59580 317 2.45E-01 -48.35% 142.91 -30.40% -48.35% 144.99 6 -30.40% 100%
b19 224625 433583 60801 317 2.50E-01 -49.27% 149.33 -30.72% -49.27% 150.11 6 -30.72% 100%
b20 1 opt 10166 22456 3462 191 1.63E-02 -57.30% 1.66 -34.51% -56.21% 1.68 4 -34.51% 100%
b20 opt 11958 26479 4761 182 2.15E-02 -65.68% 2.56 -31.48% -65.42% 2.61 4 -31.41% 100%
b21 1 opt 9663 21246 2451 171 1.22E-02 -34.31% 0.38 -25.28% -31.78% 1.74 4 -48.87% 146%
b21 opt 12135 26686 4186 215 1.90E-02 -66.72% 0.84 -33.35% -66.36% 2.64 4 -40.82% 113%
b22 1 opt 14957 32663 4398 194 2.19E-02 -50.55% 3.19 -31.39% -50.36% 3.27 4 -33.34% 103%
b22 opt 17330 37941 5556 178 2.67E-02 -50.61% 7.51 -29.56% -51.02% 16.75 3 -35.88% 110%
AVG. -43.04% 1.97⇤ -26.70% -38.01% 4.92⇤ 4 -32.70% 115%

retiming tries to reduce the observability of registers, its lack of
control on sizes of ELWs results in an retimed circuit with degraded
SER. The MinObsWin algorithm, on the other hand, limits the ELW
sizes, and still manages to get improvement. Notice that for several
circuits, the proposed algorithm resulted in equal or larger SER than
the MinObs algorithm. After inspection, we found that this is due to
the stringent constraints on � and R

min

. In circuits such as s15850.1,
no valid retiming under setup and hold time constraint is available.
R

min

is thus chosen to be the minimal gate delay. Therefore, P2

0

will not be violated and our algorithm acts essentially the same as the
MinObs retiming. For cases b14 1 opt, b18 1 opt and b18 opt, the
paths with length small than R

min

happened to end at the primary
outputs, where no registers can be moved into host. The proposed
algorithm then exited immediately. Since there are no constraints
on the shortest path length in the MinObs retiming, it can optimize
the observability of the registers more freely. But on average, the
proposed min-obs retiming under ELW constraints achieves a 32.70%
reduction of SER from the original circuits and obtains an extra 15%

improvement over the MinObs retiming in [17].
Finally, as is indicated by column “�#FF

new

”, our algorithm
results in an average of 38% reduction of number of registers.
This by-product suggests a desirable reduction of area/power of the
circuits. Clearly, there is an area/power penalty of the proposed
MinObsWin algorithm against pure min-area retiming due to the
different objectives.

VII. CONCLUSIONS

In this paper, we inspected the impact of retiming on the SER of the
sequential circuit. Problem of minimum observability retiming under
error-latching window constraints was proposed to reduce the SER of
the circuit, with consideration of both logic and timing masking. The
MinObsWin algorithm was designed to solve the problem efficiently
and optimally. Experimental results show on average 32.7% reduction
on SER from the original circuits and 15% improvement over the
previous method in [17]. As an extension of this work, the objective
function in Problem 1 can be augmented to include area/power
weight. The algorithm itself remains the same.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[2] L. Massengill, B. Bhuva, W. Holman, M. Alles, and T. Loveless,
“Technology scaling and soft error reliability,” in IRPS, april 2012, pp.
3C.1.1 –3C.1.7.

[3] Y. S. Dhillon, A. U. Diril, A. Chatterjee, and A. D. Singh, “Analysis
and optimization of nanometer cmos circuits for soft-error tolerance,”
IEEE TVLSI, vol. 14, no. 5, 2006.

[4] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combina-
tional logic,” IEEE TCAD, vol. 25, no. 1, pp. 155–166, 2006.

[5] M. R. Choudhury, Q. Zhou, and K. Mohanram, “Design optimization
for single-event upset robustness using simultaneous dual-vdd and sizing
techniques,” in ICCAD, 2006, pp. 204–209.

[6] K.-C. Wu and D. Marculescu, “Power-aware soft error hardening via
selective voltage scaling,” in ICCD, 2008, pp. 301–306.

[7] K. Mohanram and N. A. Touba, “Partial error masking to reduce soft
error failure rate in logic circuits,” in DFT, 1997, pp. 433–440.

[8] ——, “Cost-effective approach for reducing soft error failure rate in
logic circuits,” in Proc. Intl. Test Conf., 2003, pp. 893–901.

[9] S. Almukhaizim and Y. Makris, “Seamless integration of SER in
rewiring-based design space exploration,” in Proc. Intl. Test Conf., 2006,
pp. 1–9.

[10] M. Jose, Y. Hu, R. Majumdar, and L. He, “Rewiring for robustness,” in
DAC, 2010, pp. 469–474.

[11] S. Krishnaswamy, S. Plaza, I. L. Markov, and J. P. Hayes, “Enhancing
design robustness with reliability-aware resynthesis and logic simula-
tion,” in ICCAD, 2007, pp. 149–154.

[12] N. Jing, J. Lee, C. Zhang, J. Tong, Z. Mao, and L. He, “Fault modeling
and characteristics of sram-based fpgas,” in FPGA, 2011, pp. 279–279.

[13] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S.
Kim, N. R. Shanbhag, and S. J. Patel, “Sequential element design with
built-in soft error resilience,” IEEE TVLSI, pp. 1368–1378, 2006.

[14] V. Joshi, R. R. Rao, D. Blaauw, and D. Sylvester, “Logic SER reduction
through flipflop redesign,” in ISQED, 2006, pp. 611–616.

[15] S. Krishnaswamy, I. L. Markov, and J. P. Hayes, “On the role of timing
masking in reliable logic circuit design,” in DAC, 2008, pp. 924–929.

[16] K.-C. Wu and D. Marculescu, “Clock skew scheduling for soft-error-
tolerant sequential circuits,” in DATE, 2010, pp. 717–722.

[17] S. Krishnaswamy, I. L. Markov, and J. P. Hayes, “Improving testability
and soft-error resilience through retiming,” in DAC, 2009, pp. 508–513.

[18] C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,”
Journal of VLSI and Computer Systems, vol. 1, no. 1, pp. 41–67, Spring
1983.

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Application. Prentice Hall, 1993.

[20] J. Wang and H. Zhou, “An efficient incremental algorithm for min-area
retiming,” in DAC, Anaheim, CA, Jun. 2008.

[21] S. Krishnaswamy, S. Plaza, I. L. Markov, and J. P. Hayes, “Signature-
based SER analysis and design of logic circuits,” IEEE TCAD, vol. 28,
no. 1, pp. 74–86, 2009.

[22] N. Shenoy and R. Rudell, “Efficient implementation of retiming,” in
ICCAD, 1994, pp. 226–233.

[23] C. Lin and H. Zhou, “An efficient retiming algorithm under setup and
hold constraints,” in DAC, San Francisco, CA, 2006.

[24] H. Zhou, “A new efficient retiming algorithm derived by formal manip-
ulation,” ACM TODAES, vol. 13, no. 1, Jan. 2008.

[25] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An efficient static
algorithm for computing the soft error rates of combinational circuits,”
in DATE, 2006, pp. 164–169.

