
Intuitive ECO Synthesis for High Performance Circuits

Haoxing Ren1, Ruchir Puri1, Lakshmi Reddy2, Smita Krishnaswamy5, Cindy Washburn2, Joel Earl3,
Joachim Keinert4

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
2 IBM System and Technology Group, Fishkill, NY, USA

3 IBM System and Technology Group, Rochester, MN, USA
4 IBM System Technology Group, Boeblingen, Germany

5 Columbia University, New York, NY, USA

ABSTRACT
In the IC industry, chip design cycles are becoming more
compressed, while designs themselves are growing in complexity.
These trends necessitate efficient methods to handle late-stage
engineering change orders (ECOs) to the functional specification,
often in response to errors discovered after much of the
implementation is finished. Past ECO synthesis algorithms have
typically treated ECOs as functional errors and applied error
diagnosis techniques to solve them. However, error diagnosis
methods are primarily geared towards finding a single change, and
moreover, tend to be computationally complex. In this paper, we
propose a unique methodology that can systematically incorporate
human intuition into the ECO process. Our methodology involves
finding a set of directly substitutable points known as functional
correspondences between the original implementation and the new
specification by using name-preserving synthesis and user hints, to
diminish the size of the ECO problem. On average, our approach
can reduce the size of logic changes by 94% from those reported in
current literature. We then incorporate our logic ECO changes into
an incremental physical synthesis flow to demonstrate its usability
in an industrial setting. Our ECO synthesis methodology is
evaluated on high-performance industrial designs. Results indicate
that post-ECO worst negative slack (WNS) improved 14% and
total negative slack (TNS) improved 46% over pre-ECO.

Keywords
Engineering Change Order, Logic Synthesis, Physical Synthesis

1. INTRODUCTION
In IC design, ECO synthesis refers to the process of realizing late-
stage functional changes to a design, by directly and minimally
modifying the implementation, instead of re-invoking the entire
design process from scratch. As a result, design cost is reduced and
design stability is maintained. Producing a high-quality
implementation of a high-performance design is a painstaking
process that involves simultaneously optimizing numerous timing,
power, and reliability metrics [4]. An ECO synthesis process can
aid in maintaining the stability of such design metrics because the
changes inserted are designed to be minimally invasive. On the
manufacturing end, processing the new logic from scratch may
result in discarding the multi-million dollar front-end-of-line
(FEOL) mask sets. With ECO synthesis, the logic changes can
often fit into spare cells provided on the chip, and the wiring
changes are implementable on cheaper back-end-of-line (BEOL)
masks.

Existing logic ECO methods can be classified into two major
categories: error-detection-and-correction-based approaches, and
matching-based approaches. Error-detection-and-correction-based
approaches [3][10][11][12][29] view an ECO as an error correction
problem and borrow techniques from literature in diagnosis and
verification. The matching-based methods [2][13][18][1]
acknowledge that ECOs are small changes, and that a large part of
the design remains equivalent. After matching these equivalent
parts, the differences can be extracted out.

We note that the key task in logic ECO synthesis is the
determination of points in logic at which minimal substitutions can
be made, in order to rectify the difference between the ECO and
original logic. We call such points the output-side boundary of the
changes. This boundary is difficult to establish because there are
no longer any functionally equivalent points to guide the methods.
In lieu of functional equivalence, [1] uses a laborious method of
recursive matching that is severely limited due to the difficulty of
both subcircuit enumeration and Boolean matching. [10] uses
MAX-SAT to find changes, but synthesizing the substitution logic
can still be a challenging task.

Despite these proposals, ECO synthesis is often done manually,
since designers seem able to intuitively derive smaller changes than
the respective tools in many cases. In this work, we study the
process by which designers manually synthesize ECOs and
incorporate their methods into an efficient industrial-strength
design flow. We significantly reduce the complexity of finding the
output-side boundary of the change by observing that if we
generate gate-level netlists from both the original and ECO
specifications, we can often find pairs of points that directly form a
functional correspondence between the ECO and original netlists.
Thus, in our approach, error detection and correction are performed
simultaneously. In this paper we:

1. Formulate the notion of a functional correspondence between
the ECO and original designs, which form the output-side
boundary.

2. Provide a method for the generation of pairs of points in logic
that constitute functional correspondences.

3. Provide a general method that can incorporate guessed or
otherwise generated correspondences, to derive verifiable full
functional correspondences that result in small logic changes.

4. Incorporate our ECO methodology into an industrial physical
synthesis flow that places the gates produced by logic ECO
synthesis and optimizes them to improve timing.

978-3-9815370-0-0/DATE13/©2013 EDAA

The rest of this paper is organized as follows: Section 2
describes previous work in this area, Section 3 provides
background in equivalence checking and previous ECO methods,
Section 4 and 5 present the new logic ECO process; Section 6
describes our ECO physical synthesis flow and presents the
empirical results on a set of industry designs, and, Section 7
concludes the paper.

2. PREVIOUS WORK
Several previous papers propose error-detection-and-correction-

based approaches [3][10][11][12][29]. The error detection step
tries to find signals that can correct the original netlist in order to
make it equivalent to the new functional specification. Then, the
error correction step constructs substitution circuits to correct the
identified signals. Existing methods in this category differ in how
these two steps are conducted. The early work [3] uses BDD-based
Boolean quantification based on a formula originally proposed in
[21] to identify single-signal errors. Error correction is then done
by functional decomposition. [12] uses a SAT formulation
originally proposed in [20] to detect signals to be replaced, and
then constructs the replacement logic with nearby signals using a
set of error signatures. The authors in [10] formulate the signal
error detection problem as MAX-SAT problem originally proposed
in [14] and then derived the function based on SAT based function
dependency check [22] and functional decomposition targeted for
FPGA [23]. Recent work in [12] proposes a modified SAT-based
fault identification procedure built on the proposals of [12][20] to
include the potential fix via MUX modeling. Solving the SAT
problem identifies and corrects the error at the same time. This
technique also relies on extensive simulation to narrow down the
scope of searching and SAT interpolation to construct ECO logic,
similar to [10], if the MUX modeling fails. One difficulty with the
error detection and correction based approaches are the difficulty of
locating the signals if there are multiple points changed. Other
difficulties include building the right support set, and synthesizing
the correcting logic. Latest works [11][29] propose to use SAT
interpolation technique to construct partial fixes for ECO and claim
good results on both single and multiple error circuits.

The matching-based methods [2][13][18][1] attempt to find
portions of the design to re-use. The pioneering work in [2]
proposes to directly reconnect the ECO logic with the original
netlist on key signals, where the ECO logic is either functionally or
structurally correspondent to the original netlist. Authors of [2]
propose an ATPG-based approach to check functional equivalence.
The authors of [13][18] extend the work in [2] by name-based
matching between the ECO logic and original netlist, and BDD-
based equivalence checking.

After logic ECO, the new logic gates have to be placed and
optimized using ECO physical synthesis. ECO physical synthesis is
an incremental CAD paradigm [8] [17], where design perturbation
is an optimization criterion, in addition to the conventional
wirelength, timing, and power constraints. Research in ECO
physical synthesis is geared towards making each physical
synthesis step (placement, buffer insertion, gate sizing) ECO aware.
The authors of [6] present an ECO placement system, [15]
introduce an ECO buffer insertion algorithm using spare cells, [26]
presents a method to perform technology remapping with spare
cells, and [16] introduces an ECO routing algorithm. Incremental
legalization schemes such as [7][9] can also be used in ECO
placement.

3. BACKGROUND
In this paper we build on the framework of DeltaSyn [1], which

utilizes a two-phase process to reduce the logic difference or delta,
between the ECO and original designs. As shown in Figure 1, the
first phase finds functional equivalences between original netlist
and ECO logic from the primary inputs forward, forming the input-
side boundary of the changes. Functional equivalences can be
generated by sat-sweeping as in [27], which is summarized in
Figure 2.

Figure 1. Summary of the DeltaSyn Method from [1].

find_functional_equivalence(netlist A, netlist B)
{

simulate A and record signature(i) on each net i
 create hash table for signature(i) on A
 connect primary inputs of A and B together
 simulate B and record signature(i) on each net i
 for each net i in B
 for each net j in A where signature(j)=signature(i) using hash table
 construct a SAT miter between i and j
 if (unsat) record functional equivalence (i==j) on i
}

Figure 2: Functional Equivalence

The second phase uses Boolean matching starting from
corresponding primary outputs and proceeds recursively backwards
as it matches small chunks of logic, thus forming the output-side
boundary of the logic change. One problem with this approach is
that it returns large sets of changes to implement ECOs when the
changes are close to the primary inputs or drive a large fanout. This
is due to limitations of subcircuit enumeration and Boolean
matching method.

4. LOGIC ECO SYNTHESIS
We observe that designers are often able to perform ECO synthesis
quickly because they come up with intelligent guesses about
correspondences between the VHDL and the original
implementation and then verify them. In this section, we formalize
the notion of a user hint in the framework of functional
correspondence, which can be utilized in logic eco synthesis. Then,
we discuss how to automatically derive intelligent functional
correspondences. We begin with some notations and problem
formulation:

1. The original functional specification is denoted original VHDL.
2. The modified functional specification containing the ECO is
denoted ECO VHDL.
3. The original implemented netlist is denoted original netlist.
4. A preliminary synthesized gate-level version of the ECO VHDL
is known as the ECO netlist.

Problem statement: The problem of logic ECO synthesis is to
determine a minimal logic delta, i.e., a list of gates and connections
to be inserted into existing logic, such that the ECO and original
netlists are rendered equivalent.

ORIG ECO Delta

Output-side boundary

Input-side boundary

Minimizing the delta also implies maximizing reuse of existing

logic in the original netlist. As in [1], we also begin by marking and
eliminating functionally equivalent signals from the delta. However,
functional equivalence can only find signals upstream of logic
changes. For example, in Figure 3, functional equivalence can
eliminate the signal x and its fanin-cone from the logic changes. It
cannot detect that the gate driven by z can also be re-used in
synthesizing the ECO. This requires the recognition of a different
concept which we define and explore in this section.

4.1 Functional Correspondence
Definition A functional correspondence between two logic

circuits, ckt_orig and ckt_eco, is a 2-tuple (S, S’), where S and S’
are sets of signals S={s1, s2,…, sn}, S’ = {s1’, s2’, …, sn’}, from
ckt_orig and ckt_eco respectively, such that substituting signals in
S from ckt_orig with those of S’ (including the gates that drive
signals in S’) results in ckt_orig becoming functionally equivalent
to ckt_eco.

The individual signal pairs (s1, s1’), (s2, s2’) … (sn, sn’) are said to
be correspondence pairs. For example, in Figure 3, the set of
signals S={z} and S’={z’} form a functional correspondence, so do
S={y} and S’={y’}. Figure 4 gives the algorithm for verifying a
functional correspondence based on the definition.

verify_functional_correspondence (S in ckt_orig, S’ in ckt_eco)
{

 connect primary inputs of ckt_orig and ckt_eco together
 for each correspondence pair (si, si’)
 connect sinks of si in S to si’ in S’
 check equivalence beween ckt_orig and ckt_eco

if (equivalent) return true
else return false

}
Figure 4: Verifying a Functional Correspondence

Definition A well-formed functional correspondence (S,S’)
has the property that it is no longer a functional correspondence if
any correspondence pair (s,s’) is dropped from (S,S’).
 For example, in Figure 3, S={y,z}, S’={y’,z’} is not a well-formed
functional correspondence because after removing (y,y’), the result,
S={z}, S’={z’}, is still a functional correspondence. Generally, this
means that in traversing the circuit along any path from a primary
input to a primary output, only one corresponence pair is reached.
From here on, when we refer to functional correspondences, we
mean well-formed correspondences.

Functional correspondences can form the output boundary of the
logic ECO changes, with the substitutable logic being directly
apparent in the ECO netlist. The number of gates to be inserted, i.e.
the delta size, is the number of gates in the fanin cones of
functional correspondences S’ that are not marked by functional
equivalence step.

The trivial functional correspondence for any ECO is formed by
S={o1,o2,…,on} and S’={o1’,o2’,…,on’}, where o and o’ are primary
outputs not matched after functional equivalence. The resulting
delta is usually not very good unless the changes are close to
primary outputs. The problem of deriving a minimal set of changes
can be formulated as the problem of finding the best functional
correspondences. A functional correspondence (S, S’) is better than
another correspondence (F, F’) if it results in a smaller set of logic
changes. In the remainder of this section, we derive efficient
methods by which functional correspondence can be determined
and verified.

4.2 Compute Functional Correspondence
In this section, starting from any list of correspondence pairs, we

show how to generate a functional correspondence. We emphasize
that this can include guessed and potentially invalid pairs, i.e., pairs
that do not belong to any functional correspondence.

In order to solve this problem optimally, we can use a branch-
and-bound approach, which branches on the number of
intermediate equivalences created upon immediate replacement of
the correspondence pair in question. For instance, in Figure 3, if (x,
y’) were entered as a potential correspondence pair, it would not
create any additional equivalences between the designs. However,
if (x, x’) were used then it would create an additional equivalence at
(y, y’). Equivalences do not have to be proven and simulation can
generate new potential equivalences for the purposes of branch and
bound.

In practice, if the correspondence pairs we generate are primarily
valid pairs (or if invalid pairs are topologically ahead of valid pairs),
then we find that a greedy approach gives good results. The greedy
algorithm is illustrated in Figure 5. Here, we traverse the set of
corresponding pairs, N, in topological order. For each
corresponding pair (n,n’), we first evaluate whether n is equivalent
to n’. If not, we add n into S and n’ into S’ and remove any
corresponding pairs that are in the maximum fanout free cone
(MFFC) of n and n’ from S and S’ respectively. At each step, we
also speculatively connect the sinks of n to n’. This essentially
allows (n,n’) to be part of a speculative functional correspondence.
When a node is removed from (S,S’), these connections are restored.
Eventually, it will reach the correspondence pairs on the primary
outputs, if the existing pairs are not equivalent, they will be
inserted into (S,S’). Therefore (S,S’) will always produce a valid
functional correspondence.

functional_correspondence_greedy (correspondence pairs
N={ (n1,n1’), (n2, n2’), … (nk, nk’)})
{
 Insert default correspondence pairs on primary outputs
 sort N topologically
 assign S and S’ as empty set
 foreach (n,n’) in N
 if (n and n’ are equivalent)) then next
 (C,C’) = {(m,m’) : s∈MFFC (n) && s’∈MFFC (n’)

&& {m,m’}∈(S,S’) }
 for each pair {m,m’} in (C,C’)
 restore sinks of m in S from m’ in S’
 S = (S – C) ! {n}
 S’ = (S’ –C’) ! {n’}
 connect sinks of n in S to n’ in S’
 return (S,S’)
}

Figure 5: Compute Functional Correspondence

Figure 3: Functional Equivalence and Correspondence

c d e f a b

y y’

z

x’

z’

a b

x

c d e f

original ECO

correspondence pairfunctional equivalence

c d e f a b

y y’

z

x’

z’

a b

x

c d e f

original ECO

correspondence pairfunctional equivalence

For example, in Figure 3, N = {(z,z’), (y,y’)}. The algorithm will
traverse (z,z’) first since it is topologically before (y,y’). Since z is
different to z’, it will add (z,z’) to (S,S’) and connect the sinks of z
to z’. Then, it will process (y,y’) and y and y’ are actually
equivalent due to the reconnection on (z,z’). Thus, the algorithm
will not add (y,y’) into (S,S’). In the end, it will return functional
correspondence (S={z},S’={z’}). If the gate driving y’ is a NOR
gate instead, y and y’ will not be equivalent even after we
reconnected z and z’. Then pair (y,y’) will be added to (S,S’) when
processing (y,y’); and (z,z’) will be removed and sinks restored
since it is in the MFFC of (y,y’).

To complete our method, we feed the smaller design consisting
of the gates between the derived functional equivalences and
derived functional correspondences to the algorithm from [1] which
can further reduce the delta by Boolean matching. The problem
size given to the Boolean matching phase is drastically reduced
after applying functional correspondence.

5. GENERATING CORRESPONDENCES
In the previous sections, we described the main ideas of how

functional correspondences can reduce the delta size and how to
compute the best functional correspondence based on a given set of
correspondence pairs. In this section, we describe how to generate
likely correspondence pairs.

In practice, most of the VHDL signal names exist in both the
original and the ECO VHDL. Naturally, these names are the
candidates for partial correspondence. For example, compare
following two lines of VHDL determined by a program such as
xdiff:
Original: rst <= ls_need AND ex_hit;
ECO: rst <= core AND ls_need AND ex_hit;

If we were able to find the rst signal in the ECO and original
netlists, then it would constitute a functional correspondence that
can be used to reduce the ECO. The difficulty lies in the fact that
the signal rst itself is not always visible in the gate-level netlists
due to synthesis transformations merging several signals.

To address this issue, we propose to find equivalences between
signals in the RTL and the gate-level netlists, to find functional
correspondences upstream of primary outputs by taking advantage
of the speed of modern logic synthesis tools. First, the ECO and
original VHDLs are mapped into gate-level implementations such
that signal names are preserved in the mapped netlist. We use the
term “map” to mean that it is not necessary to perform tedious
redundancy removal or other complex steps to generate these
versions [24]. These mapped versions are called ECO_B and
ORIG_B netlists. Then, we identify names that are common to both
ECO_B and ORIG_B signals. Next, we detect and prove further
equivalences between the pairs of netlists (ECO_B, ECO), and
(ORIG_B, original) through the algorithm in Figure 2. Then, we
can find functional correspondence between ECO and original by
matching the functional equivalent signals based on the name-
matched signals in ECO_B and ORIG_B. The detailed algorithm is
given in Figure 6.

For example, Figure 7 shows four netlists: the original, the ECO,
the mapped ORIG_B and ECO_B sharing the same PI: a, b, c, d, e,
and f. We can see that there are no internal functional equivalences
between the original netlist and the ECO netlist. The names of the
internal signals are also quite different. But we can locate the
functional equivalence (x,o1), (z,o2) and (y,o3) between ORIG_B
and original; also (e0,x), (e4,z) and (e2,y) between ECO and
ECO_B. Since x, y and z are signal names preserved in both
ORIG_B and ECO_B, we can use the algorithm described in
Figure 6 to derive correspondence pairs (o1,e0), (o2,e4) and (o3,e2)

between original and ECO netlists. Note, that this method requires
no alteration to the original synthesis method. It does require
simple synthesis runs, which are very fast compared to physical
design runs, and result in physical design efforts saved by the
production of a smaller logic delta.
find_named_functional_correspondences(all VHDLs, netlists)
{
 ORIG_B = map(original VHDL)
 ECO_B = map(eco VHDL)

 find_functional_equivalences(original netlist, ORIG_B)
 find_functional_equivalence(ECO netlist, ECO_B)
 locate_name_based_correspondences(ECO_B, ORIG_B)
 for each name_based_correspondence (s, s’)
 if (exists_equivalent_signal(s, original netlist))
 n=equivalent_signal(s, original netlist)
 if (exists_equivalent_signal(s’, ECO netlist))
 n’=equivalent_signal(s’, ECO netlist)
 add (n, n’) to list of correspondences pairs

}
Figure 6: Name-based Functional Correspondences

 Correspondence pairs can also be generated by designers who can
intuitively determine signals，which correspond in any part of the
logic. These user hints do not have to form a complete functional
correspondence, as any correspondence pair can be utilized in the
algorithm of Figure 5. Thus, our method is able to directly and
systematically utilize any user intuition about ECO changes.

6. AN INDUSTRIAL ECO FLOW
Logic ECO process described in previous sections produces
functionally correct circuits. It is up to ECO physical synthesis
tools to place and optimize those circuits to satisfy timing
constraints. The physical synthesis process must disturb a minimal
amount of logic beyond the logic delta provided by the logic ECO
process. Our ECO physical synthesis flow is illustrated in Figure 8.
The first step is to place the ECO gates (the Delta netlist) produced
the logic ECO flow. To maintain design stability, all the existing
gates in the original netlist, excluding those deleted during ECO,
will be kept fixed in their location. Existing gates are considered
fixed blockages by the placer and other algorithms. First, ECO
gates will be placed in the remaining empty space. Then, the placer
will optimize total wirelength among the ECO gates and their
connected original gates. After ECO gates are placed, the second
step is to size and buffer these gates to fix electrical violations [4]
such as max slew and max driving capacitance violations. These
violations are fixed by gate sizing and buffering. During this step,

Figure 7: Name-based Functional Correspondence Example

a b

o3 e2

o2

e0

e4

a b

o1

c d e f

original ECO

c d e fc d e f

y

z

a b

x

ORIG_B

a b

y

x

z

c d e f

ECO_B

correspondence pair functional equivalence

a b

o3 e2

o2

e0

e4

a b

o1

c d e f

original ECO

c d e fc d e f

y

z

a b

x

ORIG_B

a b

y

x

z

c d e f

ECO_B

correspondence pair functional equivalence

only the ECO gates are allowed to change under an in-place-
optimization (IPO) framework that it minimizes the disturbance to
the existing placement.

For high performance designs, the ECO circuit often has to be

extensively optimized to meet tight timing constraints. Introducing
ECO gates might affect the timing of other paths. A larger region
than the ECO gates will need to be optimized if necessary. The
algorithm to identify extended ECO region is given in Figure 9.
Once the extended ECO region is identified, many IPO transforms
[5] will be applied to circuits in the region to further optimize the
design.

identify_extended_ECO_region (ECO gates E, K)
{

for each gates in E
 forward traverse up to K levels and mark gates
 backward traverse up to K levels and mark gates
for each marked gates
 forward traverse up to K levels and mark gates
unmark gates with positive slacks
assign marked gates as extended ECO region

}
Figure 9: Identify ECO Region

When the FEOL masks are produced, ECO needs to be
implemented with spare cells. Spare cells in our design
methodology are gate array cells that are distributed in the space
not occupied by standard cells. These cells can be rewired to
implement a few basic logic functions during ECO. We are
required to provide spare cell support in our ECO physical
synthesis flow. During placement step, it is the spare cells that are
placed. The spare cells are also placed at certain placement
intervals. During optimization, we can not change the size or the
location of any existing gate, instead, we can only create spare cell
clones for these gates if they are underpowered, or buffer the
existing nets with spare gates.

Next, we show the empirical results our ECO logic and physical
synthesis flows real ECOs on a set of IBM microprocessor macros.
We will compare the results of the new logic ECO flow to the
algorithm from [1]. For simplicity we will refer the new logic ECO
flow as INTUIT in the rest of this section. Our code is written in
C++/TCL and run on IBM P570 servers (L1 i64K d64K, L2 4M).

6.1 ECO Logic Synthesis Results
We are given the original netlist, original VHDL and ECO

VHDL for these macros. The total number of VHDL line changes
is listed in the second column (V#) of Table 1. Although there is
often only one line of VHDL that is changed, it can affect many
gates in the circuit as shown in “Cone Gates” column. We run both
DeltaSyn and INTUIT on these macros and report the delta size in
the “delta” column. In M1-M5, where the design changes are close
to primary outputs, DeltaSyn is capable in producing small deltas.
It is clear, however, that the delta sizes produced by INTUIT are

significantly smaller in M6-M12, where the design changes are not
close to primary outputs. Overall, the delta size produced by
INTUIT is only 6% as large as those from DeltaSyn: a 94%
reduction! The microprocessor design team has verified that the
sizes of these deltas are similar to what is produced manually [28].

The runtimes (in seconds) of both DeltaSyn and INTUIT are

reported on “CPU” columns. The runtime includes both the front
end synthesis [24] and the ECO algorithm. We observed that more
than 90% of runtime is synthesis runtime. Since synthesis runtime
dominates the entire flow, we can see the INTUIT runtime is about
the same as much as the DeltaSyn runtime.

6.2 ECO Physical Synthesis Results
We run ECO physical synthesis flow on both the DeltaSyn

generated delta and the INTUIT-generated delta. During physical
synthesis we set K in Figure 9 to 2, which extends the ECO region
by 2 levels. The results are shown in Table 2.

To evaluate quality of result (QoR) impact, we report the worst
negative slack (WNS) and total negative slack (TNS) before and
after ECO physical synthesis. The sums of WNS and TNS on all
macros are reported in the last row. Note that on M7 and M10 post-
ECO timing with DeltaSyn degraded significantly due to large
delta sizes produced by DeltaSyn. In comparison, post-ECO timing
with INTUIT is better than pre-ECO on the majority of the macros.
Overall WNS is 14% better and TNS is 46% better.

In Table 2 we also report the design perturbation introduced by
ECO physical synthesis. A# column reports the number of gates
added during ECO physical synthesis, D# reports the number of
gates deleted and C# reports the number of gates changed, which
includes resized or moved. Again, comparing the results of
INTUIT and DeltaSyn, we can see that ECO physical synthesis
introduced much less design changes with INTUIT deltas. For
example, INTUIT resulted in an 84% reduction in total added gates,
as compared to DeltaSyn.

K in Figure 9 can be adjusted to balance between design
perturbation and QoR improvement. A larger K opens up an
extended region for optimization. Therefore, better QoR is possible.
However, an extended physical ECO region also allows more gates
changed, which means bigger perturbation. A larger perturbation
often results in longer runtime and worse QoR for backend tools
such as ECO routing. The tradeoff between QoR improvement and
perturbation is shown in Figure 10. For example, using K=0 as the
baseline, extra 24% of WNS and 31% of TNS improvement is
achievable when K=5 at the cost of 70% more gates added and
246% more gates changed.

Table1: Logic ECO Statistics on IBM Benchmark
macro V# Total

Gates
Cone
Gates

DeltaSyn INTUIT

delta CPU delta CPU

M1 1 7145 37 17 113 16 113
M2 6 3427 169 34 64 30 64
M3 1 8351 8 1 94 1 93
M4 4 14115 1867 44 139 11 138
M5 1 7929 317 4 101 4 101
M6 3 4025 963 265 72 12 72
M7 3 4632 1482 456 75 8 79
M8 4 19263 4180 861 226 10 245
M9 6 17135 1603 102 204 14 200

M10 3 10729 2777 605 108 27 111
M11 2 105620 2680 271 1332 58 1509
M12 1 25458 7384 1086 682 32 703
SUM 3746 223

Figure 8: ECO Physical Synthesis
Flow.

Place ECO gates

ECO Electrical
Correction

Further
Optimization

Identify Extended
ECO Region

Place ECO gates

ECO Electrical
Correction

Further
Optimization

Identify Extended
ECO Region

7. Conclusion
We presented a novel logic ECO approach that uses synthesized

versions of the ECO and original netlists to find potentially
substitutable pairs of points in logic known as correspondence pairs.
We presented methods by which good functional correspondences
can be derived using these or other guessed correspondence pairs to
drastically reduce the logic changes needed to synthesize an ECO.
We then incorporated our method into an industrial ECO physical
synthesis flow. Results show that our method produces improved
timing and significantly smaller design perturbation than previous
methods.

8. REFERENCES
[1] S. Krishnaswamy, H. Ren, S. Modi, and R. Puri, “DeltaSyn: An efficient

logic difference optimizer for ECO synthesis,” ICCAD 2009, pp.789-P796.
[2] D. Brand, A. Drumm, S. Kundu, P. Narain, “Incremental Synthesis,”

ICCAD 1994, pp. 14-18.
[3] C-C. Lin, K-C. Chen, M. Marek-Sadowska, “Logic Synthesis for

Engineering Change,” TCAD, vol. 18, no. 3, March 1999, pp. 282-292.
[4] L. Trevillyan, D. Kung, R. Puri, et al. , “An Integrated Environment for

Technology Closure of Deep-Submicron IC Designs,” IEEE Design and
Test, vol. 21, no. 1, Jan-Feb 2004, pp. 1422.

[5] C. J. Alpert, S. Karandikar, Z. Li, G. J. Nam, S. Quay, H. Ren, C. Sze, P.
Villarrubia, and M. Yildiz, “The Nuts and Bolts of Physical Synthesis,”
International Workshop on System Level Interconnect Prediction 2007, pp.
89-94

[6] J.A. Roy, I.L. Markov, “ECO-System: Embracing the Change in
Placement,” TCAD, vol. 26, no. 12, Dec. 2007, pp. 2173-2185.

[7] H. Ren, D. Z. Pan, C. J. Alpert and P.Villarrubia, “Diffusion-based
Placement Migration,” DAC 2005, pp. 515-520.

[8] J. Cong and M. Sarrafzadeh, “Incremental Physical Design”, ISPD 2000,
pp. 84-92.

[9] M. Cho, H. Ren, H. Xiang, R. Puri, “History-based VLSI Legalization
Using Network Flow,” DAC 2010, pp.286-291

[10] A. C. Ling, S. D. Brown, J. Zhu, S. Safarpour, “Towards Automated ECOs
in FPGAs,” FPGA 2009, pp. 3-12.

[11] B.-H. Wu, C.-J. Yang, C.-Y. Huang, J.-H. R. Jiang, ”A Robust Functional
ECO Engine by SAT Proof Minimization and Interpolation Techniques,”
ICCAD 2010

[12] K.-H. Chang, I.L. Markov and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” ASPDAC 2007, pp. 944-949.

[13] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, "Error correction based on
verification techniques," DAC 1996, pp. 258-261

[14] S. Safarpour, H. Mangassarian, et al., “Improved design debugging using
maximum satisfiability,” Formal Methods in Computer-Aided Design 2007,
pp. 13–19.

[15] Y. Chen, J. Fang and Y. Chang, “ECO timing optimization using spare
cells,” ICCAD 2007, pp. 530-535.

[16] Y. Li, J. Li and W. Chen, “An efficient tile-based ECO router using
routing graph reduction and enhanced global routing flow,” TCAD, vol.26,
no.2, pp. 345-357, Feb. 2007.

[17] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,”
ICCAD 2000, pp. 236-243.

[18] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, “AutoFix: A Hybrid Tool for
Automatic Logic Rectification”, TCAD, pp. 1376-1384, Sep. 1999.

[19] Y. Watanabe and R. K. Brayton, “Incremental synthesis for engineering
change,” ICCAD 1991, pp. 40–43.

[20] A. Smith, A. Veneris and A. Viglas, “Design Diagnosis Using Boolean
Satisfiability”, ASPDAC 2004, pp. 218-223.

[21] H.-T. Liaw, J.-H. Tsaih, and C.-S. Lin, “Efficient automatic diagnosis of
digital circuits,” ICCAD 1990, pp. 464–467.

[22] C.-C. Lee, J.-H. R. Jiang, C.-Y. R. Huang, and A. Mishchenko, “Scalable
exploration of functional dependency by interpolation and incremental
SAT solving,” ICCAD 2007, pp. 227–233.

[23] V. Manohararajah, D. P. Singh, and S. D. Brown, “Post-placement BDD-
based decomposition for FPGAs,” International Conference on Field-
Programmable Logic and Application, Aug. 2005, pp. 31–38.

[24] L. Stok, D.S. Kung, D. Brand, et al., “BooleDozer: Logic Synthesis for
ASICs,” IBM Journ. of R&D, vol 40, no. 4, July 1996.

[25] N. Sorensson and N. Een, "Minisat v1. 13-a sat solver with conflict-clause
minimization," in SAT Competition, 2005.

[26] K.-H. Ho, J.-H. R. Jiang, Y.-W. Chang, “TRECO: Dynamic Technology
Remapping for Timing Engineering Change Orders”, ASPDAC 2010, pp.
331-336.

[27] A. Kuehlmann, “Dynamic transition relation simplification for bounded
property checking,” ICCAD 2004, pp. 50-57

[28] D. Rude, Personal Communication, Design Engineer, IBM Systems &
Technology Group, August, 2010

[29] K-F. Tang, C-A. Wu, P-K. Huang, C-Y. Huang, “Interpolation-based
incremental ECO synthesis for multi-error logic rectification”, DAC 2011,
pp.146-151

0%

50%

100%

150%

200%

250%

300%

350%

TNS WNS Add Delete Change

K=0
K=1
K=2
K=3
K=5

Table 2: ECO Physical Synthesis Statistics on IBM Benchmark
macro WNS

(ps）
TNS
(ps)

ECO physical synthesis from DeltaSyn ECO physical synthesis from INTUIT

WNS TNS A# D# C# CPU WNS TNS A# D# C# CPU

M1 -32.6 -2073.7 -22.1 -1023.2 155 5 28 201 -22.2 -1059.9 163 4 26 186
M2 -2.6 -2.6 -2.6 -2.6 40 27 32 165 -2.7 -2.7 52 38 24 150
M3 -1.3 -1.3 -1.3 -1.3 10 0 25 191 -1.4 -1.4 10 0 25 183
M4 -18.8 -87.9 -18.8 -71.2 104 291 225 278 -18.8 -85.9 19 19 231 259
M5 -4.3 -4.31 -9.7 -14.0 4 48 30 198 -4.3 -4.3 3 35 30 190
M6 -35.4 -1502.6 -17.9 -451.2 552 209 154 219 -17.9 -673.5 118 7 24 177
M7 1.9 0 -33.7 -871.3 1184 361 1103 999 8.7 0 58 17 115 488
M8 -46.3 -116.0 -46.3 -126.0 1035 763 238 500 -46.3 -116.0 14 8 29 271
M9 -15.7 -64.3 -20.6 -69.2 147 106 39 291 -15.7 -64. 35 12 39 287

M10 2.6 0 -129.1 -4069.6 1019 665 21 889 -12.8 -30.1 36 20 21 245
M11 -45.5 -121.2 -45.5 -124.7 716 423 132 1224 -45.5 -121.2 212 47 32 1153
M12 -6.1 -54.6 3.3 0 2920 1593 638 1457 3.3 0 536 349 179 767

SUM -204.1 -4028.51 -344.3 -6824.3 7886 4491 2665 6612 -175.6 -2159 1256 556 775 4356

Figure 10: QoR and Perturbation Tradeoff on K

