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Abstract—In this paper, we investigate how to use the complete
flexibility of P-circuits, which realize a Boolean function by
projecting it onto overlapping subsets given by a generalized
Shannon decomposition. It is known how to compute the complete
flexibility of P-circuits, but the algorithms proposed so far for its
exploitation do not guarantee to find the best implementation,
because they cast the problem as the minimization of an incom-
pletely specified function. Instead, here we show that to explore
all solutions we must set up the problem as the minimization
of a Boolean relation, because there are don’t care conditions
that cannot be expressed by single cubes. In the experiments
we report major improvements with respect to the previously
published results.

I. INTRODUCTION

Logic optimization of digital circuits explores different
realizations of a logic circuit to improve design parameters
like area, speed, power consumption, etc. This goal is achieved
exploiting both the flexibility allowed by the specification
(external don’t care conditions), and the internal or structural
flexibility due to the specific structure of the implementation
(e.g., satisfiability don’t cares to model limited controllability,
and observability don’t cares to model limited observability).

An interesting case of structural flexibility arises when
the outputs of some Boolean functions are combined by a
disjunction, because if a single function produces the value 1
for some input combinations, we do not care about the output
values produced by the remaining functions for such input.

In this context, decompositions with respect to specific
critical variables are suitable to move the signals with the
highest switching activity closer to the outputs (for low power
consumption), or to move late-arriving signals closer to the
outputs (to decrease worst-case delay). To favor area minimiza-
tion while pushing signals ahead in the circuit, extended forms
of Shannon cofactoring, P-circuits, were investigated in [1],
[2], [3], where the expansion is with respect to an orthogonal
basis xi ⊕ p (i.e., xi = p), and xi ⊕ p (i.e., xi 6= p), where
p is a function defined over all variables except the critical
variable xi.

Let fxi=p and fxi 6=p be the projections of a function f
onto xi = p and xi 6= p, and let I = fxi=p ∩ fxi 6=p be
the points common to the two projections. A function f can
be decomposed into three Boolean functions combined by a
disjunction: f = (xi ⊕ p)f= + (xi ⊕ p)f 6= + f I , where f= ⊆
fxi=p, f 6= ⊆ fxi 6=p, and f I ⊆ I . The circuits synthesized
according to this structure are called P-circuits when the blocks
f=, f 6=, and f I are realized by sums-of-products. Shannon
decomposition corresponds to the special case where p = 0,
f= = fxi=p, f 6= = fxi 6=p, and f I = ∅.

While the cofactoring variable xi is chosen among the
most critical variables, the selection of a suitable p for a given
function is still an open and interesting problem.

In this paper, we address the problem of computing and
using the complete flexibility of P-circuits, for which the
previous disjunctive paradigm applies because, if a point q of
f is covered in one set (f=, f 6=, or f I ), q may be considered
as a don’t care in the other sets containing it.

The computation of the complete flexibility of P-circuits
has been already described in the literature [1], [2], [3], but the
algorithms proposed so far for its exploitation may fail to find
the best implementation, because they cast the optimization
problem as the minimization of an incompletely specified
function. Instead, in this paper we show that to explore all
solutions we must set up the problem as the minimization of
a Boolean relation, because there are combinations of don’t
care conditions that cannot be expressed by single cubes. In
this paper we then model the optimal P-circuit decomposition
problem by means of Boolean relations, we implement the
algorithm and report major improvements with respect to the
previously published results. In fact, the P-circuits synthesized
with Boolean relations are more compact then the correspond-
ing P-circuits proposed in [3] in about 92% of our experiments,
with an average gain in area of 33%.

The paper is organized as follows. Section II introduces
P-Circuits. Section III describes how to minimize P-Circuits
using Boolean relations. Experiments on a set of benchmarks
are reported in Section IV, and Section V concludes the paper.

II. P-CIRCUITS

A P-circuit is a network where the dependence on a given
variable xi (e.g., the variable with more switching activity
or with higher delay) is projected away from the rest of the
circuit. In this section we first briefly review the P-circuits
based on SOP minimization [1], [2], [3]. We then give a new
formulation of the associated minimization problem, both for
completely and incompletely specified functions, better suited
to be formalized via Boolean relations.

A. Completely Specified Functions

Let f be a completely specified Boolean function de-
pending on the set {x1, . . . , xn} of n binary variables. The
classical Shannon decomposition f = xif |xi

+ xif |xi
, and

the more general EXOR-based decomposition ([4], [5]) f =
(xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p (where p is a function non-� � � � � � � � � � � � � � � � � � 	 
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Fig. 1. A function f (a), the corresponding projected functions
f |x3=x4

and f |x3 6=x4
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Fig. 2. More refined decompositions for the function in Fig. 1.

depending on xi)
1 are suitable for keeping xi separated from

the rest of the circuit, but are not oriented to area minimization.
In fact, f |xi=p, and f |xi 6=p do not depend on the variable xi,
but the cubes of f intersecting both subsets xi = p and xi 6= p
are split into two smaller subcubes when they are projected
onto f |xi=p, and f |xi 6=p, respectively. For example, consider
the function f in Figure 1 (a), the variable xi = x3 and the
simple function p(x1, x2, x4) = x4. The projection of f w.r.t.
x3 = x4 and x3 6= x4 are depicted in Figures 1 (b) and (c),
respectively. We note that the cube x1x2x4 of f is split into two
separate minterms x1x2x4 and x1x2x4 in the two projected
functions f |x3=x4

and f |x3 6=x4
(Figures 1 (b), (c)).

To overcome this problem, in P-circuit synthesis, we keep
unprojected some of the points of the original function. For
this purpose, let I = f |xi=p∩f |xi 6=p be the intersection of the
two cofactors f |xi=p and f |xi 6=p. Note that the intersection
I contains the cubes whose products do not contain xi and
that cross the two sets. Therefore, in order to overcome the
splitting of these crossing cubes, we could keep I unprojected,
and project only the minterms in f |xi=p \ I and f |xi 6=p \ I ,
obtaining the expression f = (xi ⊕ p)(f |xi=p \ I) + (xi ⊕
p)(f |xi 6=p \ I) + I . Note that p, f |xi=p \ I , f |xi 6=p \ I and
I do not depend on xi. Following the previous example, see
Figures 2 (a), (b), and (c).

However, the points that are in I could be exploited to form
bigger cubes in the projected sets. For example, the point 001
of I would be useful for forming the cube x1x4 in f |x3 6=x4

\I ,
see Figure 2 (b), indeed such cube was originally in f |x3 6=x4

,
see Figure 1 (c). Therefore, if a point is in I and is useful
for a better minimization of the projected parts, it can be kept
both in the projection and in the intersection (see, for example,
the point 001 in Figures 2 (e) and (f)). Moreover, if a point is
covered in both the projected sets it is not necessary to cover it
in the intersection. In our example, the point 100 of I is used

1Note that the Shannon decomposition is a particular EXOR-based decom-
position where p=0.

for forming bigger cubes in both the projections (Figures 2
(d) and (e)), thus it can be removed from the intersection (see
Figure 2 (f)).

In the following, we indicate a SOP circuit implementing a
Boolean function f with S(f), and we denote optimal circuits
(in the sense of two-level minimization) with a star, as S∗(f).

From the previous observations, we can infer that the
projected sub-circuits should cover at least f |xi=p \ I and
f |xi 6=p \ I , and must be contained in f |xi=p and f |xi 6=p,
respectively. Moreover, the part of the circuit that is not
projected should be contained in the intersection I .

In summary, we rephrase the definition of a P-circuit given
in [3] as follows.

Definition 1: A P-circuit of a completely specified func-
tion f is the circuit P (f) denoted by the expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)
where

1) (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2) (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p

3) ∅ ⊆ f I ⊆ I
4) P (f) = f

Therefore, the synthesis idea of P-circuits is to construct a
network for f by appropriately choosing the sets f=, f 6=, and
f I as building blocks. The cofactors and the intersection can
be synthesized in any framework of logic minimization. Here
we focus on the standard SOP synthesis. Thus, we represent
f=, f 6=, and f I as sums of products.

For example, the expression P (f) = (x3 ⊕ x4)(x1x2 +
x1x4)+(x3⊕x4)(x1x4)+x1x2x4 is a P-circuit for the function
f defined in Figure 1 (a). P (f) is derived from the functions
f=, f 6=, and f I in Figures 2 (d), (e), and (f).

An optimal P-circuit P ∗(f) for the function f is a P-circuit
with minimum cost that can be synthesized for f . The P-circuit
described in the previous example is an optimal P-circuit w.r.t.
the number of literals in the SOP forms.

B. Incompletely Specified Functions

Consider now an incompletely specified Boolean function
f = {fon, fdc}. For the sake of simplicity, suppose that fon∩
fdc = ∅; otherwise, following the usual semantics, we consider
fon \ fdc as the on-set of f . Let I be the intersection of the
projections of f onto the two sets xi = p and xi 6= p:

I = (fon|xi=p ∪ fdc|xi=p) ∩ (fon|xi 6=p ∪ fdc|xi 6=p).

We generalize the definition of P-circuit in the following way.

Definition 2: A P-circuit of an incompletely specified
function f = {fon, fdc} is the circuit P (f) denoted by the
expression:

P (f) = (xi ⊕ S(p))S(f=) + (xi ⊕ S(p))S(f 6=) + S(f I)
where

1) (fon|xi=p \ I) ⊆ f= ⊆ fon|xi=p ∪ fdc|xi=p

2) (fon|xi 6=p \ I) ⊆ f 6= ⊆ fon|xi 6=p ∪ fdc|xi 6=p

3) ∅ ⊆ f I ⊆ I
4) fon ⊆ P (f) ⊆ fon ∪ fdc.



III. MINIMIZATION OF P-CIRCUITS

The problem of minimizing a Boolean function in P-circuit
form can be formulated in a very nice and clear way using
Boolean relations, as explained in the following subsections,
first for completely specified and then for incompletely speci-
fied functions.

A. Boolean Relations

In this subsection we recall the theory of Boolean relations.

The concept of Boolean relations was introduced in [6] as a
more general scheme for the incomplete specification of logic
networks. In fact, the conditions under which a multi-output
logic network can be simplified cannot always be completely
represented using don’t cares.

Definition 3 ([6]): A Boolean relation is a one-to-many
multi-output Boolean mapping R : Bn → B

m, where B =
{0, 1}. Bn and B

m are called the input and output sets of R.

A Boolean relation R can be considered a generalization of
a Boolean function, where a point in the input set Bn can be
associated with several points in the output set B

m; indeed,
because of the one-to-many nature of Boolean relations, there
may be several equivalent outputs for a given input. Also,
notice that R is a subset of the Cartesian product Bn × B

m.

A relation R is well-defined if for all x ∈ B
n, there is

y ∈ B
m such that (x, y) ∈ R. A well defined Boolean relation

is functional if every input x is associated with one and only
one output y.

To any relation R we can associate a set of compatible
multi-output Boolean functions, i.e. the set of all functions f
such that, for all inputs x ∈ B

n, f(x) is contained in the set
R(x) of the outputs related to x. In this case, we write f ⊆ R.

Definition 4 ([7]): The set of multi-output Boolean func-
tions compatible with a Boolean relation R : B

n →
B
m, is defined as F(R) = {f : B

n → B
m | f ⊆

R and f is a function}.

The problem of the optimal implementation of a Boolean
relation R is the one of selecting, among the possible functions
compatible with R, one of minimum cost according to a given
metric. More precisely

Definition 5 ([7]): The solution of a Boolean relation R
is a multi-output Boolean function f ∈ F(R). The function f
is an optimal solution of R according to a given cost function
c, if for all f ′ ∈ F(R), c(f) ≤ c(f ′).

Several exact and heuristic algorithms have been proposed
for solving Boolean relations (see [7] for an overview of these
methods, and for bibliographic references). For our particular
minimization problem, we used the recursive algorithm pro-
posed in [7] because of its ability in finding better solutions in
shorter runtime than the previously known methods. In fact,
this recursive solver is very efficient and able to explore a
wide space of solution. Moreover it can be used both in an
exact and heuristic mode and its cost function can be tuned for
different parameters related to area or delay, when minimizing
the relation.

B. Completely Specified Functions

Let f be a completely specified Boolean function depend-
ing on n variables, xi one input variable, and p a function
depending on all input variables of f but xi. Consider the
two cofactors f |xi=p and f |xi 6=p, obtained by projecting f
onto the sets xi = p and xi 6= p, and their intersection
I = f |xi=p ∩ f |xi 6=p.

As recalled in Section II, in order to minimize f in P-
circuit form, we must find a refinement of the starting partition
of the minterms of f into the three disjoint sets f |xi=p \ I ,
f |xi 6=p\I and I . This refinement, which leads to the three new

sets f=, f 6=, and f I , consists in (i) adding back some points
of I to f |xi=p \ I or f |xi 6=p \ I , precisely the points that could
be used to obtain bigger cubes in their SOP representation,
and (ii) eventually subtracting from I some of the points in
the intersection of the refined cofactors, in order to find a
more compact SOP representation for the intersection set. The
final P-circuit for f is then given by three minimal SOPs
representing f=, f 6=, and f I , opportunely combined with a
minimal SOP for p.

So, the problem to solve is that of finding the sets
(f=, f 6=, f I) that lead to a P-circuit of minimal cost, according
to a given cost metric. We now show how this problem can
be nicely formalized and efficiently solved using Boolean rela-
tions. Our aim is to define a relation R whose set of compatible
functions F(R) have implementations corresponding exactly
to the set of all possible P-circuits for f , so that an optimal
solution of R is an optimal P-circuit P ∗(f) for f .

Let Rf : B
n−1 → B

3 be a Boolean relation,
whose input set is the space spanned by the variables
x1 . . . xi−1xi+1 . . . xn, while the output set describes all pos-
sible tuples of functions f=, f 6=, f I defining a P-circuit for f .
From Definition 1, we can observe that the sets f |xi=p \ I
and f |xi 6=p \ I must be always contained in f= and f 6=,
respectively. Thus, all points in f |xi=p \I are associated to the
output 100, and all points in f |xi 6=p \ I are associated to the
output 010 of Rf . Moreover, we can also note that the possible
P-circuit implementations of f differ in the distribution of the
points of I among the three sets f=, f 6=, f I . In particular,
each minterm in I can be associated to one of the following
outputs of Rf :

• 001 if it belongs only to f I , that is, it has been kept
in I , and not added to f= and f 6=;

• 101 if it has been added to f= and it is kept in I;

• 011 if it has been added to f 6= and it is kept in I;

• 111 if it has been added to f= and f 6=, and it is kept
in I;

• 110 if it has been added to f= and f 6=, and it is
removed from I .

The possible outputs corresponding to the points in I can be
represented in a compact way using don’t cares: − − 1 and
11−. Indeed, if a point is covered in the intersection set, then
it becomes a don’t care point in the two projection sets xi = p
and xi 6= p, while if it is covered in both projection sets, it
becomes a don’t care for I . Since all points of I must be
covered either in f I , or both in f= and f 6=, all other possible



output choices for I would not define a P-circuit for f . The
relation Rf can therefore be defined as follows:

x1 . . . xi−1xi+1 . . . xn Rf

points in f |xi=p \ I 100
points in f |xi 6=p \ I 010

points in I {− − 1, 11−}
all other points 000

Observe that Rf is truly a relation, as it is not functional on
the points of I .

With this formalism, we can rephrase our minimization
problem as the problem of finding an optimal implementation
of Rf , that is, of selecting among all possible three-output
functions compatible with Rf , each corresponding to a tuple

f=, f 6=, and f I , the one whose overall SOP representation is
minimal.

For example, consider the function in Figure 1, and its
projections over the sets x3 = x4 and x3 6= x4. The inter-
section between the two cofactors f |x3=x4

= {001, 110, 100}
and f |x3 6=x4

= {001, 011, 100, 101} contains two points
{001, 100}. Thus we have I = {001, 100}, f |x3=x4

\ I =
{110}, f |x3 6=x4

\I = {011, 101}. The corresponding relation is

x1x2x4 Rf

001 {11−,−− 1}
011 010
100 {11−,−− 1}
101 010
110 100

where all missing points are associated to the output 000. It
can be verified that among all functions compatible with Rf ,
the one whose overall SOP representation is minimal (w.r.t.
the number of literals) is

x1x2x4 (f=, f 6=, f I)
001 0 1 1
011 0 1 0
100 1 1 0
101 0 1 0
110 1 0 0

that defines precisely the sets f=, f 6= and f I shown in
Figures 2 (d), (e), and (f).

C. Incompletely Specified Functions

Let us now consider the P-circuit minimization of in-
completely specified functions. The construction of Rf must
consider more cases. In fact, the possible P-circuit implemen-
tations depend not only on the distribution of the points of I
among the three sets f=, f 6=, f I , but also in the handling of
the don’t care points of the two cofactors, as we can use them
to build bigger cubes in the two projection spaces xi = p and
xi 6= p, and possibly in the intersection I .

To correctly define the relation Rf we must partition
the input set B

n−1 into nine subsets, each corresponding to
a combination of the values {0, 1,−} assumed by the two
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Fig. 3. Outputs for the relation Rf when f is an incompletely
specified function.

cofactors f |xi=p and f |xi 6=p, as shown in Figure 3. Given
x ∈ B

n−1, we have the following cases:

1) [f |xi=p(x) = 0, f |xi 6=p(x) = 0]
x is a point of both off-sets, thus Rf (x) = 000.

2) [f |xi=p(x) = 0, f |xi 6=p(x) = 1]
Definition 2 immediately implies that Rf (x) = 010.

3) [f |xi=p(x) = 1, f |xi 6=p(x) = 0]
As before, Definition 2 implies that Rf (x) = 100.

4) [f |xi=p(x) = −, f |xi 6=p(x) = 0]
The don’t cares of f |xi=p, corresponding to zeros of
the other cofactor, can be exploited to get a smaller
SOP form for f=, thus we pose Rf (x) = −00.

5) [f |xi=p(x) = 0, f |xi 6=p(x) = −]
As before, the don’t cares of f |xi 6=p, corresponding
to zeros of f |xi=p, can be exploited to get a smaller

SOP form for f 6=, thus we pose Rf (x) = 0− 0.
6) [f |xi=p(x) = 1, f |xi 6=p(x) = 1]

The points in the intersection between the on-sets of
the two cofactors can be treated exactly as done for
completely specified functions, so we have Rf (x) =
{− − 1, 11−}.

7) [f |xi=p(x) = 1, f |xi 6=p(x) = −]
For each point x in the on-set of f |xi=p and in the
don’t care set of f |xi 6=p we have two choices: either it
is covered in the projection set xi = p, thus becoming
a don’t care point in both the intersection and the
other projection set xi 6= p, or it can be covered in
the intersection and be a don’t care in both projection
sets. Thus, we pose Rf (x) = {1−−,−− 1}.

8) [f |xi=p(x) = −, f |xi 6=p(x) = 1]
Analogously, for each point x in don’t care set of
f |xi=p and in the on-set of f |xi 6=p, we pose Rf (x) =
{−1−,−− 1}.

9) [f |xi=p(x) = −, f |xi 6=p(x) = −]
Finally, don’t cares of both cofactors can be used as
don’t cares in all the sets, i.e., Rf (x) = −−−.

As for completely specified functions, we can rephrase the
synthesis of an incompletely specified function f in P-circuit
form as the problem of finding an optimal implementation of
Rf , i.e., of selecting among all possible three-output functions

compatible with Rf , the one defining a tuple f=, f 6=, and f I

whose overall SOP representation is minimal.



D. Optimality Issues

We now show that the set F(Rf ) of all three-output
functions compatible with the relation Rf specifies exactly

the set of all tuples f=, f 6=, and f I defining a P-circuit
for a Boolean function f , so that an optimal solution of Rf

is an optimal P-circuit P ∗(f) for f . We consider only the
problem of minimizing an incompletely specified function in
P-circuit form, since it subsumes the problem of minimizing
a completely specified function, whose don’t care set is just
the empty set. Due to space limitations, formal proofs will be
discussed in the extended version of this paper.

Let f be an incompletely specified Boolean function, xi

an input variable, and Rf the Boolean relation constructed as
explained before. For simplicity, we only consider the case
p = 0, where p does not need any minimization (note that the
experimental results in [1] show that the best choice for the
projection function p is the simplest p = 0). Recall that the
three output variables of Rf are used to describe the tuple of

functions f=, f 6=, and f I defining a P-circuit for f : the first
two outputs define f= and f 6=, and the third defines f I . Thus,
each function in F(Rf ) corresponds to a possible tuple.

Theorem 1: The set F(Rf ) of three-output functions com-
patible with the relation Rf defines exactly the set of tuples

f=, f 6=, and f I occurring in all possible P-circuit implemen-
tations of f .

We finally state that under the hypothesis that the projection
function p is the constant function p = 0, an optimal solution
of Rf provides an optimal P-circuit for f .

Corollary 1: For p = 0, the optimal solution of the
Boolean relation Rf , according to a given cost function µ
chosen to evaluate the circuits P (f), defines an optimal P-
circuit P ∗(f) for the function f w.r.t. the same cost function µ.

The general case, where we project w.r.t. any given function
p, can be studied in a similar way. This issue will be discussed
in an extended version of this paper. Here we only anticipate
that the problem must be reformulated with a four output
relation whose output set describes all the possible tuples of
functions f=, f 6=, f I , and p.

IV. EXPERIMENTAL RESULTS

In this section we report the experimental results for the
P-circuits derived by the synthesis of Boolean relations. Due
to space limitations and since the experimental results in [1],
[2] show that the best choice for the projection function p is
often p = 0, we evaluate and report the area, delay and power
dissipation just for p = 0, using xi = x1. The algorithms
have been implemented in C, using the CUDD library for
OBDDs to represent Boolean functions, and BREL [7] for the
synthesis of Boolean relations since, as far as we know, it finds
better solutions in shorter runtime than the previously known
methods. The experiments were run on a Linux Intel Core i7,
3.40 GHz CPU with 8 GB of main memory. The benchmarks
are taken from LGSynth93 [8]. Multioutput benchmarks were
synthesized by minimizing each single output independently
from the others. We report in the following a significant subset
of the functions as representative indicators of our experiments.

To evaluate the obtained circuits, we ran them using the
SIS system with the MCNC library for technology mapping

and the SIS command map -W -f 3 -s. To show the
gain in area of P-circuits derived using Boolean relations,
we compare our results with the algorithm based on don’t
cares reported in [3]. To highlight the importance of projecting
the intersection, we report also the results regarding circuits
decomposed with standard Shannon decomposition (therefore
without any intersection), called here S-circuits. We compare
our results also with plain SOP forms, whose minimization
does not even take into account the critical variable xi. The
SOP circuits and the projections of the SOP components of
the S-circuits have been synthesized using ESPRESSO in the
heuristic mode.

In Table I we compare synthesis time (in seconds), mapped
area and delay of P-circuits, S-circuits, and SOP forms for
a significant subset of the benchmarks. The first column
reports the name of the benchmarks and the number of their
inputs and outputs. The following ones report, by groups
of three, the synthesis times in seconds, and the areas and
delays estimated by SIS. The first two groups, labeled P-
circuit µL and P-circuit µBDD, refer to P-circuits synthesized
with the new algorithm based on Boolean relations with cost
function µL that minimizes the number of literals, and µBDD

that minimizes the size of the BDDs used to represent the
relations. The next group refers to P-circuits synthesized with
the minimization strategy proposed in [3]. The last two groups
provide the results for S-circuits and SOP forms. For each
benchmark we underline in bold the circuit that exhibits better
area results.

The results show that modeling the P-circuit minimization
problem using Boolean relations pays significantly. In fact, P-
circuits synthesized with Boolean relations (P-circuit µL and
P-circuit µBDD) turned out to be more compact than the
corresponding P-circuits proposed in [3] in about 92% and
78% of our experiments, respectively. The area gain of P-
circuits synthesized with Boolean relations and cost function
µL (µBDD) is 33% (25%) in the average w.r.t. P-circuits in [3].
Several benchmarks have gain above 60% (see, for example
m4 with 66% of gain for µL and 63% for µBDD). The area
gain w.r.t. SOP forms is also very interesting, since P-circuits
are designed for dealing with critical variables and thus area
is of secondary importance. The P-circuits synthesized with
Boolean relations and cost function µL (µBDD) are more
compact then the corresponding SOP forms in about 72%
(60%) of our experiments, with an average gain in area of
26% (18%).

Comparing the performances of the two new algorithms to
the P-circuit algorithm proposed in [3], we can notice how the
cost function can be critical: µL can be quite time-expensive
(4214% penalty in computational time, on average, w.r.t. [3]),
while µBDD is the best-performing algorithm (56% gain in
computational time, on average, w.r.t. [3]). For a complete
comparison of average gains see Table II. We can observe that
the algorithm based on Boolean relations with cost function
µBDD exhibits the best trade-off between area minimization
and computational time.

To evaluate power dissipation, the circuits were synthesized
using the following equal-delay gates in a 180 nm CMOS
technology: inverter, 2,3,4-input NAND, 2,3,4-input NOR and
2-input XOR gates. Since in CMOS technology at 180 nm
the switching power is the predominant component of the



TABLE I. SYNTHESIS TIME (IN SECONDS), MAPPED AREA AND DELAY OF P-CIRCUITS, S-CIRCUITS, AND SOP FORMS.

Benchmark P-circuit µL P-circuit µBDD P-circuit [3] S-circuit SOP

(in/out) Time Area Delay Time Area Delay Time Area Delay Time Area Delay Time Area Delay

b10 (15/11) 9.75 850 39.1 0.18 938 38.7 0.05 1067 42.0 0.07 1113 47.5 0.01 881 45.2

b2 (16/17) 103.82 3591 68.2 1.68 3757 69.9 0.66 4479 82.8 10.19 6281 115.4 0.01 3957 73.0

b3 (32/20) 168.10 949 28.4 0.13 1002 29.5 0.93 1134 39.0 0.82 1284 40.1 0.03 1095 44.7

ex1010 (10/10) 50.65 2923 81.0 0.61 4170 96.1 0.39 4271 102.3 0.58 4818 113.5 0.31 4254 95.1

ex4 (128/28) 18.51 800 21.8 1.15 1099 27.3 0.22 806 25.0 0.40 1520 29.6 0.10 801 25.0

exam (10/10) 5.78 408 30.0 0.14 475 28.8 0.08 655 29.0 0.12 617 32.7 0.07 526 31.8

exep (30/63) 1.89 1305 30.5 0.03 1315 28.5 0.04 1347 31.6 0.07 1321 30.5 0.01 1275 36.1

gary (15/11) 11.98 1000 41.1 0.19 1096 44.9 0.04 1189 44.9 0.04 1304 50.3 0.01 1030 53.9

ibm (48/17) 13.33 741 30.1 0.58 1117 35.4 0.04 741 30.1 0.08 1368 42.9 0.01 700 29.0

in3 (35/29) 4.32 929 34.5 0.15 968 36.2 0.06 1157 35.8 0.04 1153 38.6 0.01 1111 34.1

in4 (32/20) 167.37 1002 28.5 0.13 1055 29.6 0.77 1192 38.0 0.56 1331 40.2 0.02 1077 44.8

jbp (36/57) 4.42 1059 33.8 0.16 1310 35.4 0.05 1193 38.6 1.38 1690 40.0 0.02 1115 35.9

m4 (8/16) 7.20 783 36.6 0.01 849 39.5 0.02 2274 71.4 0.02 2766 85.3 0.03 1778 54.2

mainpla (27/54) 338.55 15118 205.1 6.58 15610 217.5 12.17 26531 345.9 337.04 24421 335.2 0.08 25529 371.0

max1024 (10/6) 33.96 1408 47.3 0.02 1554 58.4 0.08 2755 70.6 0.07 2534 75.2 0.14 1690 53.7

misg (56/23) 1.38 153 18.2 0.04 167 18.2 0.01 153 18.2 0.04 348 23.0 0.01 152 18.2

mish (94/43) 0.54 168 10.0 0.07 207 10.0 0.09 168 10.0 0.29 427 13.9 0.01 168 9.4

misj (35/14) 0.52 81 9.7 0.03 125 9.1 0.01 81 8.9 0.01 184 13.9 0.01 81 8.9

pdc (16/40) 1.83 683 26.8 0.03 722 26.4 0.40 1555 46.8 0.53 826 34.7 0.44 1633 44.0

prom2 (9/21) 18.61 4612 115.1 0.01 4905 117.0 0.42 7462 171.4 0.24 7226 175.1 0.18 6775 185.1

spla (16/46) 3.24 1826 50.6 0.01 1935 50.7 0.17 2284 59.9 0.15 2239 53.8 0.21 2470 68.6

ts10 (22/16) 43.40 942 36.5 0.50 1410 44.9 0.17 942 36.5 0.16 1806 66.1 0.01 901 35.2

vg2 (25/8) 5.15 577 22.8 0.06 632 23.9 0.01 603 23.2 0.01 546 25.6 0.01 341 18.6

x6dn (39/5) 10.64 760 30.8 0.26 788 31.6 0.01 874 35.9 0.01 885 35.1 0.01 762 31.2

x7dn (66/15) 64.15 2378 51.1 0.01 2478 51.8 0.51 2501 63.8 0.54 2371 49.9 0.12 1544 46.1

x9dn (27/7) 3.30 412 24.1 0.04 425 24.5 0.02 412 24.1 0.02 530 27.9 0.01 384 23.0

xparc (41/73) 84.08 9175 121.2 0.32 9280 126.9 0.51 13478 187.3 0.53 13357 180.4 0.14 12678 168.8

TABLE II. AVERAGE GAIN OF P-CIRCUITS BASED ON BOOLEAN

RELATIONS

P-circuit µL P-circuit µBDD

Average gain Time Area Delay Time Area Delay

w.r.t. S-circuit -383% 37% 29% 95% 30% 25%

w.r.t. P-circuit [3] -4214% 33% 24% 56% 25% 20%

w.r.t. SOP -39412% 26% 19% -304% 18% 14%

overall power consumption, our model takes into account only
this component. The circuits were analyzed with two different
average values of input transition rates, giving a high-density
switching activity for just one known signal (in our case x1)
and a low-density activity for all other signals. The number of
input logic transitions for the high-density switching activity
signal is approximately one hundred times larger than the
number of input logic transitions for the low-density switching
activity signals. The circuits have been simulated at transistor
level using SPECTRE on a 1600 MHz Pentium 4 workstation.

TABLE III. COMPARISON OF POWER DISSIPATION

P-circuit µL P-circuit µBDD

w.r.t. S-circuit 65% 61%

w.r.t. P-circuit [3] 13% 13%

w.r.t. SOP 44% 62%

Table III summarizes the results obtained using Boolean
relations. The power consumption of P-circuits synthesized
with Boolean relations (P-circuit µL and P-circuit µBDD) is
lower than the power consumption of the corresponding P-
circuits proposed in [3] in about 13% of our experiments. This
percentage goes up if we compare P-circuits synthesized with
Boolean relations against SOPs and S-circuits.

In summary, from Tables II and III, we observe that the
P-circuits synthesized with the algorithm based on Boolean re-
lations with cost function µBDD are a good trade-off between
power dissipation, area/delay, and computational time.

V. CONCLUSION AND FUTURE WORK

We addressed the problem of exploiting the complete
flexibility of P-circuits, showing that to explore all possible
solutions one must cast the problem as one of minimizing a
Boolean relation. In the experiments we report major improve-
ments with respect to the previously published results. Future
work includes investigating the impact of using more general
cofactoring p functions, and addressing simultaneously multi-
ouput functions trading-off quality of results vs. scalability.
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[7] D. Bañeres, J. Cortadella, and M. Kishinevsky, “A Recursive Paradigm
to Solve Boolean Relations,” IEEE Transactions on Computers, vol. 58,
no. 4, pp. 512–527, 2009.

[8] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronic Center, User Guide, 1991.


