
Low Cost Permanent Fault Detection Using
Ultra-Reduced Instruction Set Co-Processors

Sundaram Ananthanarayan1, Siddharth Garg2, and Hiren D. Patel2
1Stanford University, Stanford, CA, USA

2University of Waterloo, Waterloo, ON, Canada
Email: sananth2@stanford.edu, s6garg@ecemail.uwaterloo.ca, hdpatel@ecemail.uwaterloo.ca

Abstract—In this paper, we propose a new, low hardware
overhead solution for permanent fault detection at the micro-
architecture/instruction level. The proposed technique is based
on an ultra-reduced instruction set co-processor (URISC) that,
in its simplest form, executes only one Turing complete instruction
— the subleq instruction. Thus, any instruction on the main core
can be redundantly executed on the URISC using a sequence of
subleq instructions, and the results can be compared, also on
the URISC, to detect faults. A number of novel software and
hardware techniques are proposed to decrease the performance
overhead of online fault detection while keeping the error detec-
tion latency bounded including: (i) URISC routines and hardware
support to check both control and data flow instructions; (ii)
checking only a subset of instructions in the code based on a
novel check window criterion; and (iii) URISC instruction set
extensions. Our experimental results, based on FPGA synthesis
and RTL simulations, illustrate the benefits of the proposed
techniques.

I. INTRODUCTION

Technology scaling has resulted in an increased rate of
permanent hardware faults that arise because of number of
failure mechanisms including bias temperature instability and
electro-migration. Since many of these failure mechanisms
manifest in-field, they cannot be detected or corrected using
post-fabrication test techniques. If left unaddressed, in-field
permanent faults can lead to a significant degradation in the
reliability and dependability of next-generation computing sys-
tems. Thus, developing on-chip techniques for online detection
of in-field permanent faults and subsequent fault recovery has
become a critical design challenge.

The features desired from a practical online fault detection
mechanism are: (i) low area and performance overhead, (ii)
high fault coverage, (iii) low error detection latency, and (iv)
support for fault diagnosis and recovery. However, a majority
of the previously proposed micro-architectural techniques for
online permanent fault detection do not simultaneously achieve
all these objectives.

First, techniques in which a redundant copy of the main
processor is used as a checker to verify execution on the main
core suffer from 2× or more area overhead [1], [2]. We note
that because the DIVA architecture [3] uses a simple in-order
processor as a checker core, it would have a 2× or more
overhead if the main core is itself a simple in-order processor.
In addition to the high area overhead, using a redundant copy
of the main core as a checker suffers from a “who checks

978-3-9815370-0-0/DATE13/ c©2013 EDAA

Fig. 1: Overview of the TigerMIPS-URISC architecture and
its use for permanent fault detection.

the checker” issue for permanent faults that are systematic in
nature [4], i.e., the same fault that occurs in the main core
occurs in its redundant copy.

Second, software-only techniques have been proposed that
execute alternative encodings of an instruction on the main
core itself instead of on a redundant core [5], [6]. While effec-
tive, these techniques can not guarantee 100% fault coverage
since there exist instructions in the ISA that have no or only
partial equivalence, as shown by Foutris et al. [5]. Thus, a
fault in any of these critical instructions cannot be checked by
software recompilation, which compromises fault coverage.

The recently proposed Argus [7] and iSWAT [8] architec-
tures achieve the first three objectives by introducing low
overhead hardware that either verifies dataflow and control
flow invariants during program execution (Argus) or detects
program anomalies (iSWAT). However, the Argus and iSWAT
hardware checkers can only be used for fault detection but
not for fault recovery. In contrast to Argus and iSWAT, the
proposed technique can be used for both fault detection and
subsequent fault recovery. At the same time, the proposed
technique is competitive with Argus and iSWAT in terms of
area overhead, fault detection latency and fault coverage.

In this paper, we propose a new ISA level on-line permanent
fault detection technique that has a low area overhead, low
error detection latency and high fault coverage by making
use of an ultra-reduced instruction set co-processor (URISC)
[9] as a redundant checker core. A URISC core has only
one instruction in its ISA (the subleq instruction) but this
instruction is Turing complete and can therefore be used to

re-encode any instruction of any ISA. At the same time, since
the URISC core executes only one instruction, it consumes
very little area even when compared to a standard in-order
MIPS processor. The basic idea is illustrated in Figure 1.

II. PAPER CONTRIBUTIONS

In this paper, we propose a new online permanent fault
detection technique based on the URISC co-processor architec-
ture that has low area overhead, low detection latency and high
fault coverage. This goal is accomplished via a combination
of the following novel software and hardware techniques:
• Static insertion of URISC code to detect faults in both

data flow and control flow instructions using redundant
execution. Dedicated hardware registers are introduced
in the URISC core to ensure that control flow faults that
result in jumps to arbitrary locations in the code segment
can be detected.

• To reduce the performance overhead of fault detection,
only a subset of instructions in the program are checked
for correctness on the URISC. Instructions are selected
using a novel check window criterion to minimize the
error detection latency.

• A polynomial time algorithm, based on a reduction to
the weighted set cover problem, is proposed to pick the
minimum number of instructions to check such that the
check window criterion is met.

• URISC ISA extensions (referred to as URISC++) are
proposed that further reduce the performance overhead
of redundant execution on the checker core, while intro-
ducing minimal additional area overhead.

Our experimental results, based on a library of permanent
faults injected directly in the RTL code of a TigerMIPS
processor (main core) augmented with a URISC++ checker
core illustrate the efficacy of the proposed techniques for
practical, online, ISA level fault detection.

III. RELATED WORK

Rajendiran et al. [10] first proposed using the URISC as a
reliable co-processor for fault recovery assuming the list of
faulty instructions is known a priori. However, they do not
address the problem of online fault detection, which is the
focus of this paper.

Gizopoulos et al. [11] provide a comprehensive survey of
hardware techniques used to detect and recover from transient
and permanent faults. Hardware techniques based on dual-
and triple-modular redundancy [1], [2] introduce significant
area overheads and cannot detect systematic faults that occur
both in the main core and its redundant copy. The Diva
processor [3] provides low overhead fault detection when used
to detect faults in complex out-of-order processors, but has a
significant area overhead if the main core is itself a simple
in-order processor. Similar to [7] and [12], we focus on online
permanent fault detection for small in-order processors.

Software redundancy techniques where the main core itself
is used to perform redundant computations using duplicate or
alternate instruction encodings in the native ISA [6], [5], [13],
[14], [15] have also been proposed. However, a number of
instructions in the ISA may not have alternate encodings, and
therefore faults in these instructions cannot be checked.

Fig. 2: Checking data flow instructions. Instructions in the
shaded boxes execute on the URISC .

Argus [7] and iSWAT [8] are based on the same guiding
principle as the URISC checker core, i.e., fault detection using
low-overhead hardware. However, Argus and iSWAT can only
be used for fault detection, while the URISC co-processor, by
virtue of being Turing complete, can be used both to detect
faults (this work) and to recover from faults when they occur
(as shown by [10]).

IV. URISC BACKGROUND

For clarity of exposition, we briefly review the basic URISC
co-processor architecture proposed by Rajendiran et al. [10].
The URISC implements the capability of executing a Turing-
complete instruction called the subleq instruction. The seman-
tics for any given subleq instruction subleq ra,rb,rc is given
by the following steps: First, subtract the contents of ra from
rb, and store the result in rb. Then, if the stored result in
rb is less than or equal to zero, set the program counter to
the contents of rc. In effect, the subleq instruction performs a
subtraction, and based on the result of the subtraction jumps
to the target address specified in the rc register. Lines 1-5 in
Figure 2 illustrate how an add r1, r2, r3 instruction can be
encoded using a sequence of subleq instructions. Since the
subleq instruction is Turing complete, the URISC core can be
used as a co-processor for a main core implementing, in theory,
any ISA. In this paper, we use the architecture proposed by
Rajendiran et al. [10] which uses the TigerMIPS [16] processor
— a 5-stage pipelined implementation of the MIPS ISA — as
the main core.

V. PROPOSED METHODOLOGY

We begin by discussing the scenario in which every MIPS
instruction is checked by a corresponding sequence of subleq
instructions on the URISC core. In this context, it is important
to distinguish dataflow instructions from control flow instruc-
tions. We will discuss the two cases separately.

A. Checking Dataflow Instructions
The snippet of assembly code in Figure 2 illustrates how

a dataflow instruction, for example, an add instruction is
checked.

The URISC core first executes the instruction using a
semantically equivalent sequence of subleq instructions, after

which the instruction itself executes on the TigerMIPS. Finally,
the URISC compares its result with the result from the
TigerMIPS execution. If the results match it proceeds to the
next TigerMIPS instruction, else it jumps to a fault recovery
routine. Note that the fault recovery routine is not in the scope
of this work. In our implementation, the URISC simply halts
program execution and signals a fault in the instruction for
which the check did not succeed.

We make two observations based on the code snippet shown
above. First, we observe that the URISC check can take mul-
tiple clock cycles, thus introducing a significant performance
overhead if every TigerMIPS instruction is checked. Second,
note that the URISC check routine can detect errors both
in the ALU stage, and errors that arise from the add being
incorrectly decoded in the TigerMIPS pipeline. Other low
cost co-processor implementations, for example the Diva co-
processor, do not have the latter capability.

B. Checking Control Flow Instructions
The same technique that was used to detect faults in dataflow

instructions cannot be used for control flow instructions be-
cause a fault in a control flow instruction may cause it to
jump to an arbitrary location in the code, evading the URISC
check routine altogether. To address this issue, we propose a
low cost solution by introducing a dedicated flag register on
the URISC core. The flag register is set before the control flow
instruction executes on the TigerMIPS to indicate that a control
flow instruction is currently being checked. If the instruction
executes successfully, the URISC check code at the correct
target location unsets the flag register.

However, if the TigerMIPS control flow instruction incor-
rectly transfers execution to another section of code altogether,
the value of the flag register can be checked to detect that the
branch instruction in fact executed incorrectly. Thus before
checking its own instruction, every URISC check sub-routine
in the code first checks the value of the flag register and signals
a branch fault if the flag is set. This is illustrated using the
example in Figure 3, where the beq instruction being checked
incorrectly jumps to an add instruction instead of its correct
target address. The incorrect jump is detected by the new
flag check instruction (line 11) that has been inserted in the
beginning of the add check routine from Section V-A.

Note that, although not illustrated in Figure 3 for simplicity,
the URISC check routine also saves the branch target address
in a second dedicated flag register to compare with the target
address of the branch instruction on the TigerMIPS. This
guards against the pathological case in which the branch target
is reached via an incorrect jump from another control flow
instruction.

C. Check Window Based Instruction Sampling
If every instruction in the program is checked using the

proposed techniques, permanent faults can be immediately
detected. However, since each URISC check routines takes
multiple cycles, this would incur a significant performance
overhead. To address this issue, we propose checking only
a subset of instructions in the code — because a permanent
fault typically impacts multiple instances of an instruction
after it first appears, sampling can significantly reduce the

Fig. 3: Checking control flow instructions. Instructions in the
shaded boxes execute on the URISC .

performance overhead of fault detection while still offering low
fault detection latency and high error detection probability.

Selecting instructions based on random sampling [17] can
result in some instruction types not being checked at all which
reduces fault coverage. In addition, the distance between an
unchecked instruction and the next checked instruction of the
same type can be large, which results in greater fault detection
latency. To address these issues, we propose a new systematic,
profile-guided approach that guarantees the following property:
for every unchecked instruction of a particular type, there exists
an instruction of the same type that is checked for correctness
on the URISC within the next W executed instructions. W is
referred to as the check window, and provides designers with a
powerful knob to trade-off performance and detection latency.

Fig. 4: A sequence of dynamic instructions. The shaded addiu
instructions are checked on the URISC and W = 5 for this
example.

Figure 4 illustrates the idea using a sequence of dynamic
instructions taken from a run of the RSA benchmark for
which W has been set to 5 and for simplicity, we focus
only on the addiu instructions . It can be verified that every
unchecked addiu instruction is followed by a checked addiu
instruction within the next five instructions. Note also that
since our technique statically inserts URISC checks in the
source code, all dynamic instances corresponding to a unique

PC will either all be checked or all be unchecked. Given
a dynamic instruction profile, we now propose an efficient
algorithm to determine the smallest subset of instructions to
check such that the check window constraint W is satisfied
for every instruction type.

1) ILP Formulation: Given a sequence of N dynamic
instructions, let PCi represent the PC of the ith dynamic
instruction, ti represent the instruction type and xi (xi ∈
{0, 1} ∀i ∈ [1, N]) represent whether or not the instruction is
checked on the URISC core. The minimum number of checked
instructions that satisfy the check window condition can be
determined by solving the following ILP:

min

N∑
i=1

xi

subject to: ∑
j:j∈[i,i+W],t(j)=t(i)

xi ≥ 1 ∀i ∈ [1, N]

xi = xj ∀i, j : PCi = PCj

Based on the solution to this ILP, the set C of all PCs that
need to be checked can be determined as C =

⋃
i:x(i)=1 PCi.

In practice, however, the run-time of the ILP for even medium-
sized benchmarks can be prohibitive.

2) Set Cover Based Solution: The ILP formulation in Sec-
tion V-C1 can be cast as a weighted set cover problem,
which is known to be NP-complete [18]. Given a universe
U = {1, 2, . . . , N}, a set S = {S1, S2, . . . , SP } of subsets of
U , and weights {w1, w2, . . . , wP } associated with each subset
of S, the objective is to determine the subfamily C ⊆ S with
the smallest total weight such that the union of all the sets in
C is U .

Lemma 1: The ILP formulation in Section V-C1 can be
reduced to the weighted set cover problem.

Proof: The elements of the weighted set cover problem
are constructed as follows:

1) The universe U of elements consists of the N dynamic
instructions that the program executes.

2) Each subset Si(i ∈ [1, P]) of the set S corresponds to
one of the P PCs (static instructions) in the source code.
The elements of Si consist of all dynamic instructions
that are checked if PC i is checked and all dynamic
instructions that no longer need to be checked because
PC i is being checked. Formally:

Si = {j, k : PCj = i; k ∈ [j −W, j − 1] ∩ tk = tj}

3) The weight wi of Si is equal to the number of dy-
namic instructions corresponding to PC i, i.e., wi =
|{j : PCj = i}|.

The optimal solution of this instance of weighted set cover
corresponds the the optimal solution of the ILP in in Sec-
tion V-C1.

The best known polynomial time algorithm for the weighted
set cover problem is a greedy algorithm that, in each iteration,
picks the subset (PC) that covers the most number of elements
(dynamic instructions) not already covered, normalized by the

weight of the subset. Algorithm 1 formally describes the pro-
posed greedy set cover based instruction selection technique.

Algorithm 1 Greedy Set Cover Based Instruction Selection
U ← {1, 2, . . . , N}
Si ← {j, k : PCj = i; k ∈ [j −W, j) ∩ tk = tj} i ∈ [1, P]
wi ← |{j : PCj = i}|
C ← ∅
while U 6= ∅ do
q ← argmaxi

|Si∩U−C|
wi

C ← C ∪ q
U ← U − Sq

end while
return C

We have modified the back-end of the LLVM compiler to
insert the appropriate URISC check routines (as described in
Section V-B and Section V-A) that check the PCs selected by
Algorithm 1. The resulting assembly code consists of a mix
of MIPS and subleq instructions that are then pushed through
the TigerMIPS GCC assembler to generate execution binaries.

D. URISC ISA Extensions: URISC++
Every check routine on the URISC compares the result of

executing an instruction on the TigerMIPS core and the URISC
core, which can take between 5 to 11 cycles if only subleq
instructions are used (the execution latency is data dependent).
Keeping in mind that operand comparison is common to all
check routines, we propose adding the uriscbeq instruction
(URISC equivalent of the beq instruction) to the URISC ISA.
This reduces the latency of an operand comparison to just one
cycle and, at the same time, the hardware overhead of adding
this instruction is minimal since the URISC processor already
has an in-built comparator to execute the subleq instruction
which is re-used for the uriscbeq .

Furthermore, to decrease the performance overhead of com-
mon data-flow instructions such as the and, or, xor, mult and
div MIPS instructions, the uriscand (URISC equivalent of and)
and uriscsrri (URISC shift right by one) instructions are added.
As with the uriscbeq instruction, these additional instructions
significantly reduce the performance overhead of permanent
fault detection but introduce very little new hardware. The
uriscand requires 32 additional and gates in the execute stage
of the URISC processor. The uriscsrri does not require any
additional logic gates in the execute stage since it only shifts
right by a constant value.

E. Tool Flow
Starting with C/C++ source code, we first use a source

code transformation, in this case loop unrolling, to create three
versions of every benchmark: (i) original: unmodified source
code; (ii) partially unrolled: only the inner most loops are
unrolled; and (iii) fully unrolled: every loop is unrolled. Loop
unrolling was first proposed by Hong et al. [19] in the context
of permanent fault detection using software-only techniques.
The idea is that loop unrolling results in fewer dynamic instruc-
tions per static PC and offers greater opportunities for static
instrumentation of the source code. In our experimental results

Fig. 5: Tool flow developed to obtain experimental results.

we observe that the two unrolled versions of each benchmark
have smaller performance overhead than the original version
for the same window size.

Representative inputs are used to generate a dynamic in-
struction trace for each binary and PCs are selected for
checking based on the proposed greedy set cover algorithm.
Static code to check the selected PCs is inserted using op-
timized URISC++ encodings and the techniques proposed in
Section V-A and V-B to generate combined MIPS-URISC++
binaries. These techniques are all directly integrated in the
back-end of the LLVM compiler tool-chain. The binaries are
simulated on the TigerMIPS-URISC++ RTL, while FPGA
synthesis of the RTL provides estimates of the area overhead
of the proposed architecture.

VI. EXPERIMENTAL RESULTS

Fault Name Block Fault Impact Data Dependent
Add Fault Decode addiu decoded as sub Yes
Branch Taken Fault Branch Branch always not taken No
Branch Offset Fault Branch Stuck-at in branch offset Yes
SLL Fault ALU Stuck-at in sll output Yes
Mult Fault ALU Bit flip in mult output Yes

TABLE I: Description of the faults injected in the main core.

As benchmarks, we use four applications from the Mibench
benchmark suite [20]: Bubble Sort, String Search, RSA and
Dijikstra. Permanent faults are directly injected in to the RTL
code of the TigerMIPS processor as either stuck-at faults or bit-
flips in architectural registers and internal wires. Faults were
injected at random times during program execution. Table I
provides a detailed description of the fault library that we
experimented with. Over all benchmarks, check window sizes,
fault types and fault injection times, we conducted more than
900 fault injection experiments.

A. FPGA Synthesis Results
Table II shows the results obtained from synthesizing the

TigerMIPS, TigerMIPS-URISC and TigerMIPS-URISC++ ar-
chitectures on an Altera Cyclone II FPGA. The TigerMIPS-
URISC architecture has 21.3% more logic elements and
14.3% more registers than TigerMIPS alone. Moving from
the URISC core to the URISC++ core adds only 62 more

Logic Elements Registers
TigerMIPS 12379 4578

with URISC 15019 (21.3%) 5232 (14.3%)
with URISC++ 15081 (21.8%) 5233 (14.3%)

TABLE II: FPGA synthesis results URISC and URISC++
architectures.

logic elements and 1 additional register to the design. In
fact, Although URISC++ adds only 0.5% more area overhead
compared to URISC, TigerMIPS+URISC++ binaries have a
2.1× lower execution latency compared to TigerMIPS-URISC
binaries. The rest of the experimental results are presented
on the TigerMIPS-URISC++ only. We note that the hardware
overhead of TigerMIPS-URISC++ is comparable to the low-
cost Argus co-processor, for which a 17% area overhead was
reported [7].

B. Permanent Fault Detection
We now present results on permanent fault detection latency

and probability using URISC++.

Fig. 6: Scatter plot of fault detection latency versus window
size. Also shown is the mean fault detection latency.

1) Fault Detection Latency: Figure 6 illustrates that, as
expected, the fault detection latency increases with increasing
check window sizes. The average fault detection latency for the
largest window size, W = 2000, is 1200 MIPS instructions.

As a basis for comparison, iSWAT [8] detects only 50.7%
of injected permanent faults within 10, 000 instructions. In
contrast, URISC++ performs much better and detects more
than 95% of injected faults within 10, 000 instructions. Argus
[7] does not explicitly report fault detection latency numbers.
Finally, we also implemented the random sampling approach
proposed by [17] and found that random sampling results in
an 8× increase in average error detection latency compared to
the proposed check window based sampling approach.

2) Fault Detection Probability: Averaged across all fault
injection experiments and all window sizes, 95.63% of in-
jected faults are correctly detected by the proposed technique,
while 2.92% result in time-outs and 1.46% result in crashes.
Importantly, none of our experiments resulted in silent data

Fig. 7: Performance overhead results averaged over bench-
marks.

corruptions (SDC). The fault detection rate for a small window
size of W = 100 is 98.03%, while for the largest window size
of W = 2000 the fault detection rate is 93.63%. In compar-
ison, the reported fault detection probabilities for iSWAT [8]
and Argus [7] are 97.2% and 98%, respectively. Additionally,
iSWAT and Argus report a 0.3% and 0.46% SDC rate.

C. Performance Overhead
Figure 7 shows the average performance overhead of the

proposed technique across all benchmarks and fault injection
experiments for different window sizes and for different levels
of loop unrolling. Recall that for a given window size W ,
loop unrolling allows fewer instructions to be checked and
thus reduces the performance overhead of fault detection [19].

For the largest window size, W = 2000, partial and full
unrolling results in a performance overhead of 44% and 25%,
respectively, over baseline execution. The reported perfor-
mance overheads for online, permanent fault detection reported
in literature vary from 4% for Argus, 25% for iSWAT, 30% for
RMT [2], and between 50%− 100% for software redundancy
techniques like [14].

D. Critical Analysis of Results.
We have shown, based on extensive permanent fault injec-

tion experiments in RTL, that the proposed techniques are
competitive with the state-of-the-art on all important metrics
relevant to online permanent fault detection. In spirit, the
closest work to ours is Argus, which also proposes adding
low complexity hardware to detect faults in simple, in-order
main cores. While the performance overhead of URISC++ is
greater than that of Argus, we note that as opposed to Argus,
the URISC++ co-processor can be used for both fault detection
and fault recovery once the fault has been detected.

VII. CONCLUSION

In this paper, we have presented a new, low hardware
overhead permanent fault detection architecture for high defect
rate technologies. The proposed architecture is based on the
use of a URISC checker core that, in theory, only executes
one Turing complete instruction and can therefore be used
to emulate and check the correctness of any instruction that
executes on the main core. In support of this idea, a number

of novel techniques, both hardware and software, are proposed
that enable the use of the URISC co-processor for online per-
manent fault detection with high fault coverage, bounded fault
detection latency and minimal performance impact. Extensive
experimental results illustrate the promise of the proposed
approach as a solution that enables both fault detection (this
work) and subsequent fault recovery using the same low area
overhead hardware. As future work, we are looking at parallel
URISC execution to further reduce performance overhead.

REFERENCES

[1] N. Aggarwal et al., “Configurable isolation: building high availability
systems with commodity multi-core processors,” SIGARCH Computer
Architecure News, vol. 35, no. 2, pp. 470–481, 2007.

[2] S. Mukherjee et al., “Detailed design and evaluation of redundant
multi-threading alternatives,” in Proceedings of the 29th international
symposium on computer architecture, 2002, pp. 99–110.

[3] T. Austin, “DIVA: A reliable substrate for deep submicron microar-
chitecture design,” in Proceedings of the 32nd IEEE international
symposium on microarchitecture, 1999, pp. 196–207.

[4] T. Lovric, “Systematic and design diversitysoftware techniques for
hardware fault detection,” Proceedings of the 1st European dependable
computing conference, pp. 307–326, 1994.

[5] N. Foutris, D. Gizopoulos, M. Psarakis, X. Vera, and A. Gonzalez,
“Accelerating microprocessor silicon validation by exposing isa diver-
sity,” in Proceedings of the 44th IEEE international symposium on
microarchitecture, 2011, pp. 386–397.

[6] A. Meixner and D. Sorin, “Detouring: Translating software to circum-
vent hard faults in simple cores,” in Proceedings of IEEE international
conference on dependable systems and networks, 2008, pp. 80–89.

[7] A. Meixner, M. Bauer, and D. Sorin, “Argus: Low-cost, comprehensive
error detection in simple cores,” in Proceedings of the 40th IEEE
international symposium on microarchitecture, 2007, pp. 210–222.

[8] S. Sahoo et al., “Using likely program invariants to detect hardware
errors,” in Proceedings of the IEEE International Conference on de-
pendable systems and networks. IEEE, 2008.

[9] F. Mavaddat and B. Parhami, “URISC: the ultimate reduced instruction
set computer,” International Journal of Electrical Engineering Educa-
tion, 1988.

[10] A. Rajendiran et al., “Reliable computing with ultra-reduced instruction
set co-processors,” in Proceedings of the 49th annual design automation
conference, 2012.

[11] D. Gizopoulos et al., “Architectures for online error detection and
recovery in multicore processors,” in Proceedings of IEEE design,
automation and test in Europe (DATE), 2011, pp. 1–6.

[12] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2005.

[13] C. Bolchini, “A software methodology for detecting hardware faults in
vliw data paths,” IEEE Transactions on Reliability, 2003.

[14] N. Oh et al., “Error detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, 2002.

[15] S. Rehman et al., “Instruction scheduling for reliability-aware compi-
lation,” in Proceedings of the design automation conference, 2012.

[16] S. Moore and G. Chadwick, http://www.cl.cam.ac.uk/teaching/.
[17] S. Nomura et al., “Sampling+ dmr: practical and low-overhead perma-

nent fault detection,” in Proceedings of the 38th annual international
symposium on computer architecture, 2011.

[18] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction to
algorithms.”

[19] T. Hong et al., “Qed: Quick error detection tests for effective post-
silicon validation,” in Proceedings of the IEEE international test con-
ference, 2010.

[20] M. Guthaus et al., http://www.eecs.umich.edu/mibench/.

