

Using Explicit Output Comparisons for Fault Tolerant
Scheduling (FTS) on Modern High-Performance Processors

Yue Gao Sandeep K. Gupta Melvin A. Breuer
Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, USA

yuegao@usc.edu, sandeep@usc.edu, mb@ceng.usc.edu

Abstract—Soft errors and errors caused by intermittent faults

are a major concern for modern processors. In this paper we
provide a drastically different approach for fault tolerant
scheduling (FTS) of tasks in such processors.

Traditionally in FTS, error detection is performed implicitly
and concurrently with task execution, and associated overheads
are incurred as increases in software run-time or hardware area.
However, such embedded error detection (EED) techniques, e.g.,
watchdog processor assisted control flow checking, only provide
approximately 70% error coverage [1, 2]. We propose the idea of
utilizing straightforward explicit output comparison (EOC)
which provides nearly 100% error coverage. We construct a
framework for utilizing EOC in FTS, identify new challenges and
tradeoffs, and develop a new off-line scheduling algorithm for
EOC. We show that our EOC based approach provides higher
error coverage and an average performance improvement of
nearly 10% over EED-based FTS approaches, without increasing
resource requirements. In our ongoing research we are
identifying a richer set of ways of applying EOC, by itself and in
conjunction with EED, to obtain further improvements.

I. INTRODUCTION

Providing reliable computation is the most basic
requirement for any hardware system. However, with the
scaling of technology, this is becoming more difficult to
achieve [3]. Errors can occur in circuits due to many factors
such as noise, high energy cosmic particles, radiation, and
fatigue-induced intermittent faults in hardware. Any errors
propagating to user outputs can potentially have detrimental
effects. Much effort has been devoted at the level of circuit
design and manufacturing to reduce the frequency of error
occurrence, but these cannot entirely eliminate errors.

Fortunately, approaches at the software level can help. In
this paper we consider fault tolerance in the context of task
scheduling in distributed computing systems. There are two
major aspects in fault tolerant scheduling (FTS):
1. Errors that can potentially corrupt outputs and cause

operational failures must be detected.
2. The schedule must be able to tolerate errors via some form

of redundant execution.
We begin with some background information.

A. Error Detection
To detect occasional errors, the most intuitive method is to

execute multiple copies of the same program simultaneously
on different processors and compare their outputs. We refer to
this concept as Explicit Output Comparison (EOC). Triple
Modular Redundancy (TMR) [4] is a commonly discussed
example of EOC. EOC requires minimal or no program
modifications and provides high error coverage, but is
generally considered as imposing prohibitively high hardware

overheads. To avoid these overheads, alternative methods
have been proposed, where error detection is implicitly
embedded during execution without the need for EOC. We
refer to the broad collection of these error detection
techniques, such as control flow checking (CFC), as embedded
error detection (EED). EED inevitably increases the time
required to complete tasks. We define the time to complete
execution of a specific task on a standard processor/core
without EED as the native latency (L), and the time needed for
execution when EED is enabled as the EED latency (L’). For
error detection using EOC, the total task execution time is the
native latency L, plus the time required for output comparison
which will be modeled in sections ahead.

EED can be efficiently implemented in hardware for
certain components. Error correcting codes (ECC) [5] is a
well-known error detection/correction method for regular
structures, especially memories. As for techniques that are
universally applicable in general purpose processors, the
current prevailing methods are CFC and signature checking
[6]. The basic idea is to verify that the program is branching to
legal destinations and executing only expected types of
instructions. For such techniques, the expected behavior of the
program must be pre-computed and stored either in memory
structures or the compiled code, incurring area or program size
overheads. During execution, program signatures must be
computed in real time, which incurs performance overheads.
Recent research has proposed hardware-assisted error
detection using separate watchdog processors [1]. But even
with hardware assistance, EED still impacts performance.

The other shortcoming of any form of EED is incomplete
error coverage. Although most EED methods report high error
coverage (Table I provides an overview of the contemporary
watchdog processor assisted EED techniques), their fault
injection is often limited to faults that result in control flow
violations. Hence, even if the reported coverage is 100%, it is
only 100% of the control flow errors, which are around 70%
of all the soft errors that can occur during execution [1, 2].

Table I. Overview of CFC Techniques with Watchdog Assistance

 CFC
 Technique

Memory
Overhead

 Performance
 Overhead

 Reported Error
 Coverage*

 Modifies
 Program

 CIC [7] 5% - 28% 52% - 189% 91% - 98% Yes

 CFCET [8] 3.5% 33% - 141% 80% - 85% No

 CFCSS [6] 26.6% - 63.6% 16% - 70% 96% - 98% Yes

 ACFC [9] 48% - 112.2% 41% - 136% 10% - 95% Yes

 YACCA [10] 91% - 96% 10% - 254% Near 100% Yes

 CFCBTE [11] 33% - 44% 110% - 304% 89% - 94% No

 SWTES [12] 90.9% - 174.8% 11% - 191% 81% - 98% Yes

*Only specific types of errors such as control flow errors are considered

In systems running safety-critical applications which
require high error coverage, EED’s coverage is a limitation.

978-3-9815370-0-0/DATE13/©2013 EDAA

B. Fault Tolerant Scheduling
We consider the static off-line scheduling of aperiodic

tasks in time-triggered architectures (TTA) [13] which can
provide the desired predictability for safety-critical
applications [14]. Tasks are mapped to processors and
assigned start times prior to execution. The primary objective
function is to minimize the total execution time for all tasks,
also referred to as total latency or the length of the schedule.
[15, 16] provide a summary of performance-effective static
off-line scheduling algorithms. The drawback of static
schedules is that they are susceptible to unpredictable events
such as randomly occurring faults or upsets. To this end many
ways of incorporating temporal and/or spatial redundancy to
achieve fault tolerance have been proposed [17, 18, 19, 20].

Typically, fault tolerant scheduling (FTS) techniques
assume that error detection is performed concurrently during
execution, and any error detection overhead is integrated into
the worst case execution time of each individual task.
Furthermore, any area or performance overhead required for
error detection is conceptually accepted but not explicitly
accounted for. Simply put, scheduling begins after error
detection is implemented in the form of EED and its impact on
a task’s run time is taken as a given; this run time is never
compared with the task’s run time without EED. Such
conventional schedules will be referred to as EED schedules.

In this paper, we revisit the seemingly straightforward
EOC concept for error detection in the context of FTS. We
reveal the benefits of EOC in terms of achieving near-perfect
error coverage while simultaneously reducing total latency,
without increasing resource requirements. In this process we
will present a comprehensive analysis of FTS that leverages
tradeoffs in error detection, and thus expanding the scope of
FTS. Such schedules will be referred to as EOC schedules.

II. OVERVIEW OF THE SYSTEM CONFIGURATION

A. Hardware Configuration
We model the hardware system as a set of R processing

nodes {C1, C2, ..., CR} interconnected by a communication
channel. We will refer to them as cores for clarity. Each core
Ci ∈ {C1, C2, ..., CR} contains a main execution engine and a
network interface that arbitrates communication. We assume
homogeneous cores for simplicity, but our approach can be
extended to heterogeneous cores. We also assume that the
communication channel is implemented as a broadcast bus,
where only one core can write to the bus at any given time, but
all cores can simultaneously read from the bus. Other network
topologies can potentially relax the constraints on channel
access, but such variations are not central to our discussion.
Fig. 1 depicts a system with four cores.

EED and EOC can both be implemented completely in
software with little or no change to the existing architecture.
However, both approaches can also utilize additional hardware
to reduce the performance overheads of error detection.
Redesigning the hardware to reduce performance overheads of
error detection is beyond the scope of this paper.

Figure 1. System Hardware Configuration

B. Application Model
We model the application as a directed acyclic graph G(V,

E) called a task graph, such as the example shown in Fig. 2.
Each vertex Ti ∈ V represents a task. Each task Ti is coupled
with a 3-tuple set: {Pi, Li, L’i}, where Li is the native latency of
Ti and L’i is the EED latency of Ti. We define αi = L’i / Li as
the latency overhead of EED. In Fig. 2, αi is set according to
Table I. Pi is the size of the output data of Ti.

An edge from Ti to Tj denotes that Tj is dependent on the
output of Ti. A task with no predecessors will be called an
entry task, and a task with no successors will be called an exit
task. Di_j represents the amount of time it takes to transport
one unit of data from Ti to Tj, hence the total time needed for
data transmission between the two tasks is Di_j · Pi. We assume
Di_j = 1 if Tj is dependent on Ti and both tasks are not mapped
onto the same core, 0 otherwise. We assume that each task can
execute on any core, and that the message passing itself is
fault tolerant, using protocols like the TTP [21].

Figure 2. Application Model

C. Fault Model and Error Coverage
Faults in circuits could be permanent or intermittent; also

circuits can have transient or soft errors due to external noise
or radiation. In this paper we address intermittent faults and
transient errors (henceforth referred to as faults), which are
major concerns for modern processors [3]. We only consider
faults that are not masked logically or architecturally, and
eventually produce errors at task outputs and cause operational
failures. For the techniques used in this paper, fault duration is
irrelevant and is therefore considered to be atomic. If one or
more fault occurs during the execution of Ti or the input to Ti
is erroneous, the output of Ti will be deemed incorrect.

Naturally, any errors in the task output can be detected by
EOC, namely comparing outputs of copies of the task
executed on different cores. EOC achieves near-perfect error
coverage, as the only exception is the unlikely event when
multiple errors corrupt the outputs of various copies of the task
running on distinct cores in identical ways. EED techniques
such as CFC [6], in contrast, may only detect faults that cause
control flow violations, resulting in 70% error coverage. In
FTS, the error coverage does not depend on the task schedule,
but on the underlying error detection mechanism.

For a given time frame, we consider k detectable faults
which occur at arbitrary times. Under these conditions, if the
schedule is guaranteed to deliver correct results within the
timing constraints, it will be considered as having a fault
tolerance level of k. The value of k is determined by how tasks
are scheduled, i.e., how redundant execution is applied. A
schedule may have high fault tolerance level, i.e., a large k, but

P9
P8 P10

P6 P7 P4 P5

P3 P3 P2 P2

P1 P1

T1

T11

T10 T8

T2

T4 T5

T9

T3

T6 T7

Task Table

α
T1 1.67
T2 1.50
T3 1.75

1
1
1

P

T4 1.6
T5 1.5
T6 1.43

1
1
1

T7 1.57
T8 1.50
T9 1.63

1
2
1

T10 1.56
T11 1.67

L
3
4
4
5
6
7
7
8
8
9
9

3
1

L’
5
6
7
8
9

10
11
12
13
14
15

C1

Network Interface

C2

Network Interface

C3

Network Interface

C4

Network Interface

low error coverage due to incomplete coverage provided by
EED. In this work we assume k = 1, and stricter fault tolerance
requirements can be satisfied by decreasing the time frame.

III. FAULT TOLERANT SCHEDULING TECHNIQUES

A. Scheduling a Single Task using EED
We begin with a brief review of FTS. Fig. 3 shows two

ways of scheduling a single task Ti. In Fig. 3a, Ti is scheduled
with its EED latency L’i since EED is assumed. Without the
slack, upon detection of an error, the system can halt operation
or alert the user. If the slack is scheduled, then re-execution is
possible and fault tolerance is achieved through such temporal
redundancy [22]. The advantage of re-execution lies in slack
sharing, which will be demonstrated later. Note that the length
of the slack is equal to L’i in order to tolerate faults that occur
towards task completion, so the ability to detect errors as soon
as they occur cannot help reduce the slack. Re-execution can
be applied at fine granularity if tasks can be divided into
smaller subtasks, which is the basic principle of checkpointing
[18]. Checkpointing will not be examined in this paper.

 Without Slack With Slack (Slack=L’i) Coverage

(a)

Latency:
L'i

Tolerance:
k = 0

Latency:
2L'i

Tolerance:
k = 1

~70%

(b)

Latency:
L'i+Pi

Tolerance:
k = 1

Latency:
2L'i+Pi

Tolerance:
k = 3

~70%

Latency w/ EED: L’i
Consolidation Overhead: Pi

Figure 3. Conventional scheduling of a single task Ti with EED

Fig. 3b illustrates another key FTS technique: replication,
an instance of spatial redundancy. Two copies of the same task
are mapped onto two different cores. If one core detects errors,
the results of the other core will be carried to the next
dependent task or system output through the broadcast bus
during the following consolidation period. It is usually
assumed that this consolidation overhead is equal to Pi. This
schedule achieves k = 1 without any slack. In [17], the authors
combined re-execution with replication, thus fully exploiting
the capabilities of EED. As an illustrative example, for the
task graph in Fig. 2, the optimum EED schedule on four cores
is shown in detail in Fig. 4.

Figure 4. The Optimum EED Schedule (Total Latency: 69, k = 1)

B. Scheduling a Single Task using EOC
The missing coverage in EED can be addressed via the use

of a second core and EOC (Fig. 5a). Ti is scheduled with its
native latency Li. The two cores will mirror each other’s
operation, but clock by clock synchronization is not necessary.
Without the scheduling of the slack, errors can only be
detected, but the error coverage is high. In cases where slack is
included, when comparison fails, a contingency schedule is
triggered, and Ti is re-executed on both cores during the slack.
At time 2Li + Pi, both cores will contain correct outputs, and
no more comparison is needed if we assume k = 1.

 Without Slack With Slack (Slack = Li) Coverage

(a)

Latency:
Li+Pi

Tolerance:
k = 0

Latency:
2Li+Pi

Tolerance:
k = 1

~100%

(b)

Latency:
Li+3Pi

Tolerance:
k = 1

Latency:
2Li+3Pi

Tolerance:
k = 3

~100%

(c)

Latency:
Li+2Pi

Tolerance:
k = 1

Latency:
Li+2Pi

Tolerance:
k = 3

~100%

Latency w/o EED: Li
Consolidation Overhead: Pi

Figure 5. Scheduling of a single task Ti with EOC

Fig. 5b shows the concept of the classic TMR, which can
eliminate the slack for k = 1. The voting procedure is assumed
to require time 3Pi. TMR is suitable when hardware resources
are abundant. TMR will not be directly employed by our
algorithm. However, we do opportunistically utilize a similar
method described in Fig. 5c. In Fig. 5c, if comparison fails
either for the C1/C2 pair or the C3/C4 pair, the correct results
will be taken from other pair of cores during consolidation.

Two drawbacks of EOC are as follows: (1) the additional
core requirement, and (2) the comparison overhead. We
account for the first factor by using processors with identical
number of cores when comparing EED and EOC schedules.
Also, we explicitly account for the comparison overhead,
which is equal to the size of the data to be compared: Pi.

While EED schedules only employ practices shown in Fig.
3, we believe that using the entire range of methods in Fig. 3
and Fig. 5 would result in much more compact schedules. In
this paper however, we will limit ourselves to schedules with
EOC alone (Fig. 5) to guarantee ~100% error coverage.

C. Case Study for Scheduling Multiple Tasks
A comparison between Fig. 3 and Fig. 5 may suggest that

we are trading performance for higher error coverage.
However, the motivational example shown in Fig. 6 will
demonstrate that, by adopting EOC, it is possible to increase
error coverage and, at the same time, reduce the total latency.

 Figure 6. Latency advantages of the EOC schedule

In the optimum EED schedule of three tasks in Fig. 6,
consolidation is required after each task to support transparent
execution in TTA [13]. Transparent execution allows any core
to start execution of scheduled tasks regardless of faults
occurring in other cores. In this paper all EED and EOC
schedules will conform to transparent execution. The dashed
edges of the exit tasks represent the consolidation time needed

Optimum EED
Schedule

Latency 16
k = 1

L’1

L’1

L’3

L’3
C C

L’2

L’2
C

L1

L1

L3

L3
=

L2

L2
= =

Slack

Slack

EOC
Schedule1
Latency 15

k = 1

L1

L1

L3

L3

L2

L2
= =

Slack

Slack

EOC
Schedule2
Latency 14

k = 1

L α
T1 2 1.5
T2 4 1.75
T3 2 1.5

L’
3
7
3

Latency Table

Task Graph

 Consolidation Timing Slack

T1
T2

T3

P1=1

P1=1

P3=1

P2=1

= Comparison

C Consolidation Slack
= Output Comparison

C1 Li

C2 Li

=

C3 Li

C4 Li

=

C

Slack

Slack

Slack

Slack

C1 Li

C2 Li

=

C3 Li

C4 Li

=

C

C1

C3

C2

Li

Li

Li

Slack

Slack

Slack

= C

C1

C3

C2

Li

Li

Li

= C

C1

C2

Li

Li

=
Slack

Slack

C1

C2

Li

Li

=

L'1 L'2

L'5

L'4 L'8 L'11

L'2 L'10 L'11

L'3 L'6 L'7 L'9

L'3 L'6 L'7 L'9

C

L'1

C

C C C

C

C

Slack

Slack

C

C Consolidation Slack

C1

C2

L’i

L’i

C

Slack

Slack

C1

C2

L’i

L’i

C

C1 L’i Slack C1 L’i

for the system to recognize which core contains the correct
outputs, in case the exit tasks encountered errors.

In EOC schedule 1 shown in Fig. 6, comparison is done
after every task completion. A slack of four time units is
needed for the possible re-execution of the longest task T2. T1
and T3 are shorter than T2 and thus can share the slack. The
total latency is 6.25% less than the optimum EED schedule.
Also note that the EED schedule has very high resource usage
as both cores do not have any idle time during the schedule.

The EOC schedule 2 shown in Fig. 6 further reduces the
total execution time by (1) rearranging the tasks while still
satisfying the precedence constraints, and (2) grouping T1 and
T3 into one partition, i.e., performing comparison on the
outputs of T3 only. If comparison fails, then re-execution will
be initiated on both cores for T1 and T3 during the slack.
Otherwise we conclude that both T1 and T3 have executed
correctly. This is assuming that T3 consumes all the outputs of
T1. In the following section we will detail those two important
procedures, namely sorting and partitioning.

IV. EOC BASED FAULT TOLERANT SCHEDULING

A. Observations about EOC
We first present some observations that reveal new

complications and tradeoffs in EOC scheduling. As illustrated
in Fig. 6, the place where we choose to insert output
comparisons is an important factor affecting the schedule
length. Comparing after each task is completed will minimize
the slack, but incur large comparison overheads. On the other
extreme, comparing only after the exit tasks will minimize
comparison overheads but maximize the slack. The optimal
solution will typically be a point in between. The example
below will provide further insight and important theorems.

Assume a set of n tasks, identical in latency. The native
latency of each task is L, and the EED latency is αL. Ti is
dependent only on Ti-1, and Pi = P ∀1 ≤ i ≤ n. The task graph is
illustrated in Fig. 7, referred to as a linear task graph of n
tasks. Also the hardware consists of R = 2 cores, and k = 1.

Figure 7. Scheduling a Linear Task Graph

Theorem 1: When performing EOC scheduling under the
above assumptions, to achieve minimum latency, comparisons
should be made between every x tasks, where:

 .

The lower bound of total latency is: .
The upper bound of total latency when x takes the above
values is: .

Proof: Deleted due to space limitations
1
.

We notice that x is proportional to P and inversely
proportional to L. This is expected, since if the output data size
is so large that communication and comparison overheads
outweigh the execution latencies, the time saved from
grouping tasks together to skip comparisons can offset the cost
of increased slack. Similarly, the optimum EED schedule in
this case is either one that only uses replication or one that
only uses re-execution depending on the relationship between
P and L. A comparison of the optimum EED schedule with the
optimum EOC schedule yields the following.

Theorem 2: The optimum EOC schedule will outperform the
optimum EED schedule in terms of total latency if:

Proof: Deleted due to space limitations
1
.

Now we are ready to present our EOC scheduling flow,
which is similar to [22] at a high-level. Here we mainly focus
on the above key differences of EOC. In the next section we
compare our EOC schedules with nearly optimum EED
schedules that can use any combination of replication and re-
execution as in [17] to eliminate bias in our results.

The inputs to the EOC scheduling algorithm are the task
graph (Fig. 2) and the hardware configuration (Fig. 1). The
first step of our EOC scheduling is very similar to [22], yet the
second and third steps are specific to EOC scheduling only.
1) Mapping: Map each task to one of the available cores.
2) Detailed Scheduling: Schedule all tasks in each core

while satisfying their mapping/precedence constraints.
3) Adjustments: Adjustments are made to ensure a legal

schedule. Some ad-hoc optimizations are also applied.

B. Mapping
Task to core mapping is the first step of EOC or EED

scheduling. A mapping heuristic for EED based on critical
path clustering is presented in [22]. During this mapping
process, the task with the highest critical path priority will be
mapped to a core that minimizes the estimated schedule
length. This process is repeated until every task has been
mapped to a core. The schedule length can be easily and
accurately estimated in [22] before the tasks are actually
scheduled. We adopt this heuristic with one modification,
namely we estimate the schedule lengths differently.

In EOC scheduling, the output of each task can only be
delivered to other cores when the slack of the current and all
previous partitions have been accounted for. However, the
partitioning step has not yet been carried out. As a result, we
replace the slack computation step in [22] by the following,
which stems from Theorem 1:

 ∀
 ∀

 ∀
 .

The rest of the mapping process is similar to [22].

C. Detailed Scheduling
The detailed scheduling step will determine the start time

of every task. In [22], this is done using the list scheduling

1
 For the proofs please contact the DATE program chair

EOC Schedule TMR Schedule

n tasks

L

L

= …

L

L

… L

L

= …

L

L

x tasks

Slack

Slack

x tasks

n tasks

L

L

L

L

…

L

L

L

L

L

L

…

L

L

L

L

L

L

…

L

L

 = C

EED Schedule w/ Replication EED Schedule w/ Re-execution

αL

αL

C
αL

αL

C …
αL

αL

C

n tasks

L α
T1-n L α

L’
αL

Latency Table Task Graph

T1 T2
P1=P P2=P

Tn-1 … Tn
Pn-1=P Pn=P

αL αL …

αL αL Slack

n tasks

http://en.wikipedia.org/wiki/Less_than_or_equal_to
http://en.wikipedia.org/wiki/Less_than_or_equal_to

algorithm [23], where the task with the highest priority is
selected and scheduled on its allocated core. List scheduling is
not applicable for EOC scheduling because it cannot handle
the selection of the insertion of data comparisons. In the
following subsections, we formulate the problem, and then
provide optimization algorithms tailored to EOC scheduling.

Problem Formulation
Unlike list scheduling, detailed scheduling is recursively

applied to each core pair (recall that in EOC two cores will
mirror each other’s operation). For each core pair the detailed
scheduling process is formulated as a sorting problem
followed by a multi-way partitioning problem. Consider a task
graph with n tasks. For a particular core Cj, the mapping
process will produce a subset of tasks Ts = {Ti | Ti ∈ {T1, T2, ...,
TN}, Ti is mapped onto Cj}. Assume that |Ts| = M, and the tasks
in Ts are labeled T1-TM. The detailed scheduling step will:
1) Topologically sort the M tasks in Ts.
2) Partition the M tasks in Ts into W groups labeled G1-Gw.

The objective of the detailed scheduling algorithm is to
minimize the total execution time of the M tasks, defined as:

∀

 ∀

∀ ∈

A task Tx is defined as an exit task of the current partition
Gi if Tx ∈ Gi and ∄1 ≤ j ≤ n such that Tj ∈ Gi and Dx_j = 1.

Output comparisons will be made between partitions and
after the completion of exit tasks of the current partition. In
addition, the schedule must contain a timing slack, the length
of which is equal to the latency of the longest partition.

Guided Topological Sort
For the M tasks in Ts, any topological sort for the tasks

would be legal. However, a sort that would minimize total
latency is desired. Procedure 1 is a customized version of the
basic topological sorting algorithm. It utilizes results from
Theorem 1. Since the assumption of uniformity in Theorem 1
no longer holds, we use average values as approximations.

Procedure 1: Guided Topological Sort

Initialize

 ∀

 ∀

 ∀

 ∀

 ∀

 ∀

 PUSH all entry tasks into < Ready Queue > /* A LIFO queue */
End Initialization
While (< Ready Queue > ≠ ∅) begin
 Ti = POP < Ready Queue >, Counter = 0
 Schedule Ti, mark Ti as scheduled, UPDATE < Ready Queue >
 Counter = Counter + Li
 for all Tj such that Di_j = 1
 if (Tj ∈ < Ready Queue > & Lj + Counter < G) begin
 EXTRACT Tj from < Ready Queue >
 Counter = Lj + Counter, Schedule/Mark Tj
 UPDATE < Ready Queue >
Output sorted tasks for Partitioning

Partitioning
We will now present a simulated annealing based

algorithm (Algorithm 1) to perform partitioning of the sorted
task sequence. To facilitate fast convergence to near-optimum
results, we initialize the partitions according to Theorem 1.
One can make a valid argument that Algorithm 1 is oblivious
of the tasks in other cores. While true, optimizations that are
geared towards inter-core dependencies such as list scheduling
can be harmful to the partitioning step in our EOC framework.

Despite considerable efforts, we have not found an alternative
that significantly outperforms Algorithm 1.

Algorithm 1: Partitioning Algorithm Pseudo Code

Initialize
 Execute Procedure 1 /* Perform guided topological sort */

 /* The initial number of tasks in one partition */

 Initialize partitions according to x
End Initialization
While (T > TFinal) begin
 Evaluate total execution time: L1, save current configuration
 r = Random(0<r<1)
 if (r < C1) begin /* Randomly add or merge partitions */
 if (r < C2) begin
 Append a new partition else Merge last two partitions
 Select a random partition, move the last task to the next partition
 Evaluate total execution time: L2

 if

 begin /* Evaluate the effect of the move */

 Restore and clear saved configuration /* Reject */
 T = T - Cooling
Evaluate total execution time: LFinal

D. Adjustments
Unlike [22], the partitioning step in EOC scheduling will

insert output data comparisons and alter the schedule timeline.
As a result, the final schedule needs to be adjusted. This step
also applies an ad-hoc optimization: for each entry task Ti, it
attempts to apply the method described in Fig. 5c for Ti if it is
beneficial to the total latency.

V. EXPERIMENTAL RESULTS

A. Two Core Architectures
We assume that the system consists of two cores, the

minimum amount of hardware for EOC to operate. In this case
the mapping step can be skipped for EOC schedules. We
examine two types of task graphs: linear and randomly
generated. Randomly generated task graph will have native
latencies uniformly distributed between 1 and Lmax, and output
sizes uniformly distributed between 1 and Pmax. The EED
latencies are defined as:

 .

We first examine 30 sets of distinct linear task graphs with
n = 10 tasks, Lmax = 11 and Pmax = 3. The resulting EOC
schedules are shown in Fig. 8; our EOC schedules provide an
average 29% improvement over the optimum EED schedule,
where improvement is defined as:

 .

To demonstrate the effects of the simulated annealing
procedure, we compare results of the initial and the final
schedules, which revealed that our final schedules provide an
average improvement of 4.6% over our initial schedules.

Figure 8. Total Execution Time Comparison (Two Core Architecture)

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20 25 30

T
o

ta
l
E

x
ec

u
ti

o
n

 T
im

e
(T

im
e

U
n

it
s)

Set

Optimum EED (Baseline) Initial EOC Final EOC

For random task graphs, the optimal EED schedule cannot
be easily obtained. For our experiments, we implement the
heuristics in [17] and apply extensive manual adjustments to
obtain a good EED baseline schedule. We present eight sets of
randomly generated task graphs each containing n = 25 tasks.
As shown in Table II, our EOC schedules provide an average
6% improvement over the baseline EED schedule.

Table II. Total Execution Time for Randomly Generated Task Graphs

 1 2 3 4 5 6 7 8 Avg

Best EED 136 116 131 110 131 100 90 86 -

EOC 114 110 114 106 105 105 90 91 -

Improvement 16% 5% 13% 4% 20% -5% 0% -6% 6%

B. R (R>2) Core Architectures
When the system consists of more than two cores, task to

core mapping decisions must be made prior to partitioning.
We will showcase the results of EOC scheduling for a four
core system. We limit ourselves to R = 4 since like TMR, EOC
favors unbounded hardware resources, thus a large number of
cores would provide EOC with an unfair advantage.

Figure 9. The EOC Schedule (Total latency: 63, k = 1)

For the task graph in Fig. 2 we illustrate the EOC
scheduling results in detail. For R>2 core architectures, TMR
can be applied with three cores without slack. The EOC
schedule shown in Fig. 9 has a 7.4% improvement over the
EED schedule shown in Fig. 4, and 13.7% improvement over
the TMR schedule, which is calculated as ∀ .

EOC Set Performance Improvement Resource Usage Reduction

1 19.82% -1.52%

2 9.90% -5.35%

3 9.28% 14.19%

4 2.33% -4.64%

5 15.12% -4.81%

6 -2.30% 21.14%

7 15.00% 2.81%

8 7.14% -14.87%

9 7.14% -4.12%

10 14.29% 15.07%

Avg 9.77% 1.79%

Figure 10. Improvements provided by EOC over EED (four core architecture)

We now study 10 sets of randomly generated task graphs
each consisting of n = 25 tasks. The generation process is
slightly tuned to produce task graphs that resemble real
applications. Fig. 10 summarizes the results, where EOC
schedules provide an average 9.8% performance improvement.

It may seem that this latency improvement might have
come from an increased use of resources, in other words, the
EED schedule cannot fully utilize four cores. However, our
results show that the resource usage of EOC schedules is
slightly lower than that of the EED schedules. Therefore,
compared to traditional EED schedules, EOC schedules can
offer higher error coverage and nearly 10% performance
improvement, without increasing resource requirements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we overturn the accepted norms in fault
tolerant scheduling (FTS) of assuming concurrent embedded

error detection (EED) during execution, and outline a
drastically different approach towards the problem. We first
evaluate the coverage limitations and overheads of various
error detection mechanisms, and revisit the seemingly simple
idea of explicit output comparison (EOC). We construct a new
framework of using EOC in FTS, identify the associated
challenges and tradeoffs, and propose a new EOC based FTS
algorithm. We show that compared to conventional EED
scheduling methods, our new approach can provide higher
(near-perfect) error coverage and nearly 10% improvement in
performance, without increasing resource requirements.

In our ongoing research, we are identifying a richer set of
ways of applying EOC, by itself and in conjunction with EED,
and scheduling algorithms to obtain greater improvements.

REFERENCES

[1] A. Pataricza et al., "Watchdog Processors in Parallel Systems," Symp. on
Microprocessing and Microprogramming, 1993.
[2] R. Venkatasubramanian et al., "Low-Cost On-Line Fault Detection Using
Control Flow Assertions," Int'l On-Line Testing Symp., 2003.
[3] C. Weaver et al., "Techniques to Reduce the Soft Error Rate of a High-
Performance Microprocessor," Int’l Symp. on Computer Architecture, 2004.
[4] R. E. Lyons and W. Vanderkulk, "The Use of Triple Modular Redundancy
to Improve Computer Reliability," IBM Journal of Research and
Development, 7(2):200–209, 1962.
[5] J. Chang et al., "The 65nm 16mb On-Die L3 Cache for a Dual Core Multi-
Threaded Xeon Processor," Symp. on VLSI Circuits, 2006.
[6] N. Oh et al., "Control-Flow Checking by Software Signatures," IEEE
Trans. on Reliability, 51(1):111–122, 2002.
[7] A. Rajabzadeh et al., "Error Detection Enhancement in COTS Superscalar
Processors with Event Monitoring Features," Pacific Rim Symp. on
Dependable Computing, 2004.
[8] A. Rajabzadeh and S. G. Miremadi, "A Hardware Approach to Concurrent
Error Detection Capability Enhancement in COTS Processors," Pacific Rim
Symp. on Dependable Computing, 2005.
[9] R. Venkatasubramanian et al., "Low-cost on-line fault detection using
control flow assertions," On-Line Testing Symp., 2003.
[10] O. Goloubeva et al., "Soft-Error Detection Using Control Flow
Assertions," Int'l Symp. on Defect and Fault Tolerance in VLSI Systems, 2003.
[11] M. Fazeli et al., "A Software-Based Concurrent Error Detection
Technique for PowerPC Processor-based Embedded Systems," Int'l Symp. on
Defect and Fault Tolerance in VLSI Systems, 2005.
[12] Y. Sedaghat et al., "A software-based error detection technique using
encoded signatures," Int'l Symp. on Defect and Fault Tolerance, 2006.
[13] H. Kopetz and G. Bauer, "The Time-Triggered Architecture," Proc.
IEEE, 91(1):112–126, 2003.
[14] H. Kopetz, "Real-Time Systems – Design Principles for Distributed
Embedded Applications," Kluwer Academic Publishers, 1997.
[15] Y.-K. Kwok and I. Ahmad, "Benchmarking the Task Graph Scheduling
Algorithms," Int’l Parallel Processing Symp./Symp. on Parallel and
Distributed Processing, 1998.
[16] H. Topcuoglu et al., "Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing," IEEE Trans. on Parallel and
Distributed Systems, 13(3):260–274, 2002.
[17] V. Izosimov et al., "Design Optimization of Time- and Cost-Constrained
Fault-Tolerant Distributed Embedded Systems," DATE, 2005.
[18] P. Pop et al., "Design Optimization of Time- and Cost Constrained Fault-
Tolerant Embedded Systems with Checkpointing and Replication," DATE,
2005.
[19] V. Izosimov et al., "Analysis and Optimization of Fault-Tolerant
Embedded Systems with Hardened Processors," DATE, 2009.
[20] V. Izosimov et al., "Synthesis of Fault-Tolerant Schedules with
Transparency/ Performance Trade-offs for Distributed Embedded Systems,"
DATE, 2006.
[21] H. Kopetz et al., "Distributed Fault-Tolerant Real-Time Systems: The
Mars Approach," IEEE Micro, 9(1):25-40, 1989.
[22] N. Kandasamy et al., "Transparent Recovery from Intermittent Faults in
Time-Triggered Distributed Systems," IEEE Trans. on Computers, 52(2):113–
125, 2003.
[23] T. L. Adam et al., "A Comparison of List Schedules for Parallel
Processing Systems," Comm. ACM, 17(12):685–690, 1974.

L1

L3

L1

L3

=
L2

L2

L4

L4
=

L5

L5
=

L8

L8

L10

L10
= =

=

L6

L6
=

L7

L7
=

L9

L9
=

Slack

Slack

L11

L11
=

Slack

Slack
C

L1

L1
=

