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Abstract—This paper presents a new Driver Assistant System
(DAS) using radar signatures. The new system is able in one hand
to track multiple obstacles and on the other hand to identify
obstacles during vehicle movements. The combination of these
two functions on the same DAS gives the benefits of avoiding false
alarms. Also, it makes possible to generate alarms that take into
account the identification of the obstacles. The obstacle tracking
process is simplified thanks to the identification stage. Hence, our
low cost FPGA-based System-on-Chip is able to detect, recognize
and track a large number of obstacles in a relatively reduced time
period. Our experimental result proves that a speed up of 32%
can be obtained compared to the standard system.

Index Terms—FPGA, Driver Assistance System, Radar signa-
ture, MTT, System-on-Chip

I. INTRODUCTION

Driver Assistance Systems (DASs) are an increasingly im-
portant class of automotive applications in nowadays commer-
cial vehicles. They improve greatly road safety in stressful
driving conditions such as at night or in bad weather. Adaptive
Cruise Control [1], radar aided automatic proximity control
and navigation systems are examples of well-known range of
high-tech DAS applications. In the field of collision avoidance
system, the MTT (Multiple Target Tracking) system is con-
sidered to be an efficient solution that provides good obstacle
detection and tracking capacities.
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Fig. 1. Obstacle detection system based on radar sensor

The detection functionality is generally realized by one
or more sensors (radar or camera) around the host vehicle
(Fig. 1). In this paper, we only consider the radar detection
due to its good detection performance especially while driving
with poor visibility. Thanks to the embedded MTT application,
the driver can be alerted in real-time by a 3D audio alarm in
case of danger.

Historically, Application Specific Integrated Circuit (ASIC)
occupied the first place in embedded systems for the automo-
tive industry because of their cost-effective silicon solution [2].
Increasing levels of complexity and computational demands in
the automotive applications forced a move to more powerful
yet cost-effective processors [3]. As a promising alternative to
ASIC solution, reconfigurable platforms have been adopted to
implement complex automotive subsystems [4].

Indeed, existing driver assistance systems do not support
complex applications including fragile road users (such as
pedestrians or cyclists) or under rapid changing of weather
and lighting conditions, because of their limited functionalities
or cost constraints for large-scale automotive utilization. The
reconfigurable hybrid SW-HW solution based on FPGA tech-
nology, for Field-Programmable Gate Arrays, emerges as one
of the most promising platforms for DAS application. The fre-
quently changed functions are implemented on programmable
processors whereas the most time-consumed functions are
mapped on hardware accelerators using reconfigurable circuits.

Two types of DAS have been proposed during the last
years: the recognition system and the MTT system. The
recognition system categorizes the obstacles by using the
inherent radar signatures. This functionality is called ORS for
Obstacle Radar Signature. The ORS is then used to generate
an adequate alarm related to the type of the obstacle. The
MTT function is crucial for driver assistance applications such
as collision avoidance, intelligent cruise control and automatic
parking. However, the computational requirements of a MTT
application increases significantly as the number of targets
becomes important. Our contribution in this paper is to design
a full DAS where the ORS and the MTT work in a coordinated
manner. Indeed, this cooperation is very effective to reduce the
system cost and to enhance the system accuracy.

This paper is organized as follows. Section II presents
the related research works. Section III explains the radar
signatures and their utilization in Multiple Target Tracking
system. The baseline MTT architecture is given in Section IV.
Section V exposes the gate and signature checks. The time
profile results are presented in Section VI.

II. RELATED WORK

In recent years, various types of DAS have been proposed.
Among the most popular DAS functionalities, we can cite:978-3-9815370-0-0/DATE13/ c© 2013 EDAA



Adaptive Cruise Control [1], Lane Keep Assistance Sys-
tem [5], Parking Assistance System [6], Obstacle Detection
and Avoidance System [7]. Most of the existing systems have
either limited functionalities or are too costly for a large-
scale automotive utilization. These systems are implemented
by different hardware and/or software architectures. From the
hardware point of view, these systems range from dedicated
hardwired ASIC to pure programmable processors.

To offer a good performance/flexibility/cost trade-off, de-
signers have proposed either to use multi-processor system-on-
chips (MPSoC) or hardwired FPGA-based circuit [4]. Imap-
CAR [8] and EyeQ2 [9] systems are two examples of full pro-
grammable processors that are dedicated to automotive secu-
rity applications using vision system. Both of the architectures
provide support for a specific set of real-time data intensive
applications. Therefore, these systems are unable either to
accommodate new applications or to adapt the hardware to
different scenarios. In addition, the AutoVision processor [10]
is a dynamically reconfigurable MPSoC prototype for video-
specific pixel processing.

Also using the radar device, the research work in [11] is
the closest work of ours. The proposed MPSoC architecture
demonstrated the feasibility of using software-programmable
processor cores, up to 20 soft-cores, to execute a complex
application and it still meets the real-time constraints. How-
ever, it also demonstrated the high cost, in area and resource
utilization, associated with a software-only implementation.
This is particularly evident with the Kalman Filtering (KF)
block where dedicated processors are used to execute the
Kalman filtering code for each target. Even when multiple
targets could be tracked by a single Kalman filtering block,
the cost of implementing an entire processor in the logic fabric
of an FPGA to only support a single, dedicated function may
be too high.

A more cost-effective solution would be to use a hybrid
system that combines dedicated filtering hardware blocks with
software-programmable processor cores. The authors in [12]
proposed the utilization of DPR (Dynamic Partial Reconfig-
urable) technology to implement the Kalman filtering function.
Hence, the multiple soft-cores for data filtering are replaced by
the reconfigurable hardware logics and the different filters can
be charged and uncharged according to the driving context.
Compared to the above works, to the best of our knowledge,
our work is the first that uses the radar signature to optimize
the MTT architecture and to reduce the execution time.

III. RADAR SIGNATURE FOR OBSTACLE IDENTIFICATION

In this section, we first give a brief review of the Multiple
Target Tracking (MTT) system. Secondly, the obstacle signa-
ture is discussed as well as its implementation.

A. Radar Signature and MTT application

In Fig. 1, three different obstacles: a pedestrian, a panel
and a car, are detected in front of the host vehicle. The con-
ventional MTT system does not make any distinction among
these obstacles if only considering the obstacle presence. The

audio alarm is generated in the same manner regardless of
what the obstacle is. However, it is highly desired that the
DAS can yield different alarms according to the degree of
dangerousness. That is why it is necessary to identify the
obstacle to achieve that performance. On the other hand, the
identification helps to eliminate the false alarms for those
obstacles considered not dangerous.

Fig. 2 shows graphically the block diagram of a radar-based
MTT system with obstacle signature enhancement. Here, the
detection in our experimentation is performed by a commercial
AC20 TRW radar whose scan period is set to 25 ms. In
each scan, the MTT application is executed to deal with
the measurement data in real-time. After the sampling phase
and the analog to digital conversion at the reception, the
detection block outputs the obstacle position consisting of
the distance and the angle, denoted by (d, θ). The signature
id (S) is obtained thanks to the identification stage. The
MTT computation is then based on the position (d, θ) and
the respective signature S. Lastly, the corresponding audio
alarm is to be reconstituted according to the MTT computation
results, which as stated takes into account both the obstacle
position and the respective signature.
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Fig. 2. Block diagram of a radar-based MTT system with signatures

B. Radar signature and its implementation
It is demonstrated in [13] that the impulse response from

a target can be expressed as a sequence of Gaussian pulses.
The characteristics of these pulses, e.g., peak amplitude and
nominal duration, are functions of the physical properties of
the obstacle. Therefore the reflected electromagnetic wave
from a given obstacle is unique, from where the signature
is obtained.

In [14], the UWB (Ultra Wide Band) technology has been
used to create obstacle signatures. An FPGA-based hardware



accelerator has been proposed to meet the high real-time
constraint due to the correlation computation. Our proposal is
also based on the utilization of UWB radar to build an ORS
system. As stated, the outputs of the ORS are sent to the MTT
block to optimize the overall computation.

The general outline of data flow processing is presented in
Fig. 3. As described, the recognition system consists of two
key steps: 1). Radar detection and 2). Signature identification.
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Fig. 3. General outline of data flow processing for signature identification

1) Radar detection
The radar transmitter sends periodically an impulse
signal S̃. The reflected signal R̃ is modeled by a
vector containing Ñ samples: R̃ = {r̃0, · · · , r̃Ñ−1}.
Similarly, the reference signal R′ that corresponds to
the reflected wave as transmitting an impulse signal to
the receiver is represented by the M̃ -element vector
R′ = {r′0, · · · , r′M̃−1}.
At the reception, a correlation between both the sig-
nals R̃ and R′ is performed to determine the respective
distances to the obstacles. Mathematically, the correla-
tion function fc is expressed by Equation (1).

Td = fc(R̃⊗R′) =

Ñ−1∑
i=0

M̃−1∑
j=0

(r̃i+j × r′j) (1)

The obstacle distances are respectively calculated by
checking the peak positions in the result Td. In addition,
the leakage elimination in Fig. 3 is to deal with the
leakage transmission between both the transmission and
reception antennas.

2) Signature identification
The obstacle signature is identified by comparing the
obstacle to a set of candidate signatures, denoted by
S = {s0, · · · sK̃−1} where the candidate si is itself
a vector composed of M̃ samples, as the reference
signal R′. Similarly, this comparison is realized by
the convolution equation. Hence, for obstacle k, the
relevant samples rk are successively correlated with the

candidate signatures si, as expressed in Equation (2).

Vi = fc(rk ⊗ si) for k ⊆ Ok (2)

where the symbol Ok related to the kth peak position
represents the sub-set of sample subscripts in the re-
ceived signal R̃. The signature pointed by the subscript i
is selected in such a way that Vi = max{V }.

IV. MTT SYSTEM ARCHITECTURE

In this section, we first present an architecture overview of
the MTT system. Secondly, we discuss in detail the obstacle
signature application in the MTT system. Finally, the Munkres
algorithm, i.e., the assignment solver, is briefly reviewed.

A. MTT functional architecture
The MTT system tracks targets by consistently processing

the observation data in three iterative stages, as shown in Fig.4.
1) Observation: The distance and angle values are given

during a radar scan.
2) Data Association: In the Obstacle to Track Assignment

block, the observations are mapped respectively to the
tracked targets. The Track Maintenance block initiates
new tracks or deletes existing ones when needed. The
Gate Computation block defines the gate parameters
from around the predictions [11].

3) Filtering and Prediction: The filtering block estimates
the current position and predicts the next position of
each target.
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Fig. 4. Functional block architecture of the MTT application

B. MTT system modeling with signatures
The signature information helps to improve the DAS accu-

racy performance. We propose to introduce the obstacle signa-
ture S inside the MTT computation. It is then a must to take
into account the signature information in all the MTT steps.
In this case, the measurement and prediction are respectively
expressed by the vectors Vm and Vp in Equation (3):

Vm =

 D
A
S

 and Vp =


D
V
A
Va
S

 (3)

where the symbols D, A, S, V , and Va correspond to distance,
angle, signature, velocity and angular velocity, respectively.



C. Cost matrix generation

Considering N tracks and N measurements during a scan,
the problem that should be resolved is to establish the one-
to-one relationship between the tracks and the measurements.
The costs of the possible assignments are calculated in a 2D
cost matrix of size N × N . Mathematically, the assignment
cost for the ith measurement to the jth track is expressed by
Equation (4) :

cij =

[ỹijd ỹijθ]

[
p̃jθ→θ + rθ −p̃jd→θ
−p̃jθ→d p̃jd→d + rd

] [
ỹijd
ỹijθ

]
(p̃jd→d + rd)(p̃jθ→θ + rθ)− p̃jd→dp̃jθ→θ

(4)
where the symbols are defined as follows:
• The differences between measurements and predictions

in distance d and angle θ are respectively represented by
ỹd, ỹθ.

• The relationship p̃jd→θ means the covariance p̃ between
distance and angle for the jth track. The covariance
progressively evolves following the tracking iteration. As
indicated, each track is associated to a covariance matrix.

• Similarly, the representation rd, rθ is for the constant
transmission variance r related to the distance and the
angle, respectively.

D. Munkres algorithm

The Munkres algorithm is well adapted to the MTT applica-
tion to resolve the assignment problem [11]. The principle is to
establish the optimal association between the N measurements
and the N predictions by minimizing the total cost. For
this purpose, an iterative process is executed until the total
assignment cost is not improved no longer. Moreover, a unique
measurement can only be assigned to one track (prediction).
The description of this algorithm is beyond the scope of this
paper. The interested readers are referred to the article [15]
for details.

As an example, giving a 2D cost matrix C:

C =


0 2 5 3
1 0 6 2
6 7 0 4
9 4 2 0


the Munkres algorithm generates a corresponding binary
mask M̃ :

M̃ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5)

where the binary value 1 represents the coupled assignment
between the relevant measurement (line) and the track (col-
umn), 0 on the contrary. The iterative researching process is
stopped if the following condition is verified:{ ∑

M̃ij = 1 ∀i ∈ (0 · · ·N − 1)∑
M̃ij = 1 ∀j ∈ (0 · · ·N − 1)

We obtain the minimal assignment cost of 0 with the mask
given by Equation (5).

V. GATE AND SIGNATURE CHECK

A. Motivation

The Munkres algorithm basically relies on the cost matrix.
For a given line i in the matrix C, if the polynomial S̄, denoted
by the expression :

S̄ =
∑
j

(cj −min(cj))→∞, (6)

is large enough. it can preliminary be determined with high
probability that, the line element i is assigned to the column
element j, in such a way that:

m̃ij = 1 if cij = min(cj). (7)

The expression (7) can be considered as stop criteria during the
iterative process. In this case, it is not necessary to run through
all the steps required by the Munkres algorithm. Thanks to the
stop criteria, the number of iterations can be reduced, thus the
execution time. In the next of this section, we investigate two
approaches making possible to fulfill both the equations (6)
and (7).

B. Gate Check
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Fig. 5. Gate checking between 1 track (prediction) and 4 measurements.

The gate check method consists in calculating the binary
mask matrix, which indicates the possible assignments of
measurements and tracks. Only the measurements inside a
specific window around each track are candidates for the
assignment. The window is defined by the following rules:{

|∆D| < K ×
√
r0 + p0

|∆A| < K ×
√
r1 + p1

(8)

where the symbol ∆ represents the difference between the
measurements and the track prediction. The subscripts D and
A denote respectively distance and angle. The values ri and pi
correspond respectively to the noise variance and the process
co-variance and K is the gate coefficient. If the inequality (8)
is not verified, the cost is set to an arbitrary large value.

The gate checking procedure for 4 measurements and 1
track is illustrated in Fig. 5 where possible assignments are
marked by ones and others by zeros. Thanks to the gate
checking, the measurement m0 is first eliminated due to its
exceeded cost outside the gate area.



C. Signature Check

As evoked, the radar measurement signal contains the ob-
stacle signature information such as panel, car, pedestrian etc.
At first, we consider only the binary signature identification,
which implies that each obstacle does not have more than one
signature. In other words, if the measurement mi does not have
the same signature to the track t, it means that the possibility
to link these two elements is equal to 0. The above assumption
leads to the signature check, which consists in comparing the
signature identity as performing the assignment operation.

As shown in Fig. 5, the target track has the signature “car”.
In this case, only the assignment t → m2 is possible after
applying the signature check, because both of them have the
same identity. Similarly to the gate checking, the cost values
of the non-possible assignments are equal to a large number.
Again, the computational complexity is reduced because these
non-possible assignments are with no needs to run the cost
generation formula (see Equation (4)).

VI. REAL-TIME PROFILE ANALYSIS

In this section, we first perform the time profiling by running
the MTT application code on a Microblaze processor. Sec-
ondly, the time impact due to the obstacle signature utilization
in the MTT system is analyzed.

A. Time distribution of the MTT system

The time profiling of the ORS-MTT system is done through
a Microblaze-based architecture. The architecture is imple-
mented on the Xilinx ML605 kit board, on which an FPGA
circuit Virtex 6 is included [16]. The relevant Xilinx embedded
development tools are consequently used.
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Fig. 6. Time distribution in the MTT system. The abbreviations are defined as
follows: KF for Kalman Filter, IC for Innovation Computing, MA for Munkres
Algorithm, TM for Track Maintenance and CG for Cost Generation.

We consider the MTT application using integer values for
1000 scans and a maximum of 20 obstacles. In Fig. 6, the
execution time of the Kalman Filter (KF) corresponds to the
processing of only one obstacle. It is shown that the most time
consumed component functions are the Cost Generation (CG)
and the Munkres Algorithm (MA), of which the execution

time accounts respectively for 25.7% and 47.9%. The time
required by Innovation Computing (IC) accounts for 19.4%.
As conclusion, the complexity of the functions CG and MA
is relatively higher than the others.

According to Equation (4), the complexity of cost genera-
tion is equal to N2 operation units, i.e. O(N2). The operation
unit here includes multiplications, additions and division. For
the Microblaze [17] processor, an addition and a multiplication
needs respectively 1 and 3 clock cycles for integer values,
whereas a division requires up to 34 clock cycles. On the other
hand, the Munkres algorithm exposes an iterative process to
obtain the optimal solution. The number of iterations might
vary in function of the cost matrix. This explains that the cost
generation and the Munkres algorithm need a relatively long
time to execute.

B. Execution Time Analysis

Two key factors are to be taken into account for the
execution time: the number of obstacles N and the gate
coefficient K (see Equation (8)). The first factor determines
the computational complexity of generating the cost matrix C.
The second one defines the size of the gate area, i.e., the
number of gates available for a possible assignment. With
regards to the impact on the execution time, three cases are to
be investigated for the overall MTT system: 1). Without gate
check nor signature check, 2). With gate check only and 3).
With gate and signature checks.

1) Without gate check nor signature check. As no checks
are considered inside the application process, the cost
matrix is to be generated with the highest complexity,
i.e. O(N2) operations. This is equivalent to affect an
infinite value to the gate coefficient K (K = ∞).
Hence, the application with no checks consumes the
most important time. Instead of considering the total
time consumed by the MTT application, it might be
of interest to count merely the impacted part: the Cost
Generation (CG) function and the Munkres Algorithm
(MA). According to the execution times given in Fig. 7
(see K = ∞), where the time basis in the vertical
axis is changed to the sum of MA and CG times, we
obtain a time of 15 milliseconds for 20 obstacle and
1 millisecond for 5 obstacles. This time consumption
increases when the matrix size N increases.

2) With gate check only. The cost generation outside the
gate area can be omitted thanks to the gate check. The
gate size is determined by the gate coefficient K. Thus,
the parameter K jointly with the number of obstacles N
plays a primordial role to reduce the time consumption.
According to Fig. 7, which depicts the time profile
in function of the parameters N and K, we obtain
a time of 14 milliseconds for the gate coefficient K
equal to 30 and N to 20. This value changes to 11
milliseconds when K is equal to 3 for the same number
of obstacles. Additionally, the gate coefficient K does
not have a significant impact on the execution time when
the number of obstacle N is small, e.g. N = 5.



2 3 6 10 15 20 30 300
0
2
4
6
8

10
12
14
16

Gate coefficient K

T(
m

s)
: M

.A
.+

C
.G

.

N=5

N=10

N=15

N=20

∞

Fig. 7. Execution time (in mSec) of the MTT system with gate check for
the Munkres algorithm (MA) and the cost generation (CG) within the Data
Association block. The number of obstacles (N) varies between 5 and 20.

3) With gate and signature checks. We first introduce the
recognition ratio R defined by the expression (9):

R =
Nc
N

(9)

where the symbol Nc denotes the number of unique
signatures included inside a radar scan and N is the
total number of obstacles. For instance, if there are 3
identified obstacles, let’s say 2 cars, 1 pedestrian. The
recognition ratio is equal to 2

20 because of the two
unique signatures: car and pedestrian.
The execution time in function of the recognition ratio R
and the parameter K is shown in Fig. 8. We obtain
an execution time of 11 milliseconds for R = 1

20 and
k = 3. This value decreases to 7.5 milliseconds when the
ratio R raises up to 20

20 , from where a speed up of 32%
is obtained. Regardless of the value of the parameter K,
the execution time converges to the minimum time value
of 7.5 milliseconds with the recognition ratio equal
to 20

20 , i.e. R = 1. It indicates that the minimum
execution time is achieved when no identical obstacles
are observed within one radar scan.
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Fig. 8. Execution time (in mSec) with gate and signature checks for
Munkres Algorithm (MA)+Cost Generation (CG) for different values of gate
coefficient K. The number of obstacles is set to 20 and the number of unique
signatures Nc varies between 1 and 20.

VII. CONCLUSION

The radar signature utilization in automotive MTT system
has been presented in this paper. Thanks to the signature uti-
lization, it is possible to categorize the obstacles, to recognize

the degree of dangerousness and to reduce the false alarms.
On the other hand, the application of signatures eases the cost
matrix generation and thus increases the timing efficiency. The
time profile has been investigated over a soft-core processor
Microblaze. Compared to the standard MTT system, the
necessary time is dropped down from 11 milliseconds to 7.5
milliseconds by jointly using the gate and signature checks.
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