
The RecoBlock SoC Platform: A Flexible Array of

Reusable Run-Time-Reconfigurable IP-Blocks

Byron Navas, Ingo Sander, Johnny Öberg

Dept. of Electronic Systems, KTH Royal Institute of Technology

Stockholm, Sweden

{navas, ingo, johnnyob}@kth.se

Abstract— Run-time reconfigurable (RTR) FPGAs combine

the flexibility of software with the high efficiency of hardware.
Still, their potential cannot be fully exploited due to increased
complexity of the design process. Consequently, to enable an
efficient design flow, we devise a set of prerequisites to increase
the flexibility and reusability of current FPGA-based RTR
architectures. We apply these principles to design and implement
the RecoBlock SoC platform, which main characterization is (1)
a RTR plug-and-play IP-Core whose functionality is configured
at run-time; (2) flexible inter-block communication configured
via software, and (3) built-in buffers to support data-driven
streams and inter-process communications. We illustrate the
potential of our platform by a tutorial case study using an
adaptive streaming application to investigate different
combinations of reconfigurable arrays and schedules. The
experiments underline the benefits of the platform and shows
resource utilization.

Keywords—reconfigurable architectures; partial and run-time
reconfiguration; system-on-chip; adaptivity; embedded systems

I. INTRODUCTION

Design-and-Reuse has been one of the strategies to

overcome the design productivity gap in silicon industry during

last decade of the System-on-Chip (SoC) revolution [1] [2].

Now, a new era in reconfigurable computing systems is

emerging, where it is possible to port software tasks

dynamically into Run-Time-Reconfigurable (RTR) hardware

accelerators. This introduces additional complexity to the

design space, which makes design task even more challenging.

To cope with system-level design issues in increasingly

complex integrated circuits, “orthogonalization of concerns” is

important to separate parts of the design process and make

them nearly independent, so that complexity can be mastered.

Platform based design has been suggested as an essential

element to overcome the system design challenges in current

embedded systems. It is "important to find common

architectures that can support a variety of applications as well

as the future evolutions of a given application. To reduce

design cost, re-use is a must" [3]. A SoC platform implies HW

and SW reusability, which is achieved by a library of

Intellectual Property (IP)-Cores and an efficient Hardware

Abstraction Layer (HAL). A successful design aims to balance

between production cost, development time, and performance.

We are convinced that an approach using high-level models

is a good starting point for Design of Embedded Systems.

However, most of the design methodologies that exist today

are predominantly focused on generating the entire system

directly. They fail to consider that a partial reconfiguration can

be used to reduce cost and power consumption, by loading

critical parts of the design at run-time. However, adoption of

partial reconfiguration is limited by the intricacy to generate

configurations, which implies time and recursive effort during

the layout and physical synthesis stages.

We propose to include high-level models into partial

reconfiguration, by creating automatically binding blocks with

flexible inter-connections and functionality that can be

configured independently during run-time. In this way, they

can be stacked in any fashion to replicate process structures

modeled and optimized at high-levels of abstraction.

We call this platform the RecoBlock (Reconfigurable-

Block) SoC Platform. It introduces the concept of reusable

RTR IP-Cores with inter-communication and functionalities

reconfigurable at run-time, so that reconfigurable architectures

and schedules of the array are not fixed, but defined by

software. In addition, we propose a set of requirements for

adaptivity, flexibility and reusability of reconfigurable

components; which are adopted for the RecoBlock core. A case

study that implements a high-level model of function

adaptivity is implemented and tested for different combinations

of reconfigurable management aspects, which proves the

properties of the platform. Our proposal aims to reduce the

unnecessary repetitive design steps, allowing high-level

designers to rapidly implement and test concepts and concerns

regarding reconfigurable computing.

II. RELATED WORK

Some contributions like [4] [5] devise architectures, design

methodologies or operating systems for dynamic

reconfiguration; conduct performing analysis for key concerns

like reconfiguration overhead, dynamic scheduling; or propose

methods to efficiently map software tasks to hardware.

However, some of them remain as high level models, verified

only with custom-made simulators, or implemented in cycle

accurate SystemC frameworks; therefore missed

implementation constraints would rest validity to those models.

For instance, in [6] they present a design methodology and

dynamically reconfigurable architectures; which consider

arrays of Dynamic Reconfigurable Logic (DRL) blocks, and

focuses in dynamic schedule algorithm analysis. However, the

model seems very abstract and is not implemented. In the same

way, in [7], a dynamic runtime manager for reconfigurable

978-3-9815370-0-0/DATE13/©2013 EDAA
978-3-9815370-0-0/DATE13/©2013 EDAA

resources that leverages hardware module reuse and inter-

module communication is presented. Nevertheless, the concept

is proved in a virtual architecture for reconfigurable systems.

In [8], a framework for adapting computing, including

layers of software, is implemented on a Virtex-4. It covers

issues of communication between partial reconfigurable

modules and system. A case study discusses an example that

multiplexes two memory controllers (i.e., Flash and SRAM) in

one single reconfigurable region. It analyzes context switching

overhead between static and reconfigurable implementations.

This framework is shown to be functional also in other related

works. However, it used Peripheral Local Buses (PLB) and

interface like Bus Macros, which are being discontinued by

Xilinx. Besides, custom interfaces implemented between

partial reconfigurable modules and to external pins seem to be

efficient, but reduces reutilization, modularity, and routability.

Adaptive computing should be intended for improving

processing speed in hardware, not for interfacing external

devices. Moreover, reusability, libraries of configurations, or

standardization of interfaces is not explicitly addressed.

In [9], authors visualize the importance of a flexible FPGA

platform with not-fixed modules, and efficient communication

methods in reconfigurable computing. The difficulty of partial

configuration design automation is pointed out, mainly because

of place and routing constraints when pins and static regions

are fixed. The solution is coarse-grained oriented and utilizes

two FPGA boards: one for reconfigurable modules and other

for a programmable crossbar and external interfaces. This

paper obviates implementation details, but presents important

concepts towards uniformity and flexibility. The multi-board

and granularity approach makes it restrictive.

A method, based in modified Kahn Process Networks, to

find optimal templates that fit in a reconfigurable hardware is

presented in [10]. The architecture is a complex system

consisting in a coarse-grained matrix of processing elements

(PE) coupled with a Microblaze (MB) using a Fast Simple

Link (FSL) and OPB for other peripherals. Each PE is a fixed

functional structure, which includes buffers but communicates

only with a fixed number of neighbors, without a global

interconnection fabric. Reconfiguring PEs is shown to be faster

than partial reconfiguration methods for the same area. To sum

up, it is an interesting example of reconfigurable computing

system; however it is not a partial RTR one. The array and PEs

are fixed. The exclusive FSL is optimal for the high bandwidth

required to connect the whole complex array to the system, but

each PE cannot access directly to all PEs or system.

III. RECOBLOCK SYSTEM DESCRIPTION

A. The RecoBlock Concept

The RecoBlock architecture works like a placeholder for a

scalable “block reconfigurable” array architecture [11], with

multiple discrete blocks that can be used independently, rather

than one large configurable fabric. Each computation process

or function can be loaded as needed on any physical

RecoBlock at run-time from a library of configurations, as

depicted in Fig. 1.

Fig. 1. Simplified RecoBlock concept. RecoBlock-IPs instantiated from IP

Library. RP configured from configurations library at run-time.

Interconnection fabric (e.g., AXI4 or NoC) support plug-play links configured
by software. API functions handles reconfiguration and transactions.

This kind of blocks, or Swappable Logic Units (SLU) [12] ,

behaves like pages in traditional virtual memory systems.

Thus, a set of reconfigurable processes in a processing network

represents an abstraction layer of functions that can be

implemented over the physical layer of the RecoBlock

architecture, taking advantage of intrinsic hardware

acceleration. It is important to note here, that no computation

or communication link is pre-assigned to any block; therefore

the interconnection links are also configurable at run-time. In

principle, this means that any pre-compiled function can be

downloaded into any existing RecoBlock at all times.

B. Pre-requisites for Flexibility and Reusability in RTR

To improve flexibility and reusability with the RecoBlock
concept, the following minimum pre-requisites should be met:

1. IP-Core with embedded Reconfigurable Partition (RP).

2. Fixed RP input and output interfaces.

3. Fixed static logic in IP-Core.

4. RTR decoupling logic in static regions.

5. Fixed RP physical layout area.

6. Intercommunication links configurable by software.

7. Pre-generated library of configurations.

8. IP-Core with no direct interface to external pins.

Suggested for data-stream and context switch support:
9. Internal buffer.

C. The RecoBlock SoC Platform.

The RecoBlock SoC platform is shown in Fig. 2. In

principle it can be viewed as a processor system, where an

array of reconfigurable blocks has been hung onto the local

bus. In our case, the RecoBlocks are connected through the

AXI4 Interconnect of a Xilinx Virtex-6 circuit, and they

communicate between each other and with the processor using

data-streams implemented as built-in buffers, or traditional

memory-buffer schemes.

AXI4 is the Advanced eXtensible Interface (AXI) protocol

for IP cores included in the latest Advanced Microcontroller

Bus Architecture (AMBA) ARM 4.0 specification. The “AXI

Interconnect IP” provides interfaces to connect and route

transactions between master (MI) and slave (SI) interfaces of

memory-mapped IP cores [13]. To enable array

interconnectivity in the RecoBlock platform, it is configured in

the Sparse Crossbar Mode, which features a Shared-Address-

Multiple-Data (SAMD) topology, where parallel data pathways

connect each MI to all SI they can access; then data transfers

can occur independently and concurrently under single-

threaded write and read address arbitration.

Fig. 2. Abstract diagram of RecoBlock SoC platform. Array of RTR

RecoBlock-IPs are on the lower-left corner, with AXI4 and AXI4-Lite

interfaces. AXI4 Interconnect details and other connections are omitted.

1) RecoBlock IP Description: A RecoBlock is an AXI4

Memory-Mapped custom component with a Reconfigurable

Partition (RP), where several Reconfiguration Modules (RM)

will be loaded at run-time [14]. As memory-mapped

component, it can be treated as virtual variable/buffer in API

functions. Fig. 3 shows a simplified hierarchically structure.

a) Reconfigurable Partition (RP): The RP is the only

non-static region in a RecoBlock. Its purpose is to hold a

Reconfigurable Module (RM), after its respective partial

configuration file has been loaded at run-time. A RM is

defined by a HDL description which is separately synthesized

into a netlist file (.ngc). One or more RMs represented as

partial configuration files constitute the RM library. To

facilitate reusability and rapid-integration, the RP has a simple

interface consisting of: a) one 32-bit data input, b) one 32-bit

data output, and c) clock and reset signals. Slow handshake

methods were unnecessary since the logic in the RP must start

only in response to software reset [15], and because of the

RecoBlock is considered data-driven.

To implement partial reconfiguration the design must be

partitioned in static and reconfigurable regions, and a separate

netlist synthesized for each partition. When adding a

RecoBlock IP in XPS, there is no restriction for the RP size

since it is considered a black box without functionality.

However, the RP physical size and timing constraints are

restricted to the FPGA’s space availability and PlanAhead

tool’s efficiency to generate each configuration run [16].

b) AXI4 IP-Interfaces (IPIF): A RecoBlock instance can

interact with the system through 2 AXI4 memory mapped

IPIF connected directly to the AXI4 Interconnect IP. First, the

AXI4-Lite IPIF is capable of single transactions of 32bit per

clock beat. Its main purpose is to perform read/write

operations on Slave-Registers. Second, the AXI4 Burst Master

is capable of single and burst transactions up to 256 words of

32bits per cycle in a single address phase [15]. It can start a

write or read transaction.

c) Slave and Master Registers: The RecoBlock has six

32 bit registers. The Ctrl and Status registers have bits to

control the Execution-Decoupling state machine, which

basically decouples/isolates the RP during RTR. DataIn is

used as data input to be processed by the logic in RP. ExeT

will receive the expected execution time (clock beats) needed

by the RP to complete a computation after reconfiguration.

Result register stores the result (and input context) of the RP

function after execution time defined in ExeT. On the other

hand, the Master Registers are used along with the Burst-

Command-Control logic for AXI4 protocol handling, data

interpretation, and single/ burst transactions.

d) Embedded FIFO: The embedded FIFO work as:

 storage for results of RP computations,

 quick access inter-process communication buffer,

 decoupling buffer in streaming SDF models,

 context switching storage during RTR.

It is optimized by using native SRL blocks, and is

parameterized to 32-bit wide and 128-bit depth; which is big

enough for the current platform purposes.

e) Execution-Decoupling: Because the static regions of

the FPGA remain operative when the logic in RP is being

modified [14], the Exec-and-Decoupling module guarantee

that outputs of RPs are ignored during partial reconfiguration.

After software reset, the Exec-Decoupling waits the number of

clock beats specified in ExeT register (expected execution

time of the RP function), and then asserts its outputs to enable

the data channel between RP and FIFO, which stores the new

result. Consequently, by having the decoupling and execution

time logic separated from the RP guarantees portability and

easily conversion of existing HDL designs into RMs.

f) Software Reset: After partial reconfiguration, the

initial state of the PR logic is unpredictable [14]. A global

reset would reset the static regions as well. For that reason, the

Soft-Reset [15] module emits generates a parameterizable

local reset pulse, after the “rB_SftRst_Go” function is issued.

g) Reconfiguration Control: Reconfiguration is

supported by API and handled in HW by 2 AXI4 components,

i.e., HWICAP and SYSACE; and an external Compact Flash

(CF) memory. The external memory stores the initial and

partial .bit files generated at design time. A software function

reads the desired file, unpacks it, and the HWICAP loads the

configuration in the PR of the target RecoBlock.

Fig. 3. Simplified RecoBlock-IP diagram. RP is the only reconfigurable

region, the rest are static during synthesis.

IV. SOFTWARE VIEW

The RecoBlock platform is oriented to SDF models for

streaming applications and is data-driven. A system is modeled

as a set of communicating processes. A buffer is needed to

decouple the different data rates of the input and output

streams, since concurrent process exchange data through

unidirectional FIFO channels that carry a 'stream' or sequence

of data 'tokens'. Writes to the FIFO channel are non-blocking

and reads are blocking [17] [18]. A process fires when: a)

firing rules are met, b) enough tokens exist in input-side FIFO,

and c) enough space exists in output-side FIFO.

The RecoBlock platform can use two communication

mechanisms between processes: a) the classical “buffers in

memory”, and b) local buffer (FIFO) in RecoBlock. The latter,

provides less latency and memory access contention, with

additional burst capability, which improves performance.

A. SW Abstraction Layer:

Fig. 4 shows the hierarchical abstract view of HW and SW

layers available for the user application designer. Each layer

has an exclusive RTR section that is part of the RecoBlock API

(i.e., drivers, configurations, API), which handles the

underneath RecoBlock array. The Board Support Package

(BSP) section is generated in SDK along with basic templates.

The RecoBlock Lib is generated externally in PlanAhead.

The RecoBlock API consists of high level functions

supported by drivers, macros and definitions of the lower

layers. It is divided in: transactions and reconfiguration.

Fig. 4. SW Abstraction Layer. For each layer, RecoBlock Platform

components are on the left and exclusive RTR components are on the right.
Partial configurations are part of the Library layer.

B. Inter Block/Memory Transactions API:

Depending of the number of instantiated RecoBlock and

AXI interconnections in XPS, the definition of the array is

completed here, by using the transactions API in Table 1. It

summarizes the functions dedicated to control the different

type of transactions enabled by hardware from/to a RecoBlock,

which can be: a) memory to RecoBlock, b) RecoBlock to

RecoBlock, or c) RecoBlock to memory

TABLE I. RECOBLOCK TRANSACTIONS API

RecoBlock Transactions

Symbolic Transaction Type Direction API Function Name

[Mem] 1 --> 1 [RBx] Single To rB_MbDataIn()

[RBx] 1 --> 1 [RBx+1] Single Inter rB_RcBk2RcBk()

[RBx] 1 --> 1 [Mem] Single From rB_SendNoBrst()

[RBx] n --> n [Mem] Burst From rB_RdFifo()

In some cases, a burst transfer of the internal buffer to a

memory buffer is allowed, otherwise transfers are single.

Functions names are simplified without fields. The format for

symbolic transactions is:

[source] #output-tokens #input-tokens [destination]

Where: Mem is memory variable or buffer, and RB is RecoBlock- IP

C. Reconfiguration API

In the RecoBlock platform, there is no fixed schedule tied

to the architecture, and then reconfiguration management is

highly flexible allowing exploration of different schemes

defined mostly by application software (as shown in the Case

Study). Run-time reconfigurations and computed schedules are

programmed using functions shown in Table II.

TABLE II. RECOBLOCK RECONFIGURATION API

RecoBlock Reconfiguration

Symbolic Operation Action API Function Name

[Status] --> [MB] Read Status register rB_Status()

[MB] --> [Enable] Enable bits in Ctrl register rB_EnaAll()

[#cycles] --> [ExeT] Loads expected execution

time in ExeT register.

rB_ExeT()

[MB] --> [SoftReset] Reset PR and start execution rB_SftRst_Go()

[CF] --> [MB]

[MB] --> [ICAP]

[ICAP] --> [RPRBx]

Read .bit from library

Parse .bit, send to ICAP

Reconfigure RP

rB_CF2Icap()

To illustrate, a basic pseudo-code sequence for a fresh

reconfiguration is shown below:
1) Rb_EnaAll() //enable Exec&Decoup. Logic

2) rB_ExeT() //load expected execution time

3) rB_Cf2Icap() //read .bit, parse, reconfigure RP

4) rB_SftRst_Go() //reset RP, start computation, decouple RP

Here, RP is coupled automatically at the end of

computation to store the result and is immediately decoupled,

without any special instruction. Execution time is pre

computed and changed only if different for the new

configuration; otherwise only steps 3) and 4) are mandatory.

Finally, step 1) is required only after global reset.

V. RECOBLOCK DESIGN FLOW

In Fig. 5, the diagram describes important steps, guidelines,

and concepts necessary to use/reuse the RecoBlock platform

and methodology. This contribution is product of our

experiences and derived from the normal Xilinx flows. Tool

domains are represented vertically.

The section on the upper-left corner is not part of the

platform, but is recommended. Therefore, after idea

conception, the designer should have a model, computed

schedule, and reconfigurable architecture to be implemented.

Then, if more RecoBlock-IPs is needed, they are instantiated

from the IP-Library, otherwise the basic platform is enough to

generate the .xml description and export to SDK. Here, a new

BSP package is generated if new IPs were added, otherwise the

same is reused. Application is developed using the provided

RecoBlock API. The FPGA board is programmed with an

initial configuration (static + partial) and a boot loader that

enables debugging features from SDK.

Fig. 5. RecoBlock design flow. Tools domains are vertical. Central and

Run-Time sections describe the straightforward flows to reuse the platform.

Right section belongs to the offline recurrent flow when configurations are

not in library. Upper-left section is a recommended design entry.

During run-time, new partial configurations are loaded

from the provided function library. When new configurations

are not in library, a netlist with RPs as black boxes is generated

from XPS, then functionality is added to RPs from HDL

descriptions, and finally a long recursive offline process starts

until a new configuration is generated, so it must be avoided.

VI. CASE STUDY

We use a tutorial case study to show the potential of our

platform. The case study implements a typical example of an

adaptive system model, corresponding to an encoder/decoder

streaming application. We run four different experiments (exp.)

for the same model, but using different reconfigurable

architectures and schedules, without regenerating the platform.

Then we evaluate the platform properties based on the results.

By using an additional input signal carrying functions as

values, a process can be expanded to cover several types of

adaptivity [19]. In that context, Fig. 6 (a) shows a “function”

adaptivity model. Here, the main processing network,

consisting of processes (S, P0, P1, and D) and decoupling

buffers (Fs, F01, and Fd), models a RTR streaming application

based on adaptive extensions on SDF semantics [20].

A. Reconfiguration Management: Architecture and Schedule

The SoC platform was generated with 2 RecoBlock IP

instances, namely RecoBlock0 and RecoBlock1, representing

P0 and P1. Their PR are reconfigured at run-time with encoder

“e” and decoder “d” functions, whose bitstreams were

generated at design time and are part of the “function library”

available during run-time in CF memory.

The e/d functions correspond to Shift Cipher cryptosystems

based on modular arithmetic or inverse operations. Thus, in

average, all functions utilize 32 Slice Registers, 32 LUTs, and

67 KB (.bit). In that way, we keep algorithm complexity

constant and focus our analysis in flexibility, reusability, and

configuration management. The physical inter-connections are

set during design time in XPS, but the actual destination of

each transaction is selected by API functions.

Fig. 6. Experiment setup: (a) typical example model of function adaptivity:

encoder/decoder, (b) reconfigurable schedules, (c) reconfigurable

architectures: A) spatial, B) phased or sequential (context switch).

The four schedule variations are described in Fig. 6 (b),

colored boxes are “reconfiguration + execution” events, and

grayed boxes are just “execution” events of the current

configuration. Thus, two scheduling groups are employed:

 Schedules A) and B) use n different e/d function pairs

(eidi, for 0<i<n-1) to process a total of n tokens. In B)

the whole stream is encoded, stored in internal buffer,

and finally decoded. Single and multiple production

rates are simulated in A) and B), respectively.

 Schedules B) and C) use only 1 set of e/d functions, to

process a large number of tokens compared with the

reconfiguration cycles (trunning >> treconfig.). In addition,

D) is a special case that uses only RecoBlock0 for both

functions, according to architecture B) .

 The two architectures in Fig. 6 (c) will evaluate at least

two concepts, context switching and prefetching. Therefore:

 Architecture A) uses a typical approach (spatial),

assigning e0 and d0 to separate RecoBlocks.

 In contrast, B) time-multiplexes e0 and d0 in

RecoBlock0. It saves area, but require a “context

switch” [21], for which it takes advantage of

RecoBlock0’s buffer burst to memory.

B. Experiments Setup

According to Fig. 6, Table III summarizes the experiment

setup for four combinations of architectures, schedules, number

of functions and processed tokens. Time is measured using

timer interrupt routines, disregarding unrelated functions.

However, it is highly affected by extra software overhead,

especially by CF latency, and file processing.

C. Results Analysis

The flexibility and reusability concepts were demonstrated

since: a) RecoBlocks were easily instantiated from IP-library,

b) different functions were reconfigured at run-time,

implementing efficiently the adaptivity model (exp.1-2), and c)

communication links were selected by transaction API (Fig. 6

(c) and exp. 4). Besides, produced and consumed tokens

match, which validates the HW/SW platform and design flow.

TABLE III. EXPERIMENTS RESULTS - ACCORDING TO FIG. 6.

E a SA a RR a T a TR a

(ms)

EX a

 (ms)

P a

(ms)

 0 1 0 1

1 AA 3 3 3 1067.6 1067.7 0.137 2135.4

2 BA 3 3 3 1067.0 1067.0 0.137 2134.2

3 CA 1 1 10 355.6 355.6 0.463 711.6

4 DB 2 -- 10 711.6 --- 0.465 712.0

a. Experiment (E), Schedule-Architecture (SA), # of reconfigurations per block (RR) , Tokens processed
(T) , Sum of reconfiguration time per block (TR), Execution time (Ex), Total processing time (P)

Exp. 1-2 show than the schedule selection (single or multi-

rate) does not improve the overall result, given the same

architecture. The internal buffer is useful in exp. 2.

Exp. 3-4 clearly illustrate the reconfiguration trade-off

between area and time. The overall processing time is similar,

but experiment 3 uses only 1 RecoBlock, despite of the

context-switch required in experiment 4; which consumed only

42.48 us thanks to the internal buffer burst capability.

In addition, configuration overhead in exp. 3-4 is smaller

than 1-2. RTR is attractive when configuration time is small

compared to the amount of processed data.

Finally, resource utilization in XPS shows: 9.7% FFs, and

9.3% LUT of total system (no FPGA) for each RecoBlock IP

(RP as black boxes). In PlanAhead, the average utilization of

e/d functions in RPs is 7%. For each RP pblock, 800 FD, 400

LUT, and 4 DSP48E1 were available. Offline time required to

implement each configuration (runs) ranges from 20 to 40

minutes. Supported FMax is 77.918 MHz.

VII. CONCLUSIONS AND FUTURE WORK

The overall impact of the work presented in the paper is

summarized as follows. We devised a set of recommendations

to promote flexibility and reusability in RTR FPGA-based

designs. We applied them to design and implement, compared

to [4][5][6][7], the RecoBlock platform and systematize a

reliable design flow; which utilizes RTR RecoBlock-IPs. The

experiments conducted using the platform demonstrated that

those are a valid minimum set of conditions to achieve that

goal. The tutorial case study also showed the flexibility and

reusability properties of the platform, by replicating a number

of reconfigurable arrays and schedules, which were configured

at run-time with API functions, without any hardware

regeneration. In addition, transactions and configurations are

independent and supported by APIs, this feature facilitates

design exploration according to the orthogonalization principle.

Besides, the platform balances efficiently time, cost, and

performance. In contrast to [8] and [10] the system uses the

newest AXI4.

Furthermore, we devise some challenges in our platform.

Although a library of functions minimizes design time,

PlanAhead processes are critical in RTR designs and should be

automated if possible or avoided by exploring optimum size

and topology arrays. Besides, initializing reconfigurations in

DDR3 will improve performance.

Our next step is to exploit and explore the flexibility and

reusability of the platform with computation demanding

applications and through integration with complex models,

compilers, dynamic reconfiguration managers. Our vision is to

take the RecoBlock concept to Multi-Core Network-on-Chip

environments, where RTR nodes can improve hardware

acceleration and fault-tolerance.

REFERENCES

[1] G. Martin and H. Chang, Eds., Winning the SoC revolution : experiences
in real design. Boston, Mass.: Boston, Mass. : Kluwer Academic
Publishers, 2003.

[2] D. D. Gajski, A. C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, and P.
Bricaud, “Essential issues for IP reuse,” Proceedings of the ASP-DAC
2000. Asia and South Pacific, pp. 37–42, 2000.

[3] K. Keutzer and A. Newton, “System-level design: Orthogonalization of
concerns and platform-based design,” … -Aided Design of …, vol. 19,
no. 12, pp. 1523–1543, 2000.

[4] M. Kuehnle, A. Brito, C. Roth, K. Dagas, and J. Becker, “The Study of a
Dynamic Reconfiguration Manager for Systems-on-Chip,” 2011 IEEE
Computer Society Annual Symposium on VLSI, pp. 13–18, Jul. 2011.

[5] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an Operating System for a Heterogeneous Reconfigurable
SoC also Professor at Katholieke Universiteit Leuven,” vol. 00, no. C,
2003.

[6] J. Noguera and R. M. Badia, “Multitasking on reconfigurable
architectures: microarchitecture support and dynamic scheduling,” ACM
Transactions on Embedded Computing Systems, vol. 3, no. 2, pp. 385–
406, May 2004.

[7] A. Jara-Berrocal and A. Gordon-Ross, “Hardware module reuse and
runtime assembly for dynamic management of reconfigurable
resources,” 2011 International Conference on Field-Programmable
Technology, pp. 1–6, Dec. 2011.

[8] M. Liu, Z. Lu, W. Kuehn, S. Yang, and A. Jantsch, “A Reconfigurable
Design Framework for FPGA Adaptive Computing,” 2009 International
Conference on Reconfigurable Computing and FPGAs, pp. 439–444,
Dec. 2009.

[9] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich,
“The Erlangen slot machine: increasing flexibility in FPGA-based
reconfigurable platforms,” Field-Programmable Technology, 2005.
Proceedings. 2005 IEEE International Conference on, pp. 37–42, 2005.

[10] S. Shukla, N. W. Bergmann, and J. Becker, “QUKU: A FPGA Based
Flexible Coarse Grain Architecture Design Paradigm using Process
Networks,” 2007 IEEE International Parallel and Distributed
Processing Symposium, pp. 1–7, 2007.

[11] K. Compton, “Reconfiguration Management,” in Reconfigurable
Computing: The Theory and Practice of FPGA-based Computation, S.
Hauck and A. DeHon, Eds. Morgan Kaufmann/Elsevier, 2008.

[12] G. Brebner, “The swappable logic unit: a paradigm for virtual
hardware,” Proceedings of the 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 77–86, 1997.

[13] Xilinx, “AXI Reference Guide, UG761 (v13.4),” 2012.

[14] Xilinx, “Partial Reconfiguration User Guide, UG702 (v12.3),” 2010.

[15] Xilinx, “Xilinx: Product Support & Documentation.” 2012.

[16] Xilinx, “PlanAhead User Guide, UG632 (v13.4),” 2012.

[17] E. a. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of
the IEEE, vol. 83, no. 5, pp. 773–801, May 1995.

[18] J. P. Barros, A. Costa, and L. Gomes, “Modeling Formalisms for
Embedded System Design,” in Embedded Systems Handbook, CRC
Press, 2005, pp. 5–34.

[19] I. Sander and A. Jantsch, “Modelling Adaptive Systems in ForSyDe,”
Electronic Notes in Theoretical Computer Science, vol. 200, no. 2, pp.
39–54, Feb. 2008.

[20] J. Zhu, “Performance Analysis and Implementation of Predictable
Streaming Applications on Multiprocessor Systems-on-Chip,” KTH,
Electronic Systems, 2010.

[21] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation SE - Systems on Silicon. Morgan
Kaufmann, 2007.

