
Support for Dynamic Issue Width in VLIW
Processors using Generic Binaries

Anthony Brandon, Stephan Wong
Computer Engineering Laboratory, Faculty of EEMCS

Delft University of Technology, The Netherlands
Email: {A.A.C.Brandon, J.S.S.M.Wong}@tudelft.nl

Abstract—Different applications exhibit different behavior that
cannot be optimally captured by a fixed organization of a
VLIW processor. However, through exploitation of reconfigurable
hardware we can optimize the organization when running dif-
ferent applications. In this paper, we propose a novel way to
execute the same binary on different issue-width processors
without much hardware modifications. We propose to change
the compiler and assembler to ensure correct results. Our
experiments show an average slowdown of around 1.3× when
compared to binaries compiled for specific issue-widths. This
can be further improved to less than 1.09× on average with
additional compiler optimizations. Even though the flexibility
comes at a price, it can be exploited for many other purposes,
such as: dynamic performance/energy trade-off and energy-
saving mechanisms, dynamic hardware sharing, and dynamic
code insertion for hardware fault detection mechanisms.

I. INTRODUCTION

In the embedded domain, power consumption is a major
design concern and in turn led to the use of Very Long
Instruction Word (VLIW) processors for specific applications
due to their inherent low-power requirements (no need for
complex instruction scheduling in hardware) and capability to
support applications with a high Instruction Level Parallelism
(ILP) [1], [2]. Even though these are major advantages in
the embedded domain, they are also the limiting factors that
prohibited the wide-spread use of VLIW processors in the
general-purpose domain, where the Itanium [3] is the only
known example. In the latter domain, different applications
have different characteristics and each one would require a
different processor organization, which is impossible when
considering that the designs are usually fixed. This fixed
nature leads to inefficient resources utilization, higher power
consumption, and reduced performance. On the other hand,
Reduced Instruction Set Computer (RISC) processors can
better handle the diversity of required resources of different
applications, but this is at the expense of a complex instruction
decoder that consumes a lot of power at every clock cycle. In
this paper, we introduce a new approach to exploit reconfig-
urable hardware to bridge this gap by using VLIW processors
to remove the need for a complex instruction decoder, but
introduce a simple manner to quickly and, more importantly,
dynamically match hardware resource utilization (and there-
fore also power) with available ILP and basically dynamically
“ride” the performance/power trade-off curve per application.

More specifically, we avoid the generation of multiple binaries
for the different processor organizations, which would intro-
duce the following disadvantages: (1) loading of instructions
after switching to a different issue-width (consuming a lot of
power in the instruction cache) and (2) switching between
different versions of the code after interrupts (some method
is required to ensure equivalent processor state before and
after switching). Instead, we generate a single generic binary1

(GB) that can be executed on cores with different issue-widths,
which can be changed at run-time. Furthermore, this approach
is orthogonal to existing power saving techniques such as clock
gating [4] and voltage and frequency scaling [5].

Our main contribution in this paper is a way to split VLIW
instruction bundles into smaller bundles while maintaining cor-
rect execution, with little additional hardware. This approach
allows for the dynamic change of the issue-width during
application execution, without the need for code reloading
or complex mechanisms to support interrupts. Furthermore,
we provide an analysis of the performance of this approach
and ways to improve it. Our experimental results show an
average slowdown of around 1.3× when compared to binaries
compiled for specific issue-widths. Although the “price” for
this flexibility seems quite high, we show that with simple
compiler optimizations this can be reduced to less than 1.09×.
Unfortunately, we did not have access to the compiler to
incorporate these changes, however, through extensive mea-
surements we demonstrate that this penalty can be reduced
if these optimizations are implemented. On the other hand,
our approach can be exploited for many other purposes, such
as: dynamic performance/energy trade-off and energy-saving
mechanisms, dynamic hardware sharing (when executing mul-
tiple threads), and dynamic code insertion for hardware fault
detection mechanisms.

The remainder of the paper is structured as follows. In
Section II, we discuss other approaches to splitting instruction
bundles into smaller bundles, executed over multiple cycles
and other similar work. Subsequently, Section III provides
several reasons for why the ability to split instruction bundles
over multiple cycles is useful. In Section IV we explain our
approach to supporting execution on different issue-widths. In
Section V, we show the performance results of our approach,
and we also propose certain optimizations and estimate what

1We refer to a generic binary when the binary can be executed by different
issue VLIW processors.978-3-9815370-0-0/DATE13/ c©2013 EDAA

the performance would be when using those. In Section VI,
we discuss additional possible optimizations and other future
work. Finally, in Section VII we summarize our results and
present our conclusions.

II. RELATED WORK

There have been some efforts to optimize the resource
utilization of applications running on VLIW cores by adapting
the issue-width. However, as far as we are aware, ours is
the first to attempt to dynamically change the issue-width of
a running application. In [6], the authors target a clustered
VLIW processor that can disable individual clusters. They use
a profiler to determine if a specific cluster is unused and if
so insert instructions to disable that cluster. This allows them
to gain performance, while limiting the power consumption
caused by the additional clusters.

Similar to our work is Extended Split Issue [7], which is
based on Split Issue [8]. Both approaches attempt to solve
the problem of binary compatibility between different versions
of a VLIW core. They do so by delaying the writes to
the register file until all instructions have been executed.
This allows the core to execute code compiled for a core
with different instruction latencies. In Extended Split Issue,
it is demonstrated that this technique can be used to execute
instructions one at a time and in any order. This allows bundles
to be split over multiple cycles to enable Simultaneous Multi-
Threading [9] (SMT). The authors of [10] propose a modified
version of the split issue approach which uses clustering to
reduce the hardware cost of implementing split issue. This
approach uses the fact that bundles intended for different
clusters write to separate register files, to split the execution
over multiple cycles. The drawback of the Split Issue approach
is that it requires additional hardware in the form of buffers
and queues to dynamically issue instructions [10]. Instead, by
modifying the assembler and compiler, our approach requires
only minimal hardware modifications. Because our approach
does not rely on clustering we also avoid the overhead of
copying data between register files of different VLIW clusters.

In [11] the authors develop a VLIW processor that can
dynamically switch between 2-, 4-, and 8-issue. This work
targets the same processor, with the intent of providing the
ability to run the same application on different issue-widths
using only a single binary. Before introducing our approach in
Section IV, we motivate our approach in the following section.

III. MOTIVATION

In this paper, we propose a new approach in code generation
for VLIW processors that can dynamically switch between dif-
ferent issue-widths without the need for a complex instruction
scheduler (such as those found in out-of-order scalar RISC
processors). More specifically, we propose an approach to
generate a single executable (binary) that can be executed on
a processor with different issue-widths. This approach has the
following advantages:

• single-thread advantages: first, our approach allows the
processor to switch between issue-widths at any point

during execution without needing to introduce check-
points. More importantly, when switching to a different
issue core, there is no need for complex algorithms to
ensure a thread is restarted at the same point in a different
version of the application code. As such, a lot of hardware
overhead during thread execution and design complexity
is avoided. Second, different applications exhibit different
characteristics, such as type of operations and instruction-
level parallelism, but even within a single application,
different phases can be detected that have distinct and
different characteristics [12]. With our approach, we
can exploit these characteristics to optimize for example
resource utilization when the ILP is low by making them
available for other threads or gating them off to save
power. Third, we can dynamically trade-off performance
with power consumption and our approach will allow for
the introduction of new algorithms to determine optimal
execution based on, for example, being powered by
battery or the wall socket. Fourth, having a single binary
for different processor organizations means that when the
decision is made to switch, there is no longer the need to
load a new binary for the new organization and thereby
saving time and power (of the I-cache).

• multiple thread advantages: when executing multiple
threads, such threads are likely to have priorities, trans-
lating into the need for interruptibility. With the provided
flexibility, we no longer need to stop the execution of
the running thread(s) in order to make “room” for the
new thread, but instead we can dynamically continue all
running threads on lower-issue cores and run the new
thread on the newly freed resources.

• advantages for fault-tolerance: in software-based self-
testing [13] (SBST) systems, test software needs to be
inserted from time to time in order to test the hardware.
This case is similar to running a higher-priority thread
and will cause the running thread to be interrupted
and execution halted until the test software has finished
execution. Using our approach, we can simply assign less
lanes for the running thread and run the test software on
the freed lanes to test those lanes. In this manner, all the
lanes can be tested by selecting different lanes to test at
different times, without ever stopping the running threads.

It must be clear by now, that our approach can be used in
many different scenarios with many advantages.

IV. APPROACH

Our approach in creating a generic binary relies on the
fact that when targeting a VLIW architecture, all instructions
within a bundle are independent. This means that if we can
avoid read after write (RAW) hazards and premature branches,
we can execute instructions within a bundle in any order.

A. Target Processor

For this approach we target an implementation of the VEX
architecture [14] called ρVEX [15], which is a parametrized
VLIW processor. It allows us to specify the issue-width, and

TABLE I
LAYOUT OF FUNCTIONAL UNITS IN AN 8-ISSUE ρVEX.

0 1 2 3 4 5 6 7

ALU ALU ALU ALU ALU ALU ALU ALU
MUL MUL MEM MUL BRANCH MUL

TABLE II
LAYOUT OF FUNCTIONAL UNITS IN A 4-ISSUE ρVEX.

0 1 2 3

ALU ALU ALU ALU
MEM MUL BRANCH MUL

the number and position of functional units. The target for
the generic binaries is an 8-issue machine with 8 ALUs, 4
Multipliers, 1 Load/Store unit and 1 Branch unit. The layout
of the functional units is shown in Table I. The layout for 4-
and 2-issue versions that support the generic binary is shown
in Table II and Table III respectively. When splitting a bundle,
groups of instructions are executed from the larger bundle from
left to right.

We use this layout because the larger configurations are
made up of the smaller, 2-issue, configuration repeated several
times. In the larger configurations the additional load/store and
branch units are disabled. The reason for the position of the
branch unit and load/store unit is explained in the next section.

B. General approach

In order to generate code that can run on an 8-, 4-, and
2-issue processor, we have to guarantee that the results are
the same, regardless of whether the bundle was split or not.
Listing 1 shows an example of instructions that cannot be
executed in any order without introducing hazards. When
instruction number 5 is executed before instruction number 7,
the results will be incorrect. Consequently, in order to ensure
that a bundle of instructions can be split into smaller bundles,
it must meet certain requirements.

Listing 1. Example of an instruction bundle for an 8-issue ρVEX.

1 c0 s h r u $r0 . 1 3 = $r0 . 9 , 24
2 c0 and $r0 . 1 1 = $r0 . 1 1 , 63
3 c0 and $r0 . 1 4 = $r0 . 9 , 63
4 c0 sh2add $r0 . 1 2 = $r0 . 1 2 , (a)
5 c0 s h r u $r0 . 9 = $r0 . 9 , 16
6 c0 and $r0 . 4 = $r0 . 4 , 63
7 c0 s h r u $r0 . 1 5 = $r0 . 9 , 8

The first requirement is that it must be possible to sort the
instructions in such a way that they can be split over multiple
cycles without introducing RAW hazards. This effectively
means that if we construct a false dependency graph of the
instructions, the graph must be acyclic. If the graph is cyclic,
a RAW hazard cannot be avoided as shown in Listing 2.

TABLE III
LAYOUT OF FUNCTIONAL UNITS IN A 2-ISSUE ρVEX.

0 1

ALU ALU
BRANCH MUL

MEM

5

1 2 3 4 6 7

Fig. 1. Directed graph corresponding to the bundle shown in Listing 1.

Regardless of how the instructions are ordered, the result
will be wrong when the bundle is split into smaller bundles.
Instructions that read and write the same registers such as
the one on line 6 in Listing 1 pose no problem and are still
allowed.

Listing 2. Example of a bundle that cannot be split.

1 c0 s h r u $r0 . 1 3 = $r0 . 1 5 , 24
2 c0 s h r u $r0 . 9 = $r0 . 1 3 , 16
3 c0 s h r u $r0 . 1 5 = $r0 . 9 , 8

The second requirement is that if a bundle contains a branch
instruction, it cannot be executed before other instructions
in the same bundle. This means that the branch instructions
must always be placed at the end of the bundle. This has
the additional effect of limiting the number of allowed false
dependencies on branch instruction to one, otherwise the
bundle cannot be correctly split. We solve this by not writing
to branch registers being read by a branch instruction in the
same bundle. This will require at most 1 additional branch
register.

A similar problem occurs with load/store operations simply
because the target organization only supports a single load/s-
tore unit. This means that the position of these instructions
within the bundle is always fixed, which limits us when
these instructions write to registers that are read by other
instructions, or the other way around. This is why the position
of the load/store unit is placed near the center of the bundle.

Lastly, because code scheduled for an 8-issue machine often
contains many additional NOPs, running the same code on
a 4- or 2-issue machine will cause overhead in the form of
unneeded NOPs being executed. In order to alleviate these
performance issues, we implemented a way for the hardware
to detect the last useful instruction and have it skip many of
the unnecessary NOPs.

C. Assembler implementation

In the assembler, we construct a directed graph from the
instructions based on the source and destination registers of
each instruction. Each instruction is represented by a node,
and each dependency is represented by an edge between the
two nodes. An edge from node 1 to node 2 indicates that
node 2 writes to a register read by node 1. Figure 1 depicts
the graph created for the bundle shown in Listing 1. Nodes
with no incoming edges have no false dependencies and can
be sorted by the assembler.

The nodes are placed using a depth first search of all
possible positions. Placing a node succeeds if the instruction
slot is free, and contains the correct functional unit required

TABLE IV
A VALID SORTING OF THE NODES IN FIGURE 1.

slot # 0 1 2 3 4 5 6 7

node # 1 2 3 6 4 - 7 5

for the instruction. After the instruction is placed in a slot
any children of this node are updated with the position that
this node is placed at. This ensures that the child nodes are
placed after the parent node. For instance if node 1 is placed
in slot 3, and node 2 is dependent on node 1, then node 2
has to be placed in slot 4 or higher. Table IV shows how the
assembler sorts the nodes in Figure 1 into the different issue
slots. Because instruction 4 has an address argument, it takes
up two issue slots, which is why it is not placed in slot 3.

After a node is placed, it is removed from the graph and
its children are updated, causing additional nodes to become
ready for sorting. The sorting process is repeated until all the
nodes have been placed. After all the nodes are sorted into
execution slots, the assembler determines the last non-NOP
instruction in the bundle, and sets the Last Bit. This bit is used
by the hardware to determine whether or not to skip ahead to
the next bundle.

D. Hardware implementation

In order to support generic binaries in hardware we made
two changes to our design [11]: The first change was to make
all branch offsets multiples of 2-bundles, instead of the actual
size of the machine. When running the binary on a 4- or 8-
issue processor the correct offset is generated by discarding 2
or 1 of the least significant bits, respectively.

The second change is to allow the fetch stage to skip to the
next bundle whenever the Last Bit is detected in an instruction.
To achieve this, we calculate a second program counter in the
fetch stage. The first is the normal program counter, which
is equal to the address of the next 2-, 4- or 8-issue bundle.
The second program counter is always equal to the address
of the next 8-issue bundle. When the Last Bit is detected,
the address of the next 8-issue bundle is used to fetch the
next instruction instead of the program counter, effectively
skipping unnecessary NOP instructions. Because both program
counters are calculated in parallel, the impact on the cycle time
is negligible.

V. RESULTS

In order to test our approach we use the Powerstone em-
bedded benchmark suite [16]. This benchmark suite consists
of several stand-alone applications that are easily compiled
without the need for porting additional libraries. Using these
benchmarks we perform several different measurements. First,
we compare native execution to generic binary execution on
the different issue-widths. Finally, we also have the place and
route results to show the impact of the hardware changes on
the performance of the device.

A. Experimental Setup

The results are obtained from execution traces generated
using Modelsim [17] and a VHDL model of the ρVEX

 0

 0.5

 1

 1.5

 2

 2.5

adpcm bcnt blit compress crc des engine fir g3fax jpeg pocsag qurt v42

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Benchmark

8-issue GB
4-issue GB
2-issue GB

4-issue
2-issue

Fig. 2. The execution time for the different benchmarks normalized on the
execution time of the 8-issue version.

processor. We instantiate 2-, 4-, and 8-issue versions of the
core to run the different binaries. The simulation outputs
execution traces for later analysis.

The benchmarks are compiled using the HP VEX compiler
[18] for 2-, 4-, and 8-issue. The 8-issue version is assem-
bled as a generic binary using the techniques described in
Section IV-C. The 2- and 4-issue versions are assembled nor-
mally to serve as a baseline comparison for the performance
overhead.

Because the compiler we use is only available as a binary,
we were not able to implement the requirements, mentioned
earlier, into the compiler. Instead we implement a check in the
assembler and manually fix the assembly as required.

B. Generic vs Native

In order to determine the performance impact of the
proposed approach we compile 3 different version of each
benchmark as explained in Section V-A. The generic binary
is then run on 2-, 4-, and 8-issue machines, and compared to
the results of the native 2-, and 4-issue versions.

Figure 2 shows the execution time of each benchmark
normalized on the execution time of the 8-issue version. This
figure shows us that reducing the issue-width by half does
not double the execution time, however, it also shows that
for many of the benchmarks the native 2-issue and 4-issue
versions are significantly faster than the version compiled as
a generic binary.

The slowdown for each benchmark is shown in Figure 3.
For the 4-issue, the slowdown ranges from 1.03 to 1.69 with an
average slowdown of 1.27, while for the 2-issue the slowdown
ranges from 1.10 to 1.61 with an average of 1.34.

When splitting instruction bundles, there can be two major
sources of performance loss. The first is inefficient instruction
packing, meaning that the bundle is split over more cycles
than needed. The second inefficiency is introduced when the
compiler produces a bundle of 5 instructions followed by a
bundle of 3 instructions, when a bundle of 4 followed by 4
would have been possible. The result is that when the bundles
are split it will result in an additional cycle compared to the

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

adpcm bcnt blit compress crc des engine fir g3fax jpeg pocsag qurt v42

S
lo

w
d
o
w

n

Benchmark

4-issue
2-issue

Fig. 3. The slowdown caused by the generic binary relative to a native
binary.

 0

 5

 10

 15

 20

 25

 30

 35

adpcm bcnt blit compress crc des engine fir g3fax jpeg pocsag qurt v42

O
v
e
rh

e
a
d
 (

%
)

Benchmark

4-issue
2-issue

Fig. 4. Percentage of bundles that are caused by packing inefficiency.

native binary. In order to understand which of these is the case
we analyze the instruction traces.

Using the 2-, and 4-issue instruction traces, we determine
the number of bundles that would be executed under ideal
conditions. Figure 4 shows the percentage of bundles caused
by inefficient packing. This graph corresponds nicely to the
graph of the slowdown for each application and shows that
packing efficiency is the major source of overhead. After
analyzing the badly packed bundles we determine that roughly
77% of the badly packed bundles involve load and store
instructions in the case of a 4-issue configuration, and 57%
in the case of a 2-issue configuration.

In order to understand why bundles containing load/store
instructions are so badly packed we look back at the instruction
layout. Because we are not able to modify the compiler,
and load instructions can write to registers used by other
instructions, we placed the load/store unit in slot 4. This allows
us to assemble the program with as few manual changes to
the assembly as possible. However, the result is that whenever
a load/store instruction is combined with less than 3 other
instructions, this will result in the instructions being packed
inefficiently. A similar issue exists for branch instructions,
however, load/store instructions are more common, and be-

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

adpcm bcnt blit compress crc des engine fir g3fax jpeg pocsag qurt v42

S
lo

w
d
o
w

n

Benchmark

4-issue
2-issue

Fig. 5. Slowdown compared to baseline with improved packing for load/store
instructions.

cause of that, responsible for the majority of the inefficiency.
Because we now know the cause of the a large part of

the execution overhead, we can estimate the performance of
using an improved compiler that will avoid false dependencies
involving load/store instructions. Using the data obtained from
the instruction traces we can determine how much improve-
ment we could obtain by simply subtracting the number of
badly packed bundles caused by load/store operations from
the total cycle count. This gives us a rough estimate of what
the improved performance could be. The results are shown in
Figure 5. With this improvement the average overhead for the
4-issue generic binary over a native 4-issue binary is estimated
to be around 10%. The highest overhead is at 25% for 4-issue
and 40% for 2-issue.

Strangely, we also notice in Figure 5 that for the 2-issue
adpcm benchmark, with improved instruction packing taken
into account, that the generic binary performs better than the
native 2-issue version. We speculate that this is because the
compiler is not optimized for low issue-widths.

Lastly, using these numbers we can also calculate that if
we were to achieve perfect instruction packing, the overhead
compared to native compilation would be on average 7% for
a 4-issue configuration and 9% for a 2-issue configuration.

C. Register Utilization

Because creating the generic binaries involved modifying
the assembly by renaming certain registers in order to satisfy
the requirements of the assembler, we determined the total
register utilization over the lifetime of the application. In
Table V, we show the number of registers that are never used
over the entire lifetime of the application. This shows that in
all but the adpcm benchmark a large number of free registers
are available to perform the manual register renaming, without
the need to introduce additional load/store operations.

This same information is also relevant to the earlier discus-
sion about optimizing the instruction packing by modifying the
compiler to avoid load/store instructions writing to registers
read by other instructions in the same bundle. Since none
of these benchmarks use the full number of registers, it

TABLE V
THE NUMBER OF UNUSED REGISTERS DURING THE EXECUTION OF EACH

BENCHMARK.

Benchmark Unused registers

adpcm 3
bcnt 45
blit 51
compress 42
crc 52
des 42
engine 38
fir 25
g3fax 50
jpeg 36
pocsag 25
qurt 26
v42 35

TABLE VI
PLACE AND ROUTE RESULTS FOR DIFFERENT ISSUE-WIDTHS OF ρVEX,

WITH AND WITHOUT MODIFICATIONS

Issue-width Resource Original Modified

2
LUTs 3506 3486
Regs 728 669
MHz 143 143

4
LUTs 8110 8137
Regs 1185 1192
MHz 137 143

8
LUTs 23571
Regs 2199
MHz 100

should be possible for the compiler to schedule load and store
instructions without additional overhead.

D. Place and route results

Table VI shows the place and route results for 2-, 4-, and
8-issue cores with and without support for generic binaries.
The table shows that the impact on area and clock frequency
is quite small. In the case of the 2-issue core, the modified
version is actually slightly smaller, while the modified 4-issue
core achieves a higher clock frequency than the unmodified
one. The change in clock frequency is due to restrictions
placed on how long immediates are handled in the case of the
generic binary. This restriction leads to simplified decoding
logic in the 4-issue core, resulting in a slight improvement in
clock frequency.

VI. FUTURE WORK

In order to improve the performance of the generic binaries,
we propose to modify the the compiler by adding the require-
ment that load instruction cannot write to registers that are read
by other instructions in the same bundle. These modifications
will be done to a GCC port for the ρVEX processor. A similar
modification will ensure that there are no instructions writing
to branch registers used by a branch instruction in the same
bundle. This will eliminate the need for modifying assembly
files by hand as we have done in these experiments.

VII. CONCLUSION

In this paper, we introduced a new approach in code gener-
ation for VLIW to allow for dynamic issue-width adaptation

and highlighted several advantages for different operational
scenarios. Even though our approach incurs a performance hit,
we must note that in some of the mentioned scenarios, our
approach will allow for continued execution of the running
application (thereby making up for lost performance) and
remove the need for multiple code versions that would greatly
penalize performance when switching codes. Specifically, this
approach allows us to switch between issue-widths at run-time
without the need for check-points.

Our results show that our implementation suffers on average
a 30% overhead when compared to a natively compiled
application. Further analysis indicates that this can be reduced
to 10% or lower with simple compiler modifications. We also
show that the overhead in area consumption is negligible, and
in some case even beneficial.

REFERENCES

[1] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood,
“Lx: a Technology Platform for Customizable VLIW Embedded Pro-
cessing,” in Proceedings of the 27th Annual International Symposium
on Computer architecture, 2000, pp. 203–213.

[2] J. T. J. Van Eijndhoven and E. J. D. Pol, “TriMedia CPU64 Architec-
ture,” in Proceedings of the 1999 IEEE International Conference on
Computer Design, 1999, pp. 586–592.

[3] H. Sharangpani and K. Arora, “Itanium Processor Microarchitecture,”
IEEE Micro, pp. 24–43, Sep 2000.

[4] G. K. Yeap, Practical Low Power Digital VLSI Design, Aug 1997.
[5] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based Mod-

els for Run-time DVFS Orchestration in Superscalar Processors,” in
Proceedings of the 7th ACM international conference on Computing
Frontiers, 2010, pp. 287–296.

[6] B. V. Iyer, J. G. Beu, and T. M. Conte, “Length Adaptive Processors: A
Solution for the Energy/Performance Dilemma in Embedded Systems,”
in Interact-13: Workshop on Interaction Between Compilers and Com-
puter Architecture (Held in Conjunction with HPCA), 2009.

[7] B. Iyer, S. Srinivasan, and B. Jacob, “Extended Split-Issue: Enabling
Flexibility in the Hardware Implementation of NUAL VLIW DSPs,” in
Proceedings of the 31st Annual International Symposium on Computer
architecture. IEEE Computer Society, 2004, pp. 364–375.

[8] B. R. Rau, “Dynamically Scheduled VLIW Srocessors,” in Proceedings
of the 26th Annual International Symposium on Microarchitecture, 1993,
pp. 80–92.

[9] D. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multithreading:
Maximizing On-Chip Parallelism,” in In 22nd Annual International
Symposium on Computer Architecture, 1995, pp. 392–403.

[10] M. Gupta, F. Sanchez, and J. Llosa, “A Low Cost Split-issue Tech-
nique to Improve Performance of SMT Clustered VLIW Processors,”
in Parallel Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, April 2010, pp. 1–12.

[11] F. Anjam, M. Nadeem, and S. Wong, “Targeting Code Diversity with
Run-time Adjustable Issue-slots in a Chip Multiprocessor,” in Proceed-
ings of the Design, Automation and Test in Europe Conference (DATE
2011), March 2011, pp. 1–6.

[12] Z. Yu, N. Puzovic, A. Portero, and R. Giorgi, “Characterizing Phase
Behavior for Dynamically Reconfigurable Architectures,” in HiPEAC
ACACES-2011, Jul 2011, pp. 89–92.

[13] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Reorda, “Micropro-
cessor Software-Based Self-Testing,” Design Test of Computers, IEEE,
no. 3, pp. 4–19, May-June 2010.

[14] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A
VLIW Approach to Architecture, Compilers, and Tools. 500 Sansome
Street, Suite 400, San Francisco, CA 94111: Morgan Kaufmann Pub-
lishers, 2005.

[15] S. Wong, T. van As, and G. Brown, “ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor,” in International Conference on
Field-Programmable Technology (ICFPT), Dec 2008, pp. 369–372.

[16] http://www.cprover.org/goto-cc/examples/index.php.
[17] http://model.com.
[18] http://www.hpl.hp.com/downloads/vex/.

http://www.cprover.org/goto-cc/examples/index.php
http://model.com
http://www.hpl.hp.com/downloads/vex/

