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Abstract—Modern systems demand high performance, as well
as high degrees of flexibility and adaptability. Many current
applications exhibit a dynamic and nonstationary behavior, hav-
ing certain characteristics in one phase of their execution, that
will change as the applications enter new phases, in a manner
unpredictable at design-time. In order to meet the performance
requirements of such systems, it is important to have on-line opti-
mization algorithms, coupled with adaptive hardware platforms,
that together can adjust to the run-time conditions. We propose
an optimization technique that minimizes the expected execution
time of an application by dynamically scheduling hardware
prefetches. We use a piecewise linear predictor in order to capture
correlations and predict the hardware modules to be reached.
Experiments show that the proposed algorithm outperforms the
previous state-of-art in reducing the expected execution time by
up to 27% on average.

I. INTRODUCTION AND RELATED WORK
It has been shown that the execution of many modern appli-

cations progresses in phases, where each phase may be very
different from the others, while still having a homogeneous
behavior within a phase [16]. For such systems, it is important
to have on-line optimization algorithms, coupled with adaptive
hardware platforms, that can adjust to the run-time conditions.

For systems that require both hardware acceleration and
high flexibility, FPGA platforms are a popular choice [13].
Recently, manufacturers provided support for partial dynamic
reconfiguration [19], i.e. parts of the FPGA may be recon-
figured at run-time, while other parts remain fully functional.
This flexibility comes with one major impediment: high re-
configuration overheads. Configuration prefetching tries to
overcome this limitation by preloading future configurations
and overlapping as much as possible of the reconfiguration
overhead with useful computation.

This paper proposes a new dynamic optimization approach
for configuration prefetching. An on-line piecewise linear
predictor is used to capture branch correlations and estimate
the likelihood to reach different hardware modules from the
prediction point. Timestamps are used to estimate the time to
reach a certain module, and based on this the execution time
gain resulting from a certain prefetch decision is computed.

Previous work in configuration prefetching can be placed in
one of three categories: 1) Static techniques that use profile in-
formation in order to decide and fix the prefetches for an appli-
cation at design-time, and then, regardless of the run-time be-
havior, the same prefetches are applied. 2) Dynamic techniques
that try to take all the decisions at run-time, based on the actual
application behavior. 3) Finally, hybrid techniques prepare a set
of prefetch schedules off-line, based on profile information,
and then they choose on-line which of the schedules to use.

Many static algorithms for prefetching were proposed: [9],
[12], [17], [10]. All share one limitation: in case of nonsta-
tionary behavior, they are unable to adapt, since the prefetch
schedule is fixed based on average profiling information. For
applications with inaccurate or unavailable profiling informa-
tion, and for those that exhibit nonstationary behavior, it is im-
portant to have a mechanism that adapts to changes. In [1] and
[3] the authors address the problem of scheduling task graphs
on reconfigurable architectures. Beside being static (since all
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Fig. 1: General Architecture Model

decisions are taken at design-time), these works have another
disadvantage compared to our work: they do not consider the
control flow, thus missing many prefetch opportunities.

The authors of [11] and [14] present hybrid heuristics that
identify a set of possible application configurations at design-
time. At run-time, a resource manager chooses among them.
These approaches provide more flexibility than static ones,
but they are still limited by relying on off-line information.

In [6], the authors propose an on-line algorithm that man-
ages coprocessor loading by maintaining an aggregate gain
table for all hardware candidates. For each run of a candidate,
the performance gain resulted from a hardware execution over
a software one is added to the corresponding entry in the
table. When a coprocessor is considered for reconfiguration,
the algorithm only loads it when the aggregate gain exceeds
the reconfiguration overhead. One limitation of this work is
that it does not perform prefetching, i.e it does not overlap the
reconfiguration overhead with useful computation. Another dif-
ference between all the works presented and ours is that none
of the above papers explicitly consider the control flow in their
application model. Furthermore, they also ignore correlations.

The authors of [9] propose a dynamic prefetch heuristic that
represents hardware modules as the vertices in a Markov graph.
Transitions are updated based on the modules executed at run-
time. Then, a weighted probability in which recent accesses
are given higher weight is used as a metric for candidate
selection and prefetch order. The main limitations of this work
are that it uses only the weighted probabilities for issuing
prefetches (ignoring other factors as, e.g., the execution time
gain resulting from different prefetch decisions), and that it
uses a history of length 1 (i.e. it predicts only the next module
to be executed based on the current module, consequently
completely ignoring correlations).

II. SYSTEM MODEL
A. Architecture Model and Reconfiguration Support

Fig. 1 shows our target architecture composed of a host
microprocessor (CPU), a memory subsystem, a reconfigurable
FPGA area (used as a coprocessor for hardware acceleration),
a reconfiguration controller and a hardware predictor. One
common scenario is to partition the FPGA into a static region,
where the CPU and the reconfiguration controller reside,
and a partially dynamically reconfigurable (PDR) region,
where the application hardware modules can be loaded at
run-time [4], [15]. The host CPU executes the software
part of the application and is also responsible for initiating
the reconfiguration of the PDR region. The reconfiguration
controller will configure this region by loading the bitstreams
from the memory. We assume that the CPU can enqueue
modules to be prefetched by the controller, as well as clear this



queue. While one reconfiguration is going on, the execution of
other (non-overlapping) modules on the FPGA is not affected.
The shared memory is used for communication between
the CPU and the modules loaded in the PDR region. The
predictor module is used to predict the hardware candidates
that should be speculatively prefetched on the PDR region
(its functionality is described in detail in Sec. V).

We model the PDR region as a matrix of heterogeneous
configurable tiles, organized as reconfigurable slots where
hardware modules can be placed, similar to [8]. We consider
that each hardware candidate has a slot position decided and
optimized at design-time using existing methods, such as
[5]. This technique will minimize the number of placement
conflicts, i.e. candidates with intersecting areas on the recon-
figurable region.

B. Application Model
We model the application as a flow graph G(N , E), where

nodes in N correspond to certain computational tasks, and
edges in E model flow of control within the application. We
denote with H ⊆ N the set of hardware candidates and we
assume that all modules in H have both a hardware and a
corresponding software implementation. Since sometimes it
might be impossible to hide enough of the reconfiguration
overhead for all candidates in H, we decide at run-time which
are the most profitable modules to insert prefetches for (at a
certain point in the application). The set H can be determined
automatically [2], [20], or by the designer, and typically
contains the computation intensive parts of the application.

For each hardware candidate m ∈ H, we assume that we
know its software execution time1, sw : H → R+, its hardware
execution time (including any additional communication over-
head between CPU and FPGA), hw : H → R+, and the time to
reconfigure it on the FPGA, rec : H → R+. At run-time, once
a candidate m ∈ H is reached, there are two possibilities: 1) m
is already fully loaded on the FPGA, and thus the module will
be reused and executed there; 2) m is not fully loaded on the
FPGA. Then, we face two scenarios: a) if starting/continuing
the reconfiguration of m, waiting for it to finish and then
executing the module on FPGA results in an earlier finishing
time than with software execution, then the application will do
so; b) otherwise, the software version of m will be executed.

We assume that the application exhibits a nonstationary
branch behavior. In order for any prediction algorithm to be
applied, we consider that the application passes through an
unpredictable number of stationary phases. Branch probabili-
ties and correlations are stable in one phase and then change to
another stable phase, in a manner unpredictable at design-time.
Since we do not restrict in any way the length of a phase, this
model can be applied to a large class of applications.

III. PROBLEM FORMULATION
Given an application (as described in Sec. II-B) intended to

run on the reconfigurable architecture described in Sec. II-A,
our goal is to determine dynamically, at each node m ∈ H,
the prefetches to be issued, such that the expected execution
time of the application is minimized.

IV. MOTIVATIONAL EXAMPLE
Fig. 2 illustrates two of the stationary phases, each one

with a different branch behavior, among those exhibited by an
application. Hardware candidates are represented with squares,
and software-only nodes with circles. For each phase, the
edge probabilities of interest are illustrated on the graph, and
they remain unchanged for that phase. We represent branch
correlations with different line patterns: in phase 1, conditional
branch B1 is positively correlated with B3, and B2 is positively
1Note that this characterization is needed only for the candidates in H.
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Fig. 2: Motivational Example

correlated with B4; in phase 2, B5 changes its probability and
branches B1 and B3 become negatively correlated. For exem-
plification purposes we assume that the correlation is perfect;
However, our prediction algorithm will capture the tendency of
branches to be correlated, even if it is not perfect correlation.
The software and hardware execution times for the candidates,
as well as their reconfiguration times are also illustrated in Fig.
2. The software-only node n6 has an execution time of at least
105 time units, enough to hide the reconfiguration overhead of
any of the modules M2...M6 (the prefetch candidates at M1).

We assume that the PDR region of the FPGA is big enough
to host only one module at a time. Let us consider a prediction
point in the application, module M1, currently placed on the
FPGA and executing. After its execution we want to issue a
prefetch for a new module. Let us see how a static prefetch
approach works, like [17] or [10]. Since it considers profiling
information, regardless of the application’s phase, it will issue
the prefetch based on the average branch probabilities. In our
example, considering the reconfiguration overheads and the ex-
ecution times of the modules, M4 would be always prefetched,
having an average probability to be reached from M1 of
50% · 40%+90%

2 = 32.5% and generating the biggest expected
performance improvement of 32.5% · (sw(M4)− hw(M4)) =
32.5 time units. Notice that M6, although reachable with
100% probability, generates an improvement of only sw(M6)−
hw(M6) = 30 (< 32.5) time units. The static approach is
performing very poorly, because in 100% − 32.5% = 67.5%
of the cases (when module M4 is not reached), the prefetch
is wasted and all the other modules (i.e. M2, M3 or M5,
depending on the path followed) will be executed in software.

Let us now see how the dynamic technique proposed in [9]
works: using a Markov model, the approach estimates the prob-
ability to reach the next module from M1, and based on this
it issues the prefetches. Assuming that a phase is long enough
for the model to learn the branch probabilities, the priorities
associated with modules M2, M3, M4 and M5 are equal to
their probabilities to be reached, i.e 45%, 55%, 40% and 60%
in phase 1, and 45%, 55%, 90% and 10% in phase 2 respec-
tively. Notice that M6 is excluded, since the approach predicts
only the next module to be reached. Based on this technique,
the generated prefetches at M1 will be: M5 in phase 1 and M4

in phase 2. This approach performs better than the static one,
but many prefetch opportunities are still wasted (e.g. when M5

is not reached in phase 1, in 100%− 50% · 60% = 70% of the



cases or, similarly, when M4 is not reached in phase 2).
The dynamic technique presented in [6], based on an

aggregate gain table (as explained in Sec. I), will issue the
following prefetches: M6 in phase 1 (because its normalized
long run aggregate gain is the highest, 100% · (sw(M6) −
hw(M6)) = 30 time units), and M4 in phase 2 (for similar
considerations, its normalized long run aggregate gain being
50% · 90% · (sw(M4) − hw(M4)) = 45 time units). If we
could exploit the branch correlation information, then we could
issue prefetches better than both the static and the dynamic
approaches discussed above. In phase 1, we should prefetch
M6 whenever path B1−n2 : B2−n4 is followed (because we
reach M2 and then M6, and sw(M6)−hw(M6) > sw(M2)−
hw(M2)) and M3 whenever path B1−n2 : B2−n5 is followed
(for similar considerations); Furthermore, if edge B1 − n3 is
followed, then the best prefetch decision is M5 in phase 1
(60%(sw(M5) − hw(M5)) > 40%(sw(M4) − hw(M4)) >
sw(M6)−hw(M6)). Similar reasoning can be used for phase 2.

The big limitation of static prefetching is its lack of
robustness and flexibility: the prefetches are fixed based on
average profiling information and they cannot adapt to the
run-time conditions. For our example, the static approaches
always prefetch M4, which is a very restrictive decision.
Although the dynamic approaches provide extra flexibility, they
still miss prefetch opportunities. One limitation of [9] is that
it considers only the next module to be reached from the
prediction point, thus excluding M6 in our example. Another
limitation exhibited by [9] and [6] is that the approaches rely
only on the hardware modules’ history and do not exploit the
path information (like branch outcomes together with their cor-
relations). As a result, for [9] and [6], the prefetch opportunities
are wasted in more than 50% of the cases. We will present an
approach that tries to overcome the mentioned limitations.

V. DYNAMIC CONFIGURATION PREFETCHING
We first describe an idealized version of the algorithm (ig-

noring the microarchitectural constraints) and then we present
a practical alternative in Sec. V-D.

The main idea is to assign priorities to all the hardware
candidates and then issue prefetches based on them, at certain
points in the application. One natural choice for the prefetch
points is after the execution of a module m ∈ H. It is important
to have both an adaptive mechanism and a strategy to prioritize
between reachable candidates in a certain phase, to obtain the
maximum performance improvement. In our case, adaptation
is accomplished by a piecewise linear predictor coupled with a
mechanism, based on timestamps, to compute the performance
gains associated with different prefetch decisions.

A. The Piecewise Linear Predictor
1) Overview: This concept was previously applied in the

context of branch prediction [7]. The idea was to exploit the
history of a branch in order to predict its outcome (taken
or not taken). We extend the concept for the case of FPGA
configuration prefetching. We associate one piecewise linear
predictor with each hardware candidate and we try to capture
the correlation between a certain branch history leading to
a certain prediction point, and a candidate being reached in
the future. We remind that the prefetch points are after the
execution of a hardware candidate. The branch history for a
prefetch point m ∈ H is represented by the dynamic sequence
of conditional branches (program path) leading to m. The
predictor keeps track of the positive or negative correlation of
the outcome of every branch in the history with the predicted
hardware candidate being reached or not.

The output of a predictor (associated with a hardware
candidate) is a single number, obtained by aggregating the
correlations of all branches in the current history, using a
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linear function (PREDICT in Algorithm 1). This function
induces a hyperplane in the space of all outcomes for the
current branch history, used to estimate what is the likelihood
to reach the hardware candidate in discussion. We interpret
the output y of the predictor as the likelihood to reach the
candidate, since the distance of y from the hyperplane (on the
positive side) is proportional to the degree of certainty that
the candidate will be reached. Since there are many paths
leading to a prediction point m ∈ H, there are also many
linear functions used for prediction. Together, they form a
piecewise linear surface that separates the paths for which the
hardware candidate will be reached in the future, from those
paths for which it will not be reached.

2) Data Structures: The predictor uses the variables:
• A – the branch address history register. At run-time, when a

conditional branch is executed, its address is shifted into the
first position of this register.
• H – the branch outcome history register, containing the
taken or not taken outcomes for branches. As for the ad-
dress register, the outcomes are shifted into the first position.
Together, A and H characterize the path history.
• h – the length2 of both the history registers A and H .
• HW – the hardware history register, containing the last q
hardware candidates reached.
• q – the length2 of the hardware history register HW .
• Ω – a 3D array of weights (shown in Fig. 3 for the example
in Fig. 2). The indexes are: the ID of a hardware candidate,
the ID of a branch and its position (index) in the path
history. We can view Ω as a collection of matrices, one for
each hardware candidate. The entries in Ω keep track of the
correlations between branches and hardware candidates. For
example, Ω[Mi, Bj , p], denoted ωi

jp, represents the weight of
the correlation between branch Bj occurring at index p in
the history A and module Mi being reached. Please note that
addition and subtraction on the weights ωi

jp saturate at ±64.
3) Prediction Function: Algorithm 1 details our approach

for computing the likelihoods to reach the hardware candidates
from a prediction point m ∈ H. We use the function PREDICT
to compute the output that reflects the correlation between
the branch history leading to module m and candidate k being
reached in the future. For all the entries in the current history
(line 9), if the branch on position i was taken then we add
to the output the weight Ω[k,A[i], i] (line 10); otherwise we
subtract it (line 11). Once the outputs were calculated for all
candidates (lines 2-3), we normalize the results (line 6). The
result L̃mk ∈ [0, 1] represents the estimated likelihood to reach
hardware candidate k from prefetch point m, and will be used
in computing the prefetch priority function (see Sec. V-C).

4) Lazy Update Function: After making a prediction, we
need to train the predictor based on the real outcome (i.e.
which modules were actually reached). Since this information
becomes available only later, we opted for a lazy update:
we save the context (history registers A and H) based on
2The values of h and q reflect the trade-off between the space budget available
for the predictor and its accuracy. We obtained good experimental results for
relatively small values: h ∈ [4, 16] and q ∈ [2, 8].



Algorithm 1 Prediction Function
1: procedure LIKELIHOODS(m)
2: for all k ∈ H\{m} do
3: λmk = PREDICT(k,H,A)

4: λmin = min
k
λmk; λmax = max

k
λmk

5: for all k ∈ H\{m} do
6: L̃mk = (λmk − λmin)/(λmax − λmin)

7: function PREDICT(k, H[1..h], A[1..h])
8: output = 0
9: for all i = 1..h do

10: if H[i] == taken then output = output+ Ω[k,A[i], i]
11: else output = output− Ω[k,A[i], i]

12: return output

Algorithm 2 Lazy Update Function
1: procedure UPDATE(m, Hm

S [1..h], Am
S [1..h], HWm

R [1..q])
2: for all i = 1..h do
3: for all j = 1..q do update Ω[HWm

R [j], Am
S [i], i]

4: for all k ∈ H\HWm
R do update Ω[k,Am

S [i], i]

5: Hm
S ← H; Am

S ← A
6: top← HW [q]
7: if m 6= HW [1] then push m in history register HW
8: HW top

R ← HW

which the prediction is made, and we update the predictor
as late as possible, i.e. only when the same prediction point is
reached again, and before making a new prediction. The next
q candidates that will be reached after the prediction point are
accumulated in the hardware history register HW .

Algorithm 2 presents our lazy update. It takes as parameters
the module m where the update is done, the saved branch
outcome register (Hm

S ), the saved branch address register (Am
S )

and the saved hardware history register (HWm
R ), containing the

first q hardware modules executed after the prediction point
m. The path information was saved when the last prediction
was made at m, and the register HW was saved when the qth
module after m was reached and m was evicted from the HW
register. For all history positions (line 2), for all the q modules
reached after m we update the corresponding weights in Ω
by incrementing or decrementing them (saturating at ±64),
depending if the branch on position i was taken or not taken
(line 3). For all the modules not reached after m we do the
opposite: decrement the weights in Ω for taken branches, and
increment them for not taken ones (line 4). Next we save
the current path that led to m (line 5). Then we pop the qth
hardware module (top) from the history register HW (line 6)
and we push the current module m on the first position of HW ,
but only if m is not already there (line 7). If m is executed in
a loop, we want to avoid having repetitions in the HW history
register; instead of pushing m, we only update its timestamp,
used for computing the expected execution time gain (see Sec.
V-B). Finally we save the hardware history register containing
the q modules executed after top (line 8).

B. Estimating the Expected Execution Time Gain
Let us consider a prediction point m ∈ H and one candidate

k ∈ H, reachable from m. Given that the reconfiguration of k
starts at m, we define the execution time gain γmk as the time
that is saved by executing k in hardware (including any stalling
cycles when the application is waiting for the reconfiguration
of k to be completed), compared to a software execution of
k. Let χmk represent the distance (in time) from m to k.
The waiting time for a particular run of the application is
given by $mk = max(0; rec(k)− χmk). This time cannot be
negative (if a module is present on FPGA when it is reached,
it does not matter how long ago its reconfiguration finished).
The execution time gain over the software execution is:

γmk = max(0, sw(k)− ($mk + hw(k))) (1)

If the software execution time of a candidate is shorter than
waiting for its reconfiguration to finish plus executing it in
hardware, then the module is executed in software, and the gain
is zero. In order to estimate χmk on-line, we use timestamps.
At run-time, whenever a candidate k finishes executing, we
save the value of the system clock and, at the same time, we
compute χmk for all modules m present in the current history
HW (relative to the timestamps when they finished executing).

In order to give higher precedence to candidates placed in
loops, we adjust the value of $mk as follows: First, for every
hardware candidate k ∈ H we record its frequency, ϕk, during
one run of the application. Then we compute an estimate F̃k for
the average frequency over the past runs, using an exponential
smoothing formula in order to emphasize the recent history:

F̃ t
k = α · ϕt

k + (1− α) · F̃ t−1
k (2)

In Eq. 2, F̃ t
k represents the estimate at time t of the expected

frequency for module k, F̃ t−1
k represents the previous estimate,

ϕt
k represents k’s frequency in the current application run and

α is the smoothing parameter. Given F̃k, we adjust the waiting
time $̃mk = $mk

F̃k
, and consequently the adjusted gain is:

γ̃mk = max(0, sw(k)− ($̃mk + hw(k))) (3)
This adjustment is done because, for modules in loops, even if
the reconfiguration is not finished in the first few loop iterations
and we execute the module in software first, we will gain from
executing the module in hardware in future loop iterations.

We are interested to estimate the expected performance gain
γ̃mk over several application runs. We denote this estimate
G̃mk, and we use an exponential smoothing formula (similar
to Eq. 2) to compute it, emphasizing recent history:

G̃t
mk = α · γ̃tmk + (1− α) · G̃t−1

mk (4)
In Eq. 4, G̃t

mk represents the estimate at time t of the expected
gain obtained if we start reconfiguring module k at m, G̃t−1

mk
represents the previous estimate, γ̃tmk represents the adjusted
gain computed considering the current application run and α
is the smoothing parameter. The speed at which older observa-
tions are dampened is a function of α, which can be adjusted to
reflect the application characteristics: if the stationary phases
are short, then α should be larger (for quick dampening and fast
adaptation); if the phases are long, then α should be smaller.

C. The Priority Function Γmk

At each node m ∈ H we assign priorities to all the can-
didates in Km = {k ∈ H|L̃mk > 0}, thus deciding a prefetch
order for all the candidates reachable from m with nonzero
likelihood (the computation of L̃mk is described in Algorithm
1). Our priority function estimates the overall impact on the
average execution time that results from different prefetches
being issued after module m. Three factors are considered: 1)
the estimated likelihood L̃mk to reach a candidate k ∈ Km

from m, obtained from the piecewise linear prediction algo-
rithm (see Sec. V-A3); 2) the estimated performance gain G̃mk

resulting if k is prefetched at m (see Sec. V-B); 3) the estimated
frequencies for candidates, F̃k (see Eq. 2), used to give higher
precedence to modules executed many times inside a loop:

Γmk = L̃mk(1 + log2 F̃k)G̃mk +

+
∑

h∈Km\{k}

L̃mh(1 + log2 F̃h)G̃kh
(5)

The first term represents the contribution (in terms of expected
execution time gain) of module k and the second term captures
the impact that k’s reconfiguration will produce on other
modules competing with it for the reconfiguration controller.

Algorithm 3 presents our overall run-time strategy for
configuration prefetching. Once a module Mi is reached, we



Algorithm 3 Overall Run-Time Strategy for Prefetching
1:{candidate Mi is reached
2: increment frequency counter ϕMi

3: UPDATE(Mi, H
Mi
S , A

Mi
S , HW

Mi
R ) . Update the predictor using the

path history saved when the last prediction was made, and then save the
current path history

4: LIKELIHOODS(Mi) . Compute L̃Mik

5: KMi = {k ∈ H|L̃Mik > 0}
6: compute priority function ΓMik, ∀k ∈ K

Mi , based on the current
estimates for likelihoods, frequencies and perf. gains, using Eq. 5

7: sort candidates in KMi in decreasing order of ΓMik
8: remove modules that have area conflicts with higher priority modules
9: clear current prefetch queue

10: enqueue for prefetch the top 3 candidates, based on ΓMik }
The pseudocode above executes in parallel with the one below

11: if{ Mi fully loaded on FPGA then execute Mi on FPGA
12: else if remaining reconfiguration + hw(Mi) < sw(Mi) then
13: continue reconfiguration and then execute Mi on FPGA
14: else execute Mi in SW
15: save timestamp of Mi

. Compute estimated gains based on current finishing time of Mi
16: for all k ∈ HW do . For the q candidates reached before Mi

17: compute performance gain G̃kMi
with Eq. 4, using the timestamps

of k and Mi to compute χkMi
, $̃kMi

and γ̃kMi
}

increment its frequency counter (line 2) that will be used at
the end of the application to update the frequency estimates
with Eq. 2. Next we perform the update of the piecewise linear
predictor (line 3). We use the path history (registers HMi

S and
AMi

S ) saved when the last prediction was made at Mi, and
the q candidates reached after Mi, saved in HWMi

R . After the
update, we save the current path history (to be used at the
next update), as described in Algorithm 2. Next we compute
the likelihoods to reach other candidates from Mi (line 4), as
illustrated in Algorithm 1. Then, for all candidates reachable
with nonzero likelihood (line 5), we compute the priority ΓMik

(line 6) with Eq. 5. Once all ΓMik have been computed, we sort
the candidates from KMi in decreasing order of their priority
(line 7), giving precedence to modules placed in loops in case
of equality. Next we remove from this list all the lower priority
modules that have placement conflicts (i.e. intersecting areas
on the reconfigurable region) with higher priority modules (line
8). Then, we also remove all the modules that are already fully
configured on the FPGA (because they are going to be reused),
we clear the current prefetch queue (line 9) and, finally, we
enqueue for prefetch the top 3 candidates (line 10).

The execution of the predictor update and the mechanism
of generating the prefetches (described above) takes place in
parallel with the execution of Mi. This observation, coupled
with the facts that our algorithm has a worst-case complexity
of O(|H| log |H|) and that it runs as a dedicated hardware
module (recall Sec. II-A), makes the on-line approach feasible.
The execution of Mi is done in hardware or in software
(lines 11-14), depending on the run-time conditions. Once
the execution of Mi finishes, we save its timestamp and then
we compute the estimated performance gains G̃kMi (line
17) for all the modules currently recorded in the hardware
history register HW (line 16). After this, the execution of the
application continues as normal.

D. A Practical Predictor
So far we have assumed boundless hardware; In this

section we present a practical implementation of the piecewise
linear predictor, considering a limited space budget. The most
expensive component (with respect to space) is the 3D array
Ω containing the weights used for prediction. It is interesting
to observe that, if we look at the 2D matrix corresponding to
a hardware candidate Mi, we see that not all the weights from
the idealized version are actually used for making a prediction.

As an illustration, let us consider the 3D array Ω from

Fig. 3 corresponding to the example from Fig. 2, and assume
that the path history has a length of h = 2 and the hardware
history register HW has a length of q = 2. For these values
of h and q, for module M2 the rows for branches B3, B4 and
B5 are never used because B3, B4 and B5 never appear in the
path history of any module that would make a prediction for
candidate M2. Similar remarks hold for other combinations
of candidates and branches. Exploiting this, we can limit
the second index of Ω by taking the branch IDs modulo N ,
where N is chosen considering the space budget for Ω. One
consequence of this is aliasing, which for very strict space
budgets might affect the prediction accuracy. Fortunately, as
we show in the experimental section, the effects of aliasing
are not so negative for practical sizes of N . The third index
of Ω is limited by choosing an appropriate value for the path
history length h, while the first index is limited naturally,
since the number of hardware candidates is usually not
overwhelming. Using a similar reasoning, we can also limit
the indexes in the matrix of estimated performance gains G̃,
by taking the hardware IDs modulo an integer M .

As a result, the space required by our predictor (including
the space for the timestamps and frequency counters F̃ for
candidates) is |H| · N · h · 8 + h · (log2N + 1) + M · M ·
16 + q · (log2 |H| + 1) + q · 16 + |H| · 8 bits. Depending
on the choice of parameters, this value can be more or less
bigger than the space requirements of the previous dynamic
techniques: both [9] and [6] require |H|·16 bits, whereH is the
set of hardware candidates. Nevertheless, as our experiments
show, the extra overhead is worth paying, if we consider the
performance improvement obtained in return.

VI. EXPERIMENTAL EVALUATION
We generated 2 sets containing 25 flow graphs each: Set1

with small graphs (between 48 and 166 nodes, ∼100 on
average), and Set2 with bigger graphs (between 209 and 830
nodes, ∼350 on average). The software execution time for each
node was randomly generated in the range of 50 to 1000 time
units. Between 15% and 40% of the nodes were selected as
hardware candidates (those with the highest software execution
times), and their hardware execution time was generated β
times smaller than their software one. The coefficient β, chosen
from the uniform distribution on [3, 7], models the variability
of hardware speedups. We also generated the size of the
candidates, which determined their reconfiguration time. The
placement was decided using existing techniques (like [5]) that
minimize the number of placement conflicts. We generated
problem instances where the size of the reconfigurable region
is a fraction (15% or 25%) of the total area required by all
candidates, MAX_HW =

∑
m∈H area(m).

For each application we have evaluated different prefetch
techniques using an in-house Monte Carlo simulator (described
in [10]) that considers the architectural assumptions described
in Sec. II-A. We have determined the results with an accuracy
of ±1% with confidence 99.9%.

A. Performance Improvement
We were interested to see how our approach compares

to the current state-of-art, both in static [10] and dynamic
prefetching [9], [6]. Thus, we simulated each application using
the prefetch queues generated by our approach and those
generated by [10], [9] and [6]. The parameters for our predictor
were chosen, depending on the application size, from the
following ranges: α = [0.4, 0.6], q = [2, 8], h ∈ [4, 16], N ∈
[16, 32],M ∈ [8, 32].

One metric suited to evaluate prefetch policies is the total
time spent executing the hardware candidates, plus the time
waiting for reconfigurations to finish (in case the reconfigura-
tion overhead was not entirely overlapped with useful computa-
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(c) MM-1 Case Study
Fig. 4: Experimental Results

tions). If this value is small, it means that the prefetch policy
had accurate predictions (many candidates were executed in
hardware), and the prefetch was done early enough to have
short waiting times.

We denote the average time spent executing hardware can-
didates, plus waiting for reconfigurations to finish, with EXP

for our approach, with EXS for the static approach [10], with
EXM for the dynamic Markov approach [9] and with EXA

for the dynamic aggregate gains approach [6]. We compute
the performance improvement of our approach over the static,
PIPS = EXS−EXP

EXS
; similarly we calculate PIPM and PIPA .

Fig. 4a shows the results obtained (averaged over all graphs
in Set1 and Set2). The improvements over the static approach
[10] are higher because static prefetch lacks flexibility. The
improvements over both dynamic approaches ([9], [6]) are also
significant, ranging from 14% up to 29% on average.

B. Aliasing Effects
Recall from Sec. V-D that we take the branch IDs modulo

N to index in the 3D array Ω; also, the indexes in the matrix
of estimated performance gains G̃ are limited by taking the
hardware IDs modulo M . We wanted to investigate the aliasing
effects caused by these actions. Table 4b shows the results
obtained for an application with 302 nodes (out of which
126 were hardware candidates), and containing 64 branches3.
The size of the PDR region was set to 25%MAX_HW. The
values in Table 4b represent the total time spent executing
hardware candidates plus waiting for their reconfigurations
to finish, EXP , normalized to the case when N = 64 and
M = 128. As can be seen, we can significantly reduce the
space budget needed to implement the predictor with only
marginal performance degradation. It is interesting to note
that even for the most restrictive budget (N = 4,M = 8)
the performance of our predictor degrades with only 22%
compared to the ideal case (N = 64,M = 128), and we still
outperform [9] by 21% and [6] by 17%.

C. Case Study - MultiMedia Benchmark
Our case study was a MultiMedia benchmark (MM-1

from [18]). In order to obtain the inputs needed for our
experiments, we used the framework and traces provided for
the first Championship Branch Prediction competition [18].
The given instruction trace consists of 30 million instructions,
obtained by profiling the program with representative inputs.
We have used the provided framework to reconstruct the
control flow graph of the MM-1 application based on the
given trace and we obtained 549 nodes. Then we used the
traces to identify the parts of the application that have a high
execution time (mainly loops). The software execution times
were obtained considering the following cycles per instruction
(CPI) values: for calls, returns and floating point instructions
CPI = 3, for load, store and branch instructions CPI = 2,
and for other instructions CPI = 1. Similar to the previous
experimental sections, we considered the hardware execution
time β times smaller than the software one, where β was
chosen from the uniform distribution on the interval [3, 7].
3Similar examples are omitted due to space constraints.

We have followed the same methodology as described in
the above section to compare our approach with [10], [9] and
[6]. The performance improvements obtained (PIPS , PIPM and
PIPA ) are presented in Fig. 4c. Our method outperforms [10]
by 29%, [9] by 12% and [6] by 9%.

VII. CONCLUSIONS
We presented an approach for dynamic prefetching of

FPGA reconfigurations, with the goal to minimize the expected
execution time of an application. We use a piecewise linear
predictor, coupled with an on-line mechanism, based on times-
tamps, in order to generate prefetches at run-time. Experiments
show significant improvements over state-of-art techniques.
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