
A Satisfiability Approach to Speed Assignment
for Distributed Real-Time Systems

Pratyush Kumar, Devesh B. Chokshi and Lothar Thiele
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

Abstract—We study the problem of assigning speeds to resources
serving distributed applications with delay, buffer and energy constraints.
We argue that the considered problem does not have any straightforward
solution due to the intricately related constraints. As a solution, we
propose using Real-Time Calculus (RTC) to analyse the constraints and
a SATisfiability solver to efficiently explore the design space. To this end,
we develop an SMT solver by using the OpenSMT framework and the
Modular Performance Analysis (MPA) toolbox. Two key enablers for this
implementation are the analysis of incomplete models and generation of
conflict clauses in RTC. The results on problem instances with very large
decision spaces indicate that the proposed SMT solver performs very well
in practice.

I. INTRODUCTION

The overarching theme in computing systems has been the move
towards distributed setups, with the increasing convergence of sens-
ing, communication and computation. One of the consequences of
such a trend is the increased complexity of the systems, and the
resultant high costs of design optimisation. Such design optimisation
problems need novel solutions that are generic in their scope and
efficient in computation costs.

In this work, we look at such a design optimisation problem,
namely assigning processing speeds on a distributed real-time system
with multiple conflicting constraints. The system we consider has
multiple resources, whose speeds can be independently assigned, and
which serve multiple applications. The speed assignment is to be
done under multiple constraints: (a) applications may have end-to-
end delay constraints, (b) resources may have finite buffer space for
pending jobs, and (c) resources may have a finite energy budget in
a given interval of time. An example of such a system is the cyber-
physical system within a modern automobile [1]. The key constraints
in such a system are the delay constraints which have to be certifiably
satisfied. For instance, the time between the application of the brake
pedal and the actuation of the relevant braking mechanism has to be
safely bounded. Another relevant example is the Network-on-Chip in
a multi-core processor, where both performance criteria and buffer
constraints can be important [2]. In even larger systems such as data
centers the energy consideration assumes significance, while meeting
desired performance constraints is also necessary [3].

Intuitively, the assignment of the speeds to resources provides
design choices to trade-off between the considered objectives of
delay, buffer and energy. For instance, by decreasing the speed of
a resource, we can decrease the energy consumption of that resource
at the potential cost of added delays in serving tasks or need for
larger input buffers. However, the distributed nature of the considered
problem implies that these trade-offs are not always intuitive. Let us
illustrate this with an example.

Consider the architecture of two resources and three applications
with timing properties as shown in Fig. 1. Application A1 and

978-3-9815370-0-0/DATE13/ c©2013 EDAA

T11

T21 T22

T31

A1

A2 A2

A3

A1

A3

R1

R2

A1 A2 A3

Period 10 6 6
Jitter 4 0 0

Exec.Time 3 T21: 0.5 1
T22: 1

Priority: T11 > T21, T22 > T31

Fig. 1. Example to illustrate the intricacies in the trade-off between different
constraints. All times are in ms.

A3 have a single task, while application A2 has two tasks with a
data dependency. The mapping of tasks on to resources, and their
scheduling is shown. For this specific example, halving the speed
of resource R1 leads to counter-intuitive consequences. Firstly, buffer
requirement on the input of task T22 increases from 1 to 3, though we
may expect that a slower resource for the input task would lead to a
smaller buffer level. Secondly, the worst-case energy consumption of
resource R2 within any interval of some given length increases. On
the contrary, we may expect that the energy consumption of resource
R2 is unaffected by changing the speed of resource R1. Thirdly, the
delay of application A3 increases from 2 to 4, though its only task
is mapped on to resource R2 whose speed is unchanged. None of
these consequences conform to the intuitive trade-off between the
considered objectives. One may expect that these issues would only
be further aggravated for systems with more resources and/or task
dependencies.

The above discussed intricacies in the relationship between the
constraints motivate two responses. Firstly, we need a generic theory
to systematically compute safe bounds on the end-to-end delay,
buffer requirement and energy consumption. Secondly, the problem
of choosing the speeds of the processing units while meeting a given
set of constraints is not straightforward. For instance, the constraints
do not exhibit any well-founded properties of linearity or convexity.
Hence a generic design space exploration engine has to be designed.

The design space grows exponentially in the number of resources
and polynomially in the number of different speeds. For problems
with tens of resources and few different speeds, this design space is
very large and beyond approach with exhaustive search. One solution
to cover a large design space is to use heuristics such as gradient
descent, simulated annealing or evolutionary algorithms. However,
these methods do not provide any guarantees of optimality, i.e., if
they do not find a feasible solution we are not guaranteed that there
is none. This brings us to the core issue addressed in this paper: We
aim to reconcile the complexity of speed assignment problem with
the need for an optimal solution.

To the above end, we formulate the problem as a SATisfiability
problem [4] interpreted on the background theory of Real-Time

Calculus [5]. In the process we design a custom Satisfiability Modulo
Theory (SMT) solver [6]. We first show that formally, this setup
guarantees the computation of optimal solutions to the speed as-
signment problem. Two enabling principles for this are (a) analysis
of incompletely specified systems in a RTC formulation, and (b)
computation of conflict clauses which formalise the non-satisfaction
of different constraints in terms of possible speed assignments. Our
implementation uses the OpenSMT [7] solver framework which
is specifically designed to interface custom theory solvers. The
theory solver for Real-Time Calculus is designed using Modular
Performance Toolbox [8].

The key advantage of a SMT solver is the deep embedding of the
theory solver within the exploration engine. This deep embedding has
been shown to perform exceeding well in practice in diverse fields
[6]. The main result of this work is to confirm this success of SMT
solvers in the considered case of speed assignment with RTC as the
background theory. In particular, we show that for problem spaces
with very large design spaces, the solver computes a valid solution,
if there is one, within hundreds of solver calls to the MPA toolbox.
On a typical desktop computer, a solver call is executed within a
couple of seconds. This motivates formulation of other design space
exploration problems within using our SMT setup.

The rest of the paper is organised as follows. In Section II
we formalise the models considered. We motivate our work with
an example that illustrates the working of the proposed solver in
Section III. We then introduce SAT solvers and the Real-Time
Calculus in Section IV. The proposed SMT solver is presented in
Section V. We experimentally evaluate the solver in Section VI. We
compare our work with existing literature in Section VII and conclude
in Section VIII.

II. PROBLEM FORMULATION

We will now describe the models and formulate the problem.

Resources: We consider a network of resources denoted by
the set R. The ith resource is denoted Ri. The speeds of (some
of) the resources can be independently assigned. We denote the
speed of Ri by si, and it belongs to a given finite set of allowed
speeds denoted Si. In this work, we consider speeds as ratios to a
normalised speed. The power consumed by a resource is assumed
to be a convex increasing function of its speed denoted as φi(si).
When not executing any task, the resource consumes a fixed idle
power φi(0).

Applications: An application is a chain of tasks (a linear task
graph) which have to be sequentially performed for an incoming
stream of jobs. We denote the set of all applications as A and the
ith application as Ai. The jth task of the Ai is denoted as Ti,j. Task
Ti,j is mapped on to resource mi,j ∈ R. The worst-case execution
time (WCET) and the best-case execution time (BCET) of Ti,j on
resource mi,j for the normalised speed are Cu

i,j and Cl
i,j, respectively.

We assume execution times linearly scale with the speed: If mi,j

runs at speed s, then the WCET and BCET become Cu
i,j/s and

Cl
i,j/s, respectively. Ai is characterised by an input load given by

an arrival curve denoted as αi. We discuss the interpretation and
utility of arrival curves in Section IV-B.

Scheduling: If two tasks are mapped on to the same processing
unit then the scheduling is based on pre-emptive fixed priority
according to some given priority ordering.

R1 R2

R3 R4

T11

T21

T12

T22

T13

T23

A1

A1

A2

A2

A1 A2
Period 10 10
Jitter 20 20

D 9 13

T11 T12 T13 T21 T22 T23

Cu = C l 1 2 4 1 3 4
B 3 2 1 3 1 3

Priority: A1 > A2

Si = {1, 1.5,2}, φ(s) = s2.5

E = (210, 210,580,760), τi = 1000

Fig. 2. Problem instance in considered motivating example

Constraints: We can have a combination of some of the follow-
ing constraints
• An application Ai may have a upper-bound on the end-to-end

delay denoted as Di.
• Each task has an input buffer that queues pending jobs. Some of

these buffers may have size constraints denoted as Bij for task
Tij.

• A resource Ri may have a upper-bound on the energy consumed
in any interval of some given length τi, denoted as Ei.

Speed assignment: The aim is to compute the speed of each
resource Ri, i.e., evaluate si ∈ Si, such that the delay, buffer and
energy constraints are satisfied. If there is no such assignment, then
this must be shown to be so.

III. MOTIVATING EXAMPLE

In this section, we will demonstrate the working of the proposed
solver with a problem of size that is demonstrable. Consider two
applications with three tasks each, executing on four resources as
shown in Fig. 2. The figure shows properties of the tasks, the priority
ordering, the allowed speeds, power consumption as function of speed
and the constraints on the energy consumed in any interval of length
1000, for each of the resources. Each of the resources can be assigned
one of three speeds 1, 1.5 and 2, coded as L, M or H, for low, medium
and high, respectively.

The design space of speed assignments is of size 34 = 81. By
exhaustive search, we found that none of the speed assignments
satisfies all the constraints, i.e., the problem is unsatisfiable. We
will now demonstrate how our proposed solver comes to the same
conclusion, by elaborating the trace obtained from our solver. This
trace is visualised in a series of solver calls. In each such call, the
solver attempts to find a solution by restricting the search to some
part of the design space. Formally, this part of the design space is
encoded as the model. If it can be shown that the constraints will be
violated for any speed assignment represented by this model, then we
label the solver call as UNSAT. In such a case, a part of the design
space is deemed to be infeasible. Formally, this part of the design
space is encoded as the conflict clause and it is eliminated from
subsequent searches. Otherwise, we label the solver call as SAT, and
a new model is considered. This process stops when either the whole
design space is shown to be infeasible, or if a solver call with a
model representing a single design returns SAT.

For the considered problem, the trace of the solver calls is shown
in Fig. 3. We represent the models and the conflict clauses by 4-tuples
which give the ranges of the speed for the four resources, respectively.
We also visualise them in squares with 81 smaller squares that
correspond to the 81 speed assignments. If a speed assignment is

Model Solver calls Conflict clause

(L-H, L-H, L-H, L-H) 1 SAT

(L, L, L, L) 2 UNSAT (L, L, L-H, L)

(L, L, L-H, M) 3 UNSAT (L, L, L-H, M)

(L, M-H, L-H, L-M) 4 UNSAT (L, M-H, L-H, L-H)

(M-H, L-H, L-H, L-M) 5 UNSAT (M-H, L-H, L-H, L-H)

(L, L-H, L-H, H) 6 UNSAT (L, L-H, L-H, H)

Fig. 3. Trace of solver calls for problem of Fig. 2

included in the model or the conflict clause then the corresponding
square is shaded dark. Additionally, in the visualisation of the conflict
clause, we shade gray those squares which have already been proved
to be infeasible in earlier solver calls. At the end of the search, in the
visualisation of the conflict clause, every square is shaded implying
that there is no solution.

Let us discuss some salient features. Firstly, note that in just
6 solver calls we prove that the entire design space is infeasible.
Secondly, note that the models include several design points. For
instance, the model in the first solver call includes the entire design
space. Thirdly, in the case of a UNSAT solver call, the conflict clause
can include several design points, even more than those in the model.
For instance, in the fifth solver call, the conflict clause includes 54
design points while the model includes 36 design points.

The three defining advantages of the solver that enable the quick
verification are (a) efficient generation of models, (b) checking
constraints for models that include multiple design points, and (c)
generating conflict clauses that eliminate multiple design points.
While the first advantage is due to the SAT engine, the other two
advantages are due to specialised operations possible in the theory
solver. In Section V, we will formally discuss how these operations
can be performed for the considered theory of Real-Time Calculus.
Then in Section VI, we will demonstrate that these advantages
perform very well in practice and can efficiently search very large
design spaces.

IV. BACKGROUND

In this section, we discuss preliminary ideas from Satisfiability
Modulo Theory (SMT) and Real-Time Calculus (RTC).

A. Satisfiability Modulo Theory (SMT)

Satisfiability Modulo Theory (SMT) solvers are an evolution on
Satisfiability (SAT) solvers, which check the satisfiability of a logical
formula over propositional variables. Though SAT problems are char-
acteristically NP-complete, availability of efficient search techniques,
such as DPLL [4], make them good practical choices for decision
problems.

The need for SMT solvers arises because fully encoding a decision
problem into boolean variables is not always practical or even

efficient [9]. In many problems, specialised methods need to be
used to provide decision procedures, while generic and efficient SAT
routines search over the design space. An SMT problem is an instance
of a decision problem on logical formula, where the formula is
interpreted in one or more background first-order theories [9].

An SMT solver can be viewed as comprising of a SAT solver
and a theory solver. Crucial to our subsequent discussion is the
interaction between the SAT and theory solvers. The solvers interact
via propositional variables. These variables encode the decision space
to be explored. The SAT solver assigns truth values to (some of)
these propositional variables. Such an assignment represents a part
of the design space and is denoted as the model M. The theory solver
interprets the model M and computes the corresponding theory-
model m. It then checks if this model satisfies the constraints to be
met, using techniques internal to the theory solver. If the constraints
cannot be met for any design represented by the model, the theory
solver returns UNSAT and computes a subset of the propositional
variables C ⊆M, called the conflict clause, that is a reason for the
unsatisfiability. The SAT solver then factors the computed conflict
clauses in generating subsequent models. If on the other hand,
constraints can be met, the theory solver simply returns SAT. This
process is repeated until either the solver returns SAT while M
represents exactly one design, or the conflict clauses deem the entire
decision space infeasible. In the former case, we find a solution and
in the latter prove that there is none.

B. Real-Time Calculus

Real-Time Calculus (RTC) [5], [10] is an extension of Network
Calculus [11] with applications in modular timing analysis of
systems. In this work, we will use it to model the workload demand
of tasks and analyse fixed priority systems, in addition to verifying
delay, buffer and energy constraints.

Arrival curve: An arrival function, W(t), is the total number of
jobs of a task that can arrive up to time t. Let W denote the set of
all possible arrival functions of this task. Then, we characterise the
arrival curve of this stream of jobs, denoted as α = (αl,αu), as the
bounds on the number of jobs arriving in any time-interval, i.e.,

αl(∆) 6W(t+ ∆) −W(t) 6 αu(∆), ∀t,∆ > 0,W ∈W.

Arrival curves can be used to represent the input patterns of different
kinds of tasks, such as periodic with and without jitter, leaky bucket
patterns, amongst others.

Service Curve: A service function, Q(t), denotes the amount
of service, in terms of processor cycles, provided by a resource
up to time t. Let Q be the set of all possible service functions of
this resource. Then, we characterise the resource availability by the
service curve, denoted β = (βl,βu), where

βl(∆) 6 Q(t+ ∆) −Q(t) 6 βu(∆), ∀ t,∆ > 0,∀ Q ∈ Q.

Similar to the arrival curves, the service curves can model a variety
of resource availability patterns.

Modular analysis: The output arrival curve, denoted α ′ is
defined similar to the arrival curve, but for the outgoing stream.
The remaining service curve, denoted as β ′ is defined similar to
the service curve, but for the amount of processing power remaining.
From known results [10], α ′ and β ′ can be computed given α, β,

the WCET Cu and BCET Cl.

α ′u = min{(αu ⊗ βu/Cl)� βl/Cu,βu/Cl}, (1)

α ′l = min{(αl � βu/Cl)⊗ βl/Cu,βl/Cu}, (2)

β ′u = (βu − αlCl) � 0, (3)

β ′l = (βl − αuCu) ⊗ 0. (4)

For the definitions of ⊗, �, ⊗ and �, refer to [11].

The above equations enable modular analysis of large systems.
The arrival curve of the first task of a task-chain is the arrival curve
of the application and is an input parameters. The service curve of
the highest priority task of a resource is the service curve of that
resource, and is also an input parameter. The computed α ′ is the
arrival curve in the subsequent task (if any) and the computed β ′

is the service curve of the next lower priority task (if any). This
enables modular analysis by treating each task as a module and
applying the above equations.

Worst-case bounds: Let a stream of jobs with arrival curve α
be served by a series of tasks. The service curve available to the ith
task is βi and the WCET (BCET) of the job is Cu

i (Cl
i). Then, the

worst-case end-to-end delay is

dmax = Del
(
αu,

βl
1

Cu
1
⊗ . . .⊗ β

l
n

Cu
n

)
. (5)

The worst-case buffer level at the input of the ith task is

bmax
i = Buf (αu,βl

i/C
u
i). (6)

For definitions of Del and Buf refer to [10]. Let T be the set of tasks
executing on the ith resource. The worst-case energy consumption in
any interval of length ∆ of the ith resource is

emax
i (∆) =

∑
j∈T

(
α ′uj (∆)

Cu
j

si
(φi(si) − φi(0))

)
+ φi(0)∆. (7)

Using the above results from RTC, given a fully specified system
(with a speed assignment), we can check the satisfaction of the
different delay, buffer and energy constraints.

V. CUSTOM SMT SOLVER WITH RTC AS BACKGROUND THEORY

SOLVER

In this section, we present the main contribution of our work,
namely a custom SMT solver with the Real-Time Calculus (RTC)
as the background theory. We show how this solver can be used for
the problem of speed assignment on a distributed system with delay,
buffer and energy constraints.

The SMT solver is implemented using OpenSMT [7]. As a theory
solver we use the publicly-available Modular Performance Analysis
(MPA) [8] toolbox for MATLAB.

A. Propositional variables

As discussed in the previous section, the SAT part of the SMT
solver works only with the propositional variables. Thus, we must
encode the entire decision space in terms of these variables. Let Si,j

is the jth lowest speed in set Si. We define propositional variables
pij for every resource Ri and for every speed Si,j, except the highest
speed Si,|Si|. The inclusion of an assignment to a propositional

variable in the model M is interpreted as follows.

(pij 7→ >) ∈M⇒ si 6 Si,j (8)

(pij 7→ ⊥) ∈M⇒ si > Si,j (9)

Recall that Sij is the jth lowest speed in Si. Imposing these condition,
given the above interpretation, the propositional variables need to
satisfy following relations.

(pij 7→ >) ∈M⇒ (pik 7→ >) ∈M, ∀ k > j,∀ i (10)

(pij 7→ ⊥) ∈M⇒ (pik 7→ ⊥) ∈M, ∀ k < j,∀ i. (11)

B. Interpreting model

The theory solver must interpret the modelM into a theory-specific
model m. As discussed, model M can have some propositional
variables unassigned. We interpret such an incomplete representation
by a model m which specifies speeds of resources by sets. For
example, in the first solver call of Fig. 3, the modelM is empty which
is interpreted as all possible speed assignments in m. In contrast, in
the second solver call, the model M is complete representing only
one specific assignment of speeds in m.

We denote sets of speeds with a tilde accent. Thus, the set of
speeds of resource Ri is denoted as s̃i. This is an abstraction that
is imposed by incomplete models. The upper and lower bounds of
such a set are denoted as (s̃i)

u and (s̃i)
l, respectively. Given the

propositional variables, these bounds on the speeds can be computed
by the following relations.

(s̃i)
u = Si.j, j = min({k | (pik 7→ >) ∈M} ∪ {|Si|}) (12)

(s̃i)
l = Si.j, j = max({k | (pik 7→ ⊥) ∈M} ∪ {0}) + 1 (13)

C. Analysing incomplete model

Having identified the speeds of the resources as sets, we have to
propagate this incompleteness to the other quantities in the semantics
of the RTC solver, namely arrival and service curves, and by extension
the delay, buffer and energy bounds. We denote the arrival curve for
the task Ti,j as αi,j and the service curve provided to this task as
βi,j. We continue to use the tilde accent to represent sets of the
quantities. For instance, α̃u

i,j denotes the set of all arrival curves of
task Ti,j admissible by an incomplete speed assignment.

The interpretation of these quantities is counter-intuitive to the way
they are conventionally used in timing analysis. For instance, consider
a service curve that is remaining after a full resource serves a high
priority task of period 2 and execution time 1. We plot this service
curve given that the speed of the processor can vary in the range
[0.5, 1] in Fig. 4. Here (β̃l)u ((β̃u)l) is the lower (upper) service
curve, maximised (minimised) across different allowed speeds. It is
plausible, indeed as is the case in Fig. 4, that (β̃l)u is not smaller
than (β̃u)l. This is contrary to the conventional notion of using

0 2 4 6 8 10
0

2

4 eβ l
(eβ l)u

(eβ l)l

0 2 4 6 8 10
0

2

4 fβu
(fβu)u

(fβu)l

Fig. 4. Service curves for an incomplete model. Gray area denotes uncertainty
due to the incompleteness

curves in RTC, where upper bounds are always above lower bounds.
However, the abstraction of the incomplete models, can change this.
The definition of these new curves (with tildes) forms the key step
in the use of RTC as a background theory solver.

Let dmax
i denote the worst-case end-to-end delay of application Ai,

bmax
i,j denote the worst-case buffer requirement on the input of task
Ti,j, and emax

i denote the worst-case energy consumption of resource
Ri in any interval of length τi. Interpreting incomplete models can
lead to sets of these quantities, which are also represented with a
tilda accent.

In any solver call, the solver must return UNSAT, if and only if
for that model, the constraints are violated for all speed assignments
represented by the model. This can be shown to be the case only if

1) (d̃max
i)l > Di, for some application Ai, or

2) (b̃max
ij)l > Bij, for some task Tij, or

3) (ẽmax
i)l > Ei, for some resource Ri.

To ascertain these, we need to compute the above quantities. It can
be shown that these quantities are given by the following result.

(d̃max
i)l = Del((α̃u

i,1)
l, (β̃l

i,1)
u/Cu

i,1 ⊗ . . .⊗ (β̃l
i,n)

u/Cu
i,n)

(b̃max
i,j)l = Buf ((α̃u

i,j)
l, (β̃l

i,j)
u/Cu

i,j) (14)

(ẽmax
i)l =

∑
{(x,y)|mx,y=i}

(α̃ ′ux,y)
l(τi)

Cu
x,y

(s̃i)l
(φi((s̃i)

l) − φi(0))

+ φi(0)τi

Note that in the right hand sides of all above equations only lower-
bounds of sets for upper curves and upper-bounds of sets for lower
curves are involved. For instance, for α̃u only (α̃u)l is involved, and
not (α̃u)u. For brevity, we call these bounds the cross-bounds.

We now describe the computation of the cross-bounds. The arrival
curve of the first task of every application is set to the arrival curve of
that application: (α̃u

i,1)
l = αu

i , (α̃l
i,1)

u = αl
i. Let Tx,y be the highest

priority task of resource Ri. Then, the service curve provided to Tx,y

is (β̃u
x,y)

l(∆) = (s̃i)
l · ∆, (β̃l

x,y)
u(∆) = (s̃i)

u · ∆. Again, note that,
in contrast to intuition from RTC, the cross-bound of a lower service
curve can be larger than the cross-bound of the upper service curve.
Consequently, this applies to other derived cross-bounds.

We re-formulate the standard equations (1)-(4) to compute the other
cross-bounds. The proofs for these depend on manipulation of the
RTC operators.

(α̃ ′u)l = min{((α̃u)l ⊗ (β̃u)l/Cl)� (β̃l)u/Cu, (β̃u)l/Cl},

(α̃ ′l)u = min{((α̃l)u � (β̃u)l/Cl)⊗ (β̃l)u/Cu, (β̃l)u/Cu},

(β̃ ′u)l = ((β̃u)l − (α̃l)uCl) � 0,

(β̃ ′l)u = ((β̃l)u − (α̃u)lCu) ⊗ 0.

Again, the right hand sides only involve cross-bounds. In other words,
working with only the cross-bounds suffices for interpreting and
analysing partial models M, in terms of verifying satisfiability of the
considered constraints. This is a key property of Real-Time Calculus
(RTC) which enables interfacing with a SAT solver.

D. Generating conflict clause

A conflict clause must be generated whenever a delay, buffer or
energy constraint is violated. The conflict clause must identify the
subset of the propositional variables assigned in the model which
caused the violation. We will now discuss the conflict clauses for
violations of the different constraints.

Delay constraint: Violation of the delay constraint for an
application implies that the service available to its tasks were
smaller than necessary. For each resource Ri on which tasks of the
considered application are mapped, low service is due to (a) smaller
value of (s̃i)

u, and (b) larger value of the (α̃u
x,y)

l, where Tx,y is
any higher priority task on Ri. In turn, the larger value of (α̃u

x,y)
l

is due to (a) larger value of (s̃j)l and smaller value of (s̃j)u, where
j = mx,y−1, and (b) larger values of (α̃u

u,v)
l and small values of

(α̃l
u,v)

u, where Tu,v is any task of priority higher than Tx,y−1 on Rj,
and (c) higher value of (˜αu

x,(y−2))
l, if there is are preceding tasks

Tx,(y−1) and Tx,(y−2). This recursive process is repeated until we
arrive on the first tasks of application whose arrival curves are fixed.
In this process, note that the violation is attributed to only smaller
(not larger) values of (s̃i)

u and larger (not smaller) values of (s̃i)
l.

For resource Ri, whenever the violation is attributed to lower value
of (s̃i)

u, the conflict clause includes all variables pij such that
{pij 7→ >} ∈M. Similarly, for higher values of (s̃i)

l we include in
the conflict clause all variables pij such that {pij 7→ ⊥} ∈M.

Buffer constraint: Let the input buffer for task Ti,j be violated.
This can be attributed to (a) larger value of (α̃u

i,j)
l, (b) smaller value

of (s̃i)
u, and (c) larger value of (α̃u

x,y)
l, where Tx,y is any higher

priority task on the resource. As in the case of delay constraints,
recursively we elaborate these bounds to obtain the conflict clause.

Energy constraint: If the energy constraint of resource Ri is not
met, then this violation is attributed to (a) larger value of (s̃i)l, and
(b) larger values of (α̃u

x,y)
l where Tx,y is any task with mx,y = i.

As before the conflict clause is obtained by recursively analysing
these conditions.

We can formally show that, in the absence of any additional
information about the problem instance, the above conflict clauses
are minimal, i.e., they do not include any “unnecessary” propositional
variables. Recall that the smaller the conflict clause, the larger is the
benefit in terms of eliminating a large fraction of the design space.

VI. EXPERIMENTAL RESULTS

In this section, we will describe the results of using the proposed
solver on problem instances with large design spaces. To enable a
comparison of different features of the SMT technique, we consider
three variants of the solver. The solver variant SAB is the one that
has been discussed thus. In solver variant SA, we trivially set the
conflict clauses to be equal to the model. In solver variant SB, we
only consider models which are complete, while conflict clauses are
generated as discussed in the previous section. Thus, the variants
SA and SB are designed to understand the individual advantages
of analysing incomplete models and computing compact conflict
clauses, respectively.

We consider problem instances with 25 different resources and 5
distinct speed levels for each resource, amounting to a design space
of 525 ≈ 3 × 1017 different design points. On this architecture, we
consider the execution of multiple applications. We consider different
problem instances, where the number of applications (in the range of
10-25, with 3-5 tasks each), their binding to resources, their timing
properties and the constraints are randomly varied. For each such
problem instance, we first find the average number of solver calls
needed to identify a solution when randomly exploring the design
space. In all experiments, we limit our search to a maximum of 50000
solver calls.

Type SAB SA SB Random
1 SAT 64 38 9 38
2 SAT 163 4509 108 122
3 SAT 77 41 30 278
4 SAT 153 406 434 980
5 SAT 289 839 12195 3166
6 SAT 259 552 1067 40771
7 SAT 366 3122 405 >50k
8 SAT 409 4269 1367 >50k
9 SAT 521 7931 >50k >50k
10 UNSAT 1 1 >50k >50k
11 UNSAT 80 98 >50k >50k
12 UNSAT 306 852 >50k >50k
13 UNSAT 416 6210 >50k >50k

TABLE I
NUMBER OF SOLVER CALLS UNTIL TERMINATION FOR THE DIFFERENT

ALGORITHMS FOR DIFFERENT PROBLEM INSTANCES

We present the results in Table I. Firstly, note that SAB computes
optimal results for such a large space within hundreds of solver
calls, for all the considered problem instances. On a typical desktop
machine, a solver call takes about 2 seconds. This confirms the
efficacy of the solver for large design spaces. This result holds both
for feasible and infeasible problem instances.

Secondly, the comparison between SA and SB is not conclusive.
In some problem instances, where large fraction of the design space
is feasible, SB performs very well, even bettering SAB. This can
be attributed to the way SB works: solver calls happen only for
completely specified models. With large number of feasible design
points, it may be more efficient to ’guess’ complete models rather
than learn conflict clauses while building up the model incrementally,
as done in SA and SAB. Otherwise, in most problem instances,
especially ones which are UNSAT, SB performs much worse, proving
ineffective in finding a solution or proving unsatisfiability.

Thirdly, SAB performs much better than either SA and SB, for most
of the problem instances. This confirms that analysis of incomplete
models and the generation of conflict clauses are complementary
contributories towards efficient exploration of the design space.

VII. RELATED WORK

Other researchers have studied the use of SAT solvers for problems
in system design. The problem of allocation of resources and binding
of tasks to optimise performance has received particular interest [12],
[13]. In these and similar works the timing analysis is restricted to
specific nature of the problem, for instance fixed priority periodic
scheduling in [12]. In contrast, our approach is the first instance of a
generic modular performance analysis tool being coupled with a SAT
solver. This enables us to inherit the established advantages of Real-
Time Calculus (RTC) to analyse different properties such as delay,
buffer and energy, for various task models, scheduling policies and
mapping decisions.

Reimann et al in [14] and [15] solve the allocation and binding
problem while specifically using RTC as the theory solver. Similar
to our approach, they also compute conflict clauses to guide the SAT
solver [15], though the specific problem is different. However, the
authors do not explicitly analyse incomplete models in RTC, which in
our approach required the analysis of sets of curves (for instance α̃u).
Instead, the specific problem of binding and allocation is staged with
intermediate solver calls for subsets of tasks to be bound [14]. The
incomplete models generated by the SAT solver are in fact complete

theory-models, albeit of smaller problem instances. We believe that
our approach of specifying incomplete models and establishing the
necessary conditions for their analysis using standard RTC operations
is a key contribution of our work, and is broader in its scope of
application. Specially, as demonstrated in our results (SB vs SAB),
the efficiency of the solver can be much worse without such a feature.

VIII. CONCLUSION

In this work, we have shown that it is possible to couple a SAT
solver with the background theory of Real-Time Calculus (RTC).
This was specifically enabled by analysis of incomplete models, by
representing curves in RTC by sets. As a key advantage, we showed
that it suffices to compute with cross-bounds. We applied this solver
framework to the specific problem of assigning speeds of resources in
a distributed real-time system with delay, buffer and speed constraints.
For this problem, we showed how we can compute compact conflict
clauses. For several problem instances considered, on very large
decision spaces, the performance of the solver was encouraging. The
outlook of this work is the strong motivation to design custom SMT
solvers for other optimisation problems one encounters in the design
of distributed systems, where traditional methods do not perform as
well.

ACKNOWLEDGEMENTS

This work is supported in part by the EU FP7 projects EURETILE
and PRO3D, under grant numbers 247846 and 248776, respectively.

REFERENCES

[1] “National workshop on high-confidence automotive cyber-physical sys-
tems.” http://varma.ece.cmu.edu/Auto-CPS/, April 2008.

[2] J. Hu and R. Marculescu, “Application-specific buffer space allocation
for networks-on-chip router design,” in ICCAD, 2004.

[3] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ICSA, 2007.

[4] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness
to practical success,” Commun. ACM, vol. 52, no. 8, pp. 76–82, 2009.

[5] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in IEEE International Symposium
on Circuits and Systems, vol. 4, pp. 101 –104, 2000.

[6] L. de Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, 2011.

[7] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The opensmt
solver,” in TACAS, pp. 150–153, Springer, 2010.

[8] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox.”
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[9] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, IOS Press, 2009.

[10] E. Wandeler, Modular Performance Analysis and Interface-Based Design
for Embedded Real-Time Systems. PhD thesis, ETH Zurich, 2006.

[11] J.-Y. L. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, vol. 2050 of Lecture Notes
in Computer Science. Springer, 2001.

[12] A. Metzner and C. Herde, “Rtsat– an optimal and efficient approach
to the task allocation problem in distributed architectures,” in RTSS,
pp. 147–158, 2006.

[13] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo graph
theory for task mapping and scheduling on multiprocessor systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1382–1389, 2011.

[14] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich, “Improving
platform-based system synthesis by satisfiability modulo theories solv-
ing,” in CODES+ISSS, pp. 135–144, 2010.

[15] F. Reimann, M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Sym-
bolic system synthesis in the presence of stringent real-time constraints,”
in DAC, pp. 393–398, 2011.

