
A Cost-Effective Selective TMR for Heterogeneous
Coarse-Grained Reconfigurable Architectures

based on DFG-Level Vulnerability Analysis
Takashi Imagawa, Hiroshi Tsutsui, Hiroyuki Ochi and Takashi Sato

Graduate School of Informatics, Kyoto University, Japan
Email: paper@easter.kuee.kyoto-u.ac.jp

Abstract—This paper proposes a method to determine a pri-
ority for applying selective triple modular redundancy (selective
TMR) against single event upset (SEU) to achieve cost-effective
reliable implementation of an application circuit to a coarse-
grained reconfigurable architecture (CGRA). The priority is
determined by an estimation of the vulnerability of each node
in the data flow graph (DFG) of the application circuit. The
estimation is based on a weighted sum of the features and
parameters of each node in the DFG which characterize impact
of the SEU in the node to the output data. This method does not
require time-consuming placement-and-routing processes, as well
as extensive fault simulations for various triplicating patterns,
which allows us to identify the set of nodes to be triplicated
for minimizing the vulnerability under given area constraint at
the early stage of design flow. Therefore, the proposed method
enables us efficient design space exploration of reliability-oriented
CGRAs and their applications.

I. INTRODUCTION

Single-event upset (SEU) has been a major cause of prob-
lems in satellite [1] and avionics systems [2]. As CMOS
process technologies enter into the range of a few tens of
nanometers, consumer-oriented system designs also require
serious consideration for SEU vulnerability. Coarse-grained
reconfigurable architectures (CGRAs) are suitable for such
applications [3] than their fine-grained counterpart (FPGAs)
in terms of performance, energy efficiency, and SEU tol-
erance [4]. This is because CGRAs have a much smaller
amount of configuration memory than FPGAs, which reduces
the incidence of SEU.

Recently, a reliability-aware CGRA which adopts selective
triple modular redundancy (TMR) trying to further enhance
the SEU tolerance is proposed [5]. In this architecture, a part
of the components in the given circuit is triplicated when
a design constraint (e.g., area) does not allow to protect all
the components by TMR. The components to be triplicated
must be carefully determined because the impact observed at
the output data greatly depends on the components protected.
To evaluate the importance of each component, a quantitative
measure to evaluate the SEU impact is required. In this paper,
we use mean absolute error (MAE) as a generic criterion to
measure the error observed at the outputs. The definition of

978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

MAE is given as

MAE =
1

N

N∑
i=1

|xi − x̃i| ,

where N is the number of words in the output data, xi and x̃i

are i-th word of actual and error-free output, respectively. Note
that errors are calcutated word by word in MAE; the number
of digits k in a word wi is typically 8 or 16 and each digit is
weighted (e.g., the MSB is given 2k times larger weight than
the LSB). The nontrivial problem here is that, within given
cost constraints, we need to determine the components (nodes
in a data flow graph (DFG)) that have greater SEU impact than
others and thus needed to be triplicated. Contrary to FPGAs,
for which many studies on SEU reliability analysis [6]–[8]
and protection prioritizations [9,10] exist, the prioritization
analysis for CGRA has not been throughly investigated.

Exhaustive node ordering in a DFG for triplication requires
prohibitively long simulation time. Instead, we propose a quick
but effective method to determine a node priority for apply-
ing selective TMR that achieves cost-effective and reliable
implementation of an application circuit on a heterogeneous
CGRA composed of ALUs and LUTs. SEU vulnerability of
a node is estimated by a linear function. The variables used
in the function are circuit topology, the function of the nodes,
etc. and general coefficients for the variables are trained in
advance. No time-consuming process, such as placement-and-
routing and fault simulations for various triplicating patters,
are necessary, which allows us to quickly identify the set of
nodes to be triplicated for minimizing the vulnerability at the
early stage of design flow.

With the proposed method, efficient design-space explo-
ration under given area constraint becomes possible for new
applications implemented on heterogeneous CGRAs. The set
of nodes that requires triplication are validated through fault-
injection simulations which target the configuration memories
to quantify the improvement of vulnerability by the partial
triplication. Based on the the simulations, it is demonstrated
that the proposed method enables us to achieve cost-effective
selective TMR without the time-consuming processes.

The remainder of this paper is organized as follows. Sec-
tion II introduces the target CGRA model considered in this
paper. Section III describes the overview of our framework

for designing reliability-aware LSI systems with CGRAs.
Section IV describes the proposed method. Section V demon-
strates the effectiveness of our proposed method. Finally,
Section VI concludes this paper.

II. TARGET CGRA MODEL

This section describes the target CGRA model cosidered
in this paper. This model is motivated by a reliability-aware
CGRA proposed in [5]. Figure 1 provides an overview of
the CGRA. It has a cluster array architecture designed to
achieve various levels of reliability. It is a two-dimensional
array of clusters, each of which consists of four cells that have
an execution module (EM), configuration memories (CFG),
voting circuits (VCs), and a configuration switch matrix (CFG-
SM). Each EM includes an ALU for word operation, and
registers in datapath and storing a constant values.

To realize flexible reliability, the CGRA also introduces a
redundancy control unit (RDU) and a comparing-and-voting
unit (CVU). The cluster has four operation modes, each with
a different redundancy. In this paper TMR mode and single
modular with multi-context (SMM) mode are considered.
In TMR mode, three cells in a cluster with CVU form
a triplicated module, and both configuration memory and
datapath are triplicated. In SMM mode, four cells in a cluster
operate independently, and there is no redundancy in either
configuration memory or datapath. It is noteworthy that this
CGRA supports selective TMR since the operation mode of
every cluster can be selected independently, which offers an
area-reliability trade-off, i.e., we can increase reliability by
selecting more clusters to be in reliable modes at the expense
of area usage.

To exchange the operand and processed data with external
system, there are clusters for memory on top and bottom edges
of the array. This cluster has the memory elements instead
of the EMs. In this paper the target of the fault injection is
only the clusters with the EM, because the memory element is
expected to be protected with other techniques, such as ECC.

In this paper, we consider another kind of cluster. In the
cluster, each EM have a LUT for bit operation. For efficient ap-
plication implementation, some conditional judgments should
be parallelized as well as data processing in CGRAs. However
the conditional judgments are composed of bit level logical
functions, so it is inefficient to implement these operations
with the cluster including ALU. The LUT cluster enables us
to implement a wider range of applications efficiently.

III. OVERVIEW OF OUR FRAMEWORK

Our framework explores the design space for reliability-
aware CGRAs and applications. This framework has following
features.

• For a target application design entry, register-transfer-
level (RTL) description is allowed, and configuration
bitstream of the partly triplicated circuit is generated as
a result.

• Time-consuming fault simulation is not necessary to
evaluate the vulnerability of each component in the
application circuit.

CFG

SM

EM

EM

Cell

Cell

CFG VC EM

EM

Cell

Cell

CVURDU

Inputs from Cell I/O

Outputs to Cell I/O

CFG

CFG

VC

VC

CFG VC
CFG

CFG

VC

VC

CFG VC
CFG

CFG

VC

VC

CFG VC
CFG

CFG

VC

VC

Cluster
(ALU)

Cluster
(memory)

Cluster
(memory)

Cluster
(memory)

Cluster
(ALU)

Cluster
(memory)

Cluster
(memory)

Cluster
(memory)

Cluster
(LUT)

Cluster
(LUT)

Cluster
(LUT)

Cluster
(LUT)

Cluster
(LUT)

Cluster
(LUT)

Fig. 1. The target reliability-aware CGRA.

The following is the design flow of our framework to
generate a cost-effective reliability-aware implementation of
given circuit for the CGRA (Figure 2).

1) A DFG is generated with parsing an RTL description
of a taget application circuit. The DFG is composed
of nodes and edges: the nodes stand for input/output
terminals for the memory elements and the external
system, operations, registers and constant values: the
edges stand for their connection.

2) Technology mapping for the target CGRA described in
Section II is applied. Each operation node is assigned
to an ALU or a LUT cluster. The registers and constant
values are also assigned to the clusters.

3) Selective TMR is applied to the DFG. The components
which are to be triplicated are determined automatically
based on the proposed method described in Section IV.
A user specified number of components as a area re-
striction are selected to be triplicated in the order of
vulnerability analyzed by the proposed method. Option-
ally, the components which are to be triplicated can be
determined manually.

4) The placement and routing tool generates the configura-
tion bitstream to implement the given application circuit
on the target CGRA.

5) (Optional) The simulation scripts to verify the function-
ality of the target CGRA circuit and the target appli-
cation circuit implemented on the CGRA are generated
automatically with the scripts for the RTL descriptions.

6) (Optional) The fault injection scripts are also generated
automatically to evaluate the vulnerability of the target
circuit and the cost-effectiveness of the applied selective
TMR.

IV. ESTIMATION OF PRIORITY FOR SELECTIVE TMR

In this section, we propose an evaluation function for
estimating priority for TMR. The function estimates the vul-
nerability of each node in a DFG of application circuit. In
this context, a “vulnerable node” means that SEUs in the
component which implements the function of this node tend
to cause a serious damage (i.e., large MAE) observable at the
output data.

ADD 255

MUX

reg.

AND

LUT

Cluster
ALU

Cluster

ALU

Cluster

ALU

Cluster

Heterogenious CGRA

255

MUX

reg.
ALU

ADD

ALU

AND

LUT

255

MUX

reg.
ALU

AND

LUT

ADD

ALU

ADD

ALU

ADD

ALU

Application Description

(RTL)

Simulation Scripts

for Verification

Parsing
Technology

Mapping

LUT

Cluster

LUT

Cluster

LUT

Cluster

Placement

and

Routing
Fault Injection

Scripts

Configuration

Bitstream

Applying Selective TMR to the Components

Selected by the Proposed Method

Fig. 2. Applying selective TMR for the DFG of given RTL description in
our framework.

We use an evaluation function f of the following form.

f =
∑
i

wiai (1)

In the above expression, an ai is a term which represents
the key feature or parameter of a node in DFG, such as the
operation executed in the node and the depth from output
node. A wi is a weight associated with ai. It is beneficial
to use a weight function of linear form as Eq. (1) since wi

can be determined directly using generalized inverse matrix as
explained in Section IV-B. Each ai is normalized to take a
real value between 0.0 and 1.0. The restriction enables us to
compare the wi each other directly in vulnerability aspect, that
is, an ai corresponding to a large wi is an important feature
or parameter for vulnerability.

The following subsections discuss two important points:
what kind of features or parameters should be considered as
ai and how to determine the appropriate weight wi.

A. Terms of the evaluation function

The nodes in a DFG can be characterized in various aspects.
Some of them have a strong relationship to the vulnerability.
The difference of these feature yields the difference of vulner-
ability among the nodes. From our preliminary experiments,
we found some key features and parameters which have strong
relationship to the vulnerability: operation, mapping target
(ALU or LUT), utilization of register, distance from primary
input/output, and output cone group. In the following, we
explain the definitions of them and the motivation why we
adopt them.

1) Operation of the nodes: We introduce terms which
indicates the operation of the node. The number of these terms
is equal to the number of possible operations of the processing
element. For example, when the operation of node is OR, the
corresponding term takes 1 and the other terms take 0.

Generally, the logical operations, such as OR operation,
often mask the influence of the erroneous inputs. Therefore,
whether a node itself implements a logical operation is im-
portant features. For example, assuming that the signals have

50% probability to take logical 0, then the erroneous value
arrived at an input of a 2-input AND gate will be masked with
50% probability. The logical masking effect is non-negligible
especially when many these operations are chained in series.

2) Mapping target: We introduce two terms for each node.
One of two terms is 1, if the operation of the node is mapped
to ALU and 0 otherwise, and vice versa.

In the target heterogeneous CGRA model, most of the
arithmetic and word-level operations are implemented on ALU
and the others are on LUT. The amount of the configuration
memory for implementing its operation are different between
ALU and LUT. Therefore, it has a considerable impact
whether an operation is implemented on ALU or LUT.

3) Utilization of register: We introduce one term for each
node, in order to indicate that the register in the processing
elements for the node are enabled or not.

When the incorrect result of an operation is stored in a
register in the processing element, it is expected that the
error has a persistent impact for several clock cycles. So the
utilization of register has an impact on whether the error in
the node is temporal or persistent.

4) Distance from primary input/output: We introduce two
terms for each node, in order to indicate the distance from
primary input and primary output, respectively. The value is
normalized by dividing with the maximum distance in the
DFG, so that the value falls into the range from 0.0 to 1.0. If
the value of the distance term is d, we also introduce a term
that takes 1/d. This is intended to emphasize the nodes that
are very close to the edge of the DFG, while d indicates the
distance from the edge of the DFG linearly.

The nodes near the primary output nodes are considered as
vulnerable because the faults in such nodes are rarely masked
logically. On the other hand, the errors generated in the nodes
near the primary inputs are sometimes masked logically when
the erroneous data pass through logical operations. However,
such errors can affect a wide range of the DFG. Therefore,
the relationship between the vulnerability and the distance
is so complex that the relationship is worth while evaluating
including its importance.

5) Output cone group: We define four categories for out-
puts, memory write data, memory address, memory write
enable, and external done signal, which are explained later.
We introduce four terms for each node, in order to indicate
whether the transitive fanouts of the node belong to the above
categories.

Besides the previous popular features, this paper focuses
on a novel feature of nodes in DFG taking into account that
the target framework is based on CGRAs. As described in
Section III, in the target framework, the operand and pro-
cessed data is exchanged with the external system through the
memory element. Therefore the primary output of the target
application can be categorized into the following groups: write
data, read/write address and write enable signal for memory
elements, and a done signal for the external system. Therefore,
each node can be characterized with above categories of its
transitive fanouts. As Fig. 3 illustrates, each node in a DFG

Fig. 3. Each node in a DFG can be categorized based on the output cones.

Space-correlation

Fig. 4. Space-correlation in image data.

belongs to the grouping cones whose tops are the primary
output (or the memory port) nodes. For example, the node A
belongs to the done signal cone and the read/write address
cone, while the node B belongs only to the write data cone.
This feature is not limited for the target CGRA described in
Section II, because other general CGRAs also have memory
elements as interfaces with external systems.

It is expected that the nodes belonging to the done signal
cone are relatively robust, since the signal is generated by
some conditional judgments which are mainly composed of
logical functions, and hence high probability of logical mask-
ing is expected. If input and output signal has space- or time-
correlation which can be often seen in audio, image and video
data (Fig. 4), the nodes belonging to the read/write address
cone are expected to relatively robust. When the fault generates
a little error in the read address, the differences of the operand
values are also a little. The case of write address is similar.

In order to quantitatively show that nodes in the cone of
the address are robust as compared with the ones in other
cones, we present a simple example. Assume that a pixel value
(pixel0) in a memory (named mem) at an address (adrs0) is
copied to another memory at the same address.

• When pixel0 is corrupted by a fault, the value of write
data changes randomly to pixel1.

• When adrs0 is corrupted by a fault, the value of read/write
address changes randomly to adrs1 and the write data is
mem[adrs1].

The errors in the above two cases are evaluated as |pixel0
− pixel1| and |pixel0 − mem[adr1]|, respectively. In order
to calculate the averages of above errors, 10,000 Monte Carlo
trials for one hundred pictures are executed assuming that word
length of both address and data of the memory are 8-bit. The
averages of errors with faults in data and address are 96.94 and
39.52, respectively. This means that the faults in the address
cone have 60% less impact than the data cone.

B. Coefficients of the evaluation function
To use the proposed evaluation function (Eq. (1)), we need

to determine the coefficients wi. This subsection describes the
process to determine an appropriate coefficients with sample
applications and fault injection simulation.

1) Finding the ideal priority of applying selective TMR for
some sample circuits:
At first, DFGs for the given RTL descriptions of some
sample application circuits are generated, and tech-
nology mapping for the target CGRA (described in
Section II) is applied using our framework. For each con-
figuration memory bit of the obtained netlist, we inject
an SEU and run simulation to evaluate MAE observed
at the output data raised by the SEU. This simulation
gives us MAEs induced by errors on each processing
element. Based on the information, the ideal priority for
applying selective TMR to the processing elements is
extracted. For example, assuming as follows, the ideal
priority is [n1, . . . , nm]

• There are m processing elements (n1, . . . , nm) in a
netlist.

• The triplicating efficiency of each element is
(e1, . . . , em), which is the ratio of the MAE im-
provement to the area overhead when the element
is triplicated, and their magnitude correlation is
e1 > · · · > em.

2) Calculating the appropriate w to obtain the ideal priority
for each sample:
Based on Eq. (1), the vulnerability of each node in the
DFG of a target application is represented as follow.

v1 = a11 · w1 + a12 · w2 + · · ·+ a1n · wn

· · ·
vm = am1 · w1 + am2 · w2 + · · ·+ amn · wn

These equations can be expressed as follows using
vector and matrix.

v = Aw

When the matrix A is invertible, w is obetained as

w = A−1v.

However, it is obvious that A is not invertible in many
cases since m is not necessarily equal to n. In such
cases, w is obetained as

w = A+v, (2)

where A+ is the generalized inverse matrix (or Moore-
Penrose inverse matrix) given below:

A+ =

{
(ATA)−1AT (m > n)

AT (AAT)−1 (m ≤ n)

Based on the previous fault injection simulations, each
elements of v should satisfy the magnitude correlation,
v1 > · · · > vm. Here, we use the following assignments
for v.

v = (m/m, (m− 1)/m, . . . , 1/m) (3)

With Eq. (2) and Eq. (3), the appropriate w for each
sample circuit is obtained.

3) Calculating a generic w.

With ws of sample circuits, a generic w is calculated,
which enables us to get reasonable trade-off curves
between area overhead and reliability for general ap-
plications. In this paper the generic w is calculated by
taking the average of ws of the sample circuits.

V. EVALUATION

This section demonstrates the effectiveness of the proposed
method. The contents of the evaluations are summarized as
follows.

Subsection V-A derives set of coefficients for evaluation
function using sample applications. The sample applications
are a 1024-point FFT and three image filters, that is, a
color invert filter, a horizontal-differential filter, and an edge
detection filter. We also confirm that the set of coefficients
determined with all the four applications enables us an efficient
selective TMR for these applications themselves.

Subsection V-B evaluates the dependency on input vectors.
Generally, impact of errors at output data depends on input
vectors. So it should be evaluated whether the determined
priority is effective for other input vectors.

Subsection V-C evaluates whether the determined priority
is effective for the applications which are not used for deter-
mining the coefficients.

Subsection V-D evaluates whether the estimated priority is
effective for the post place-and-route circuit on CGRAs. Since
the proposed method barely takes into account the impact of
the routing element in the CGRA, this subsection evaluates
the trade-off curves between vulnerability and TMR cost with
fault injection simulation for partly triplicated, post place-and-
route circuits implemented on the CGRA.

In each subsection, the estimated trade-off curves between
circuit area and MAE are evaluated with the ratio of the area
enclosed by the estimated and best case curves (A, the hatched
portion of Fig. 5) to the one enclosed by the best case and
the worst case curves (B, the hatched or shaded portion of
Fig. 5). The best case curve is obtained with the ideal priority
extracted by the fault injection simulations described in IV-B,
while the worst case curve is obtained with the reverse order
of the ideal priority. If the ratio is zero, it means that the
estimated curve is exactly same as the best case curve; on
the other hand, if the ratio is one, it means that the estimated
curve is exactly same as the worst case curve. In Fig. 5, circuit
area and MAE are normalized to take a value between 1.0
and 3.0, and between 1.0 and 0.0, respectively. The corner
with area=1.0 and MAE=1.0 corresponds to the circuit without
triplicated node, while the corner with area=3.0 and MAE=0.0
corresponds to the fully-triplicated circuit.

To calculate the triplicating efficiency and obtain the trade-
off curves, the circuit area ratio of an ALU cluster to a LUT
cluster is required. From a synthesis result using a 65nm
process library, the area ratio is 2.88 : 1.

A. Deriving coefficients

The set of coefficients is determined by the method de-
scribed in IV-B to improve the trade-off curves quality of all

Fig. 5. Quality of trade-off curve is evaluated based on graph areas.

the four applications. It takes less than ten seconds to calculate
the coefficients. Figure 6 shows the estimated trade-off curves
with the obtained coefficients and the curves with the random
priority orders as comparison for all the applications. The
ratios are 0.112 for the color invert filter, 0.198 for the
horizontal-differential filter, 0.294 for the edge detection filter
and 0.311 for FFT.

Although the random priority orders sometimes makes the
trade-off curves convex, the obtained set of coefficients makes
all the estimated trade-off curves concave and achieves the
minimum error ratios, so it can be said that the set is appropri-
ate. The magnitude correlation and the value of the determined
coefficients for output cones is (write data > write enable
signal > done signal > read/write address). The coefficients
for the logical operations tend to be smaller (i.e., less sensitive)
than for the arithmetic operations. Similarly, the coefficient
for the operation implemented on the LUT smaller than the
ALU because most LUTs execute the logical operations. These
results correspond to the expectations described in Subsection
IV-A.

There are some points on which the vulnerability drops
steeply in the latter of the trade-off curves. This result means
that the priority of some vulnerable nodes is estimated low. It
suggests that further improvement of the evaluation function
is desired.

B. Input vector dependency

The quality of trade-off curves with different input vec-
tors which are not used in determining the coefficients are
evaluated. The ratios which indicate the quality of the trade-
off curves are 0.061 for the color invert filter, 0.201 for the
horizontal-differential filter, 0.335 for the edge detection filter
and 0.396 for FFT.

The results show that the obtained coefficients are robust for
the image filter applications. On the other hand, the quality of
FFT’s trade-off curve is a little worse, although the shape of
the curve is still concave. Especially, when the input vector
is artificial (e.g., sinusoidal waves or chopping waves), the
degradation of quality is notable. These results suggest a
necessity for some application-specific customization of the
evaluation function.

1.0 1.5 2.0 2.5 3.0
Normalized Circuit Area

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ea
n

Ab
so

lu
te

 E
rro

r

(a) Color Invert Filter

Best Order
Worst Order
Estimated Order
Random Order

1.0 1.5 2.0 2.5 3.0
Normalized Circuit Area

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ea
n

Ab
so

lu
te

 E
rro

r

(b) Horizontal-Differential Filter

1.0 1.5 2.0 2.5 3.0
Normalized Circuit Area

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ea
n

Ab
so

lu
te

 E
rro

r

(c) Edge Detection Filter

1.0 1.5 2.0 2.5 3.0
Normalized Circuit Area

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

iz
ed

 M
ea

n
Ab

so
lu

te
 E

rro
r

(d) FFT

Fig. 6. Estimated trade-off curves.

1.0 1.5 2.0 2.5 3.0
Normalized Circuit Area

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

 M
ea

n
Ab

so
lu
te
 E
rro

r Best Order
Worst Order
Estimated Order

Fig. 7. Estimated trade-off curve of FIR filter.

C. Application dependency

Figure 7 shows the trade-off curves for an FIR filter which
is not used in determining the coefficients. The ratio which
indicates the quality of the trade-off curves is 0.270. The figure
shows that the obtained coefficients are something robust for
the newcomer application.

D. Vulnerability of post P&R circuits

The trade-off curves for the target applications implemented
on the CGRA after placement and routing are evaluated. The
ratios which indicate the quality of the trade-off curves are
0.132 for the color invert filter, 0.207 for the horizontal-
differential filter, 0.304 for the edge detection filter and 0.358
for FFT.

The quality of the trade-off curves entirely becomes a little
worse, because the number of vulnerable routing elements
increases, when the triplicated nodes disturb the routing with
the shortest path. Therefore the evaluation function may be
improved by taking into account of the routing efficiency when
each triplicating pattern is applied.

However, it is notable that the degradation of the trade-off
curves is very small compared with the result of Subsection
V-A, although the coefficients used in the proposed evaluation

function are not derived using any information obtained after
placement and routing. Thus, this result suggests that finding
an optimal selective TMR at the early stage of the design flow
is possible.

VI. CONCLUSION

This paper proposed a method to determine a priority
for applying selective TMR to achieve cost-effective reliable
implementation of an application circuit to a heterogeneous
CGRA. Once the coefficients used in the evaluation function
are determined, this method does not require time-consuming
processes such as placement-and-routing and extensive fault
simulations. This feature allows us to identify the set of nodes
to be protected from SEU at the early stage of design flow.
This paper also demonstrated the effectiveness and robustness
of the proposed method with some sample applications.

A challenging future work is to develop a versatile set of
sample applications enough to explore more appropriate terms
and coefficients of the evaluation function.

ACKNOWLEDGMENT

This work is part of a JST CREST project and is partly supported
by Grain-in-Aid for JSPS Fellows 22·6265, and by VDEC, the
University of Tokyo in collaboration with Synopsys, Inc. and Mentor
Graphics, Inc.

REFERENCES

[1] H. C. Koons, J. E. Mazur, R. S. Selesnick, J. B. Blake, J. F. Fennell, J. L.
Roeder, and P. C. Anderson, “The impact of the space environment on
space systems,” in Proc. Spacecraft Charging Conference, Nov. 1998,
pp. 7–11.

[2] D. C. Matthews and M. J. Dion, “NSEU impact on commercial
avionics,” in Proc. International Reliability Physics Symposium (IRPS),
Apr. 2009, pp. 181–193.

[3] T. Imagawa, M. Hiromoto, H. Ochi, and T. Sato, “Reliability evaluation
environment for exploring design space of coarse-grained reconfigurable
architectures,” IEICE Transactions of Fundamentals on Electronics,
Communications and Computer Sciences, vol. E93-A, no. 12, pp.
2524–2532, Dec. 2010.

[4] Zain-ul-Abdin and B. Svensson, “Evolution in architectures and
programming methodologies of coarse-grained reconfigurable
computing,” Microprocessors and Microsystems, vol. 33, no. 3,
pp. 161–178, May 2009.

[5] D. Alnajjar, Y. Ko, T. Imagawa, H. Konoura, M. Hiromoto,
Y. Mitsuyama, M. Hashimoto, H. Ochi, and T. Onoye, “Coarse-grained
dynamically reconfigurable architecture with flexible reliability,” in
Proc. International Conference on Field Programmable Logic and
Applications (FPL), Aug. 2009, pp. 186–192.

[6] K. Nakahara, S. Kouyama, T. Izumi, H. Ochi, , and Y. Nakamura,
“Fault tolerant reconfigurable device based on autonomous-repair cells,”
in Proc. the 16th International Conference on Field Programmable Logic
and Applications, Aug. 2006, pp. 461–466.

[7] M. Reorda, L. Sterpone, and M. Violante, “Multiple errors produced by
single upsets in FPGA configuration memory: a possible solution,” in
Proc. the European Test Symposium, May 2005, pp. 136–141.

[8] S. Srinivasan, A. Gayasen, N. Vijaykrishnan, M. Kandemir, Y. Xie, and
M. Irwin, “Improving soft-error tolerance of FPGA configuration bits,”
in Proc. the IEEE/ACM International Conference on Computer Aided
Design, Nov. 2004, pp. 107–110.

[9] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin,
“Improving FPGA design robustness with partial TMR,” in Proc.
International Reliability Physics Symposium (IRPS), Mar. 2006, pp.
226–232.

[10] L. Sterpone, M. Aguirre, J. Tombs, and H. Guzman-Miranda, “On the
design of tunable fault tolerant circuits on sram-based fpgas for safety
critical applications,” in Proc. Design, Automation and Test in Europe,
Mar. 2008, pp. 336–341.

