Reliability-Driven Task Mapping for Lifetime Extension of
Networks-on-Chip Based Multiprocessor Systems

Anup Das, Akash Kumar and Bharadwaj Veeravalli
Department of Electrical and Computer Engineering
National University of Singapore
Email: {akdas, akash, elebv}@nus.edu.sg

Abstract—Shrinking transistor geometries, aggressive voltage
scaling and higher operating frequencies have negatively im-
pacted the lifetime reliability of embedded multi-core systems. In
this paper, a convex optimization-based task-mapping technique
is proposed to extend the lifetime of a multiprocessor systems-on-
chip (MPSoCs). The proposed technique generates mappings for
every application enabled on the platform with variable number
of cores. Based on these results, a novel 3D-optimization tech-
nique is developed to distribute the cores of an MPSoC among
multiple applications enabled simultaneously. Additionally, reli-
ability of the underlying network-on-chip links is also addressed
by incorporating aging of links in the objective function. Our
formulations are developed for directed acyclic graphs (DAGs)
and synchronous dataflow graphs (SDFGs), making our approach
applicable for streaming as well as non-streaming applications.
Experiments conducted with synthetic and real-life application
graphs demonstrate that the proposed approach extends the
lifetime of an MPSoC by more than 30% when applications are
enabled individually as well as in tandem.

I. INTRODUCTION

To accommodate the ever increasing demand of applications
and the ease of scalability, multiple cores are integrated on
a single chip to form multiprocessor systems-on-chip (MP-
SoCs) with networks-on-chip (NoCs) as the communication
backbone. However, shrinking feature-size and growing tran-
sistor density have negatively impacted their dependability
by increasing the chances of failures (both permanent and
transient) [1]. Permanent faults reduce MPSoC lifetime [2]
and therefore, techniques are proposed to improve a system’s
lifetime (measured in terms of mean time to failure (MTTF))
using application task mapping and scheduling [3]-[6].

The existing lifetime reliability-aware task mapping tech-
niques suffer from the following limitations. First, all these
techniques analyze the starting mapping for a single appli-
cation. However, MPSoCs are often designed for multiple
applications, many of them enabled simultaneously (use-case).
Formally, an use-case is defined as a collection of multiple
applications that are active simultaneously on an MPSoC [7].
An important problem to address in this respect is to distribute
the available cores among simultaneous applications such that
the overall lifetime is improved.

Second, when applications are mapped on cores, data is
communicated on the NoC links among dependent tasks which
are mapped on two different cores. If the lifetime reliability
of NoC links is not considered in the application mapping
phase, a link can age faster potentially isolating a core from
the rest of the system. This can impact system performance
and indirectly the lifetime of other cores due to increased load.

Third, all existing techniques generate a starting application-
core mapping but do not address recovery from faults. In mod-

978-3-9815370-0-0/DATE13/(©)2013 EDAA

ern embedded devices, tasks on faulty core(s) are distributed
among functional core(s) after system restart following fault-
detection. However, simple re-mapping cannot guarantee ap-
plication performance requirement (throughput for example)
and can potentially enhance aging of other core(s).

Finally, prior works on lifetime reliability-aware task map-
ping are heuristic-driven. These techniques generate a fixed
number of mappings and select one that satisfies the MTTF
requirement. Clearly, these mappings can be far from MTTF
optimality. As a result, variations in the factors affecting
aging (many of which are beyond user control) can result
in a different MTTF than what is estimated. An optimal
solution guarantees to generate a mapping which satisfies the
MTTF requirement, provided such a solution exists in reality.
Moreover, these heuristic techniques are based on task graphs
and cannot be applied to cyclic graphs limiting their usage to
non-streaming applications.

Contributions: Following are the key contributions.

e MTTF optimization of MPSoCs with multiple applica-

tions enabled simultaneously

o Consideration of the aging of NoC links for the MTTF

computation of a core

e Generation of maximum MTTF mapping for multiple

fault-scenarios

o Disciplined convex optimization based task mapping for

maximization of MTTF

e Use of cyclic and acyclic graphs for lifetime reliability

optimization

The convex problem formulated is solved at compile-time
(design-time) for every application enabled on the platform.
The solutions are task-core mappings satisfying the appli-
cation deadline (or throughput) and resulting in maximizing
the MTTF. Experiments conducted with synthetic and real
application graphs demonstrate that our approach improves the
MTTF by 30% as compared to the existing techniques when
applications are considered individually. Moreover, for use-
cases, our approach outperforms all the standard techniques
by achieving 60% more MTTFE.

To the best of our knowledge, none of the contributions
of this paper have been addressed in any prior research on
lifetime-reliability aware task-mapping.

The rest of the paper is organized as follows. Overview of
the prior art is provided in Section II followed by prelimi-
naries on MTTF analysis in Section III. Our methodology is
discussed in Section IV followed by the problem formulation
for single application and use-cases in Sections V and VI
respectively. The extension of our approach for cyclic graphs
(SDFG) is provided in Section VII. Finally, Section VIII



provides simulation results and execution time of our approach
and Section IX concludes the paper with future directions.

II. RELATED WORKS

Permanent device defects have gained a lot of research focus
over the past decades due to their adverse effects in the deep-
submicron technologies. Quite a few research works were
directed towards evaluating a single core’s MTTF [2]. This was
later extended for MTTF evaluation of an MPSoC employing
multiple cores [8]. A parallel research direction is to optimize
system MTTF at the application mapping phase assuming
constant failure rate for cores [9]. Wear-out related effects
are not incorporated in the analysis leading to inaccuracies
in lifetime computation and optimization.

Another related research is to map tasks on an MPSoC
platform with the objective of balancing the temperature
of the cores [10]-[12]. Although, lifetime reliability of a
core is closely related to temperature, other aging factors
such as operating frequency, voltage and current-density are
not captured. Recently, there are some studies incorporating
lifetime reliability explicitly in the task mapping decision.
Processor speed and reliability trade-off for a mapping is
studied in [3]. However, generation of the ideal mapping for
lifetime optimization is not addressed. A run-time fault-aware
resource management technique is proposed in [4]. Although,
data-communication is optimized jointly with reliability, this
doesn’t guarantee minimization of core failure due to aging of
NoC links. Failure of cores is the minimum of the effects due
to the aging of cores and the aging of links.

A simulated annealing-based task-mapping technique is
proposed in [5]. MTTF is maximized assuming a series failure
system i.e. a single fault breaks the complete system. This
is not always true for modern MPSoCs with task migration
capabilities. Ant colony heuristic is proposed in [6] to optimize
MTTE. Although task migration is presumed, it also suffers
from the four limitations highlighted in Section I.

III. PRELIMINARIES ON LIFETIME RELIABILITY

Extrinsic failures or wear-out related faults are well-studied
phenomena for Integrated Circuits [13]. These are results of
transistor feature reduction and increase in transistor count.
There are four dominant wear-out effects studied for ICs:
electro migration (EM), time-dependent dielectric breakdown
(TDDB), stress migration (SM) and thermal cycling (TC).

For this research, EM related wear-out failures are assumed,
however, any other wear-out related failure can be easily
incorporated either standalone (by changing the scale param-
eter [2]) or using Sum-of-Failure Rate (SOFR) model for any
combination of the above failure effects.

Assuming a Weibull distribution with slope parameter f3,
the scale parameter due to EM is calculated using Equation 1
(Black’s equation ref. [13]), where I' is the gamma function,
Ap and n are material-related constant, J(J..;;) is the (crit-
ical) current density, F, is the activation energy, K is the
Boltzman’s constant and 7' is the temperature.

AO(J - Jcrit)ine%
= I (D
r(1+3)

_ MTTF(EM)
Tr (1+3)

o(T)

Set of use-cases

Set of applications

Application Application

Application Application

plication pplication

Application

L

4|Ui-case0pt |<-

Application

bl iy

for all applications i {
forn=Pto1do{
[map,3DVector] = solveOpt

MapDB.push(map)
ThRICoDB.push(3DVector) ~—>| AppOpt

Compile-Time

}

}

Run-time
Manager

Fig. 1. Reliability-aware mapping methodology

IV. RELIABILITY-AWARE TASK MAPPING METHODOLOGY

The reliability-aware task mapping methodology consists
of two phases — analysis (application and use-case level) at
compile-time and execution at run-time. The focus of this
research is on the compile-time analysis; however, for the sake
of completeness, a brief overview is provided on how to use
the compile-time analysis result at run-time.

A. Compile-Time Analysis

The compile-time design methodology is highlighted in
Figure 1. There are two databases for the target MPSoC —
the set of applications (V) and the set of use-cases. Assuming
the target architecture consists of P cores, the task-mapping
problem (to maximize MTTF) is solved for n = 1 to P cores
for each application. Thus, N % P optimization are solved at
compile-time to generate N * P mappings. This is performed
in the AppOpt block. The result of each optimization is a task-
core mapping (stored in MapDB) and a three-dimensional (3D)
vector — throughput, reliability (MTTF) and core count. The
3D vector is stored in a database in memory called ThRiCoDB.

In the final phase, optimization is performed with the given
set of use-cases (UseCaseOpt block). The result of this anal-
ysis is the core distribution among simultaneous applications.
This information is also stored in the MapDB.

B. Run-Time Resource Management

Run-time resource management requires addressing two
scenarios — run-time resource variability due to core failures
and resource availability due to simultaneous applications.

1) Dealing with core failures: When an application is
enabled individually, the entire set of cores is dedicated to
the application. The optimum task-mapping for the application
(corresponding to the set of cores) is fetched from the MapDB
and applied. When one or more cores fail, the system will
restart and the maximum MTTF mapping with the reduced set
of resources will be fetched. Thus, multiple core failures are
addressed and for every fault-scenario, a mapping is applied
to maximize the operational lifetime of the MPSoC.

2) Managing use-cases: When a use-case is enabled, cor-
responding mapping is fetched from the MapDB and cores
are distributed accordingly. If the MPSoC contains same
number of functional cores as was available initially (no
fault occurred), core distribution is according to the mapping



fetched for the use-case. However, if there are failures, one or
more cores need to share tasks of multiple applications.

V. PROBLEM FORMULATION FOR SINGLE APPLICATION

The application and the architecture are modeled as follows.
Application: An application is a directed acyclic graph
Gapp = (V,E), where V is the set of nodes (representing
tasks of the application) and F is the set of directed edges
(representing the data dependency among various tasks). Let
L define the set of leaf tasks of the application.
Architecture: Architecture platform consists of cores inter-
connected using a regular mesh-based NoC. (Figure 2). This
is represented as a directed graph G .., = (S, C), where S is
the set of switches of the MPSoC platform and C' represents
the connection among the switches. Each switch s € S can
be attached to one or more cores. Let P represent the set of
cores for the MPSoC and P, denote the set of cores attached
to the switch s. Then, |P| =} cq|Psl.

A. Variables for Problem Formulation

1
Tik = {O

if task 4 is mapped on core k
otherwise

1 task ¢ and j are mapped on core k
dij ke = { and ¢ starts execution before j
0 otherwise
Sik = start time of task ¢ on core k

B. Constraints used in the optimization formulation

o Every task must be assigned to a single core
vz'ev:zmzl 2)

« Finish time of every leaf task is less than the deadline

Vie Lke P:sip+et(i) <D+ (1 —z)M  (3)

where et(i) is the execution time of task ¢, D is the
deadline and M is a very large number
o Data dependency constraint

V(i,j) € E and k,l € P : s + et(i) < sj 4)

where task j is dependent on the data produced from task
1 and k,l are two cores (can be both same).

« Independent tasks mapped on the same core must not be
executed simultaneously

V(i,j) ¢ Eand k € P )
sik +et(t) < sjp+ (3 — @ik — ik — dije) M
sjk +et(§) < s+ (2 —zi — ik + dij) M

where the first equation constraints the starting time of ¢
before 7 and the second with j before .

SW‘

MTTF
bottleneck—

Fig. 2.

Regular Mesh-based NoC

C. Objective Function

The objective function includes two quantities — MTTF of
cores due to internal wear-outs (eg. EM within core) and
MTTF of cores due to aging of NoC links.

1) MTTF due to internal effects (MTTFy): The lifetime
reliability of core k at the end of the first period of the graph
is calculated according to the following equations (ref. [5]).

Ri(k,t,) = e~ A1) Ghere
t, = period of the application
Ar(k) = (Internal) Aging effect of corek = Z ijtz ]
At; = time intervals within period ¢,
Eq
A — Jeri “"eKTi
a(ly) = ofJ = Jerir) ""e (refer Eq. 1)

r(1+3)

The reliability of core k after m periods of the application
graph and the closed form expression for MTTF are given by
the following equations.

R](k,tmp) — e—(mXAI(k))B (6)
MTTF(k) = Z e*(ixAI(k))fs ‘<t o
=0

2) MTTF due to NoC (MTTFg): The reliability of a
core due to underlying NoC is derived based on the as-
sumption that a functional core becomes un-usable (equivalent
to faulty) when the link connecting it to the switch breaks
(refer Figure 2). Assuming electro migration effect for links
(interconnect), the closed-form expression for reliability of
core k due to NoC can be derived in a similar manner with the
exception of the aging effect which is computed as follows:

C(k)

A = B a(D)

®)

where C'(k) is the volume of data communicated to and
from core £ and BW is the bandwidth of the link.

3) Overall MTTF of a single core: A core is treated as un-
usable in two conditions — wear-out fault in the core or fault
in the link connecting it to the switch of the NoC. The overall
MTTF of core k is therefore the minimum of the two MTTF
and is given by

MTTF (k) = min{ MTTF;(k), MTTFg(k)} 9)



Algorithm 1 Core distribution for use-case

Input: ThRiCoDB

Output: distribution of cores among applications
1: Initialize : z,, :=0, 1 <¢<n
2: Initialize : RiList.push(a;,z,,,0), 1 <i<mn
3: for j =1 to |P| do
. RiList.sort()

4

5. ay := Task with least MTTF

6:  Tgy =g, +1

7. M,, :=ThRiCoDB.get MTTF (aj,xq,)
8:  RiList.update(ag, Ta,, Ma,)

9: end for

4) MTTF of MPSoC: The MTTF of the overall system is
governed by the minimum MTTF of all cores. The optimiza-
tion objective can be written as

maximize f(z) = I%n{MTTFI(k),MTTFE(k)} (10)

5) Simplification: The MTTF is an exponential function
which is hard to solve. However, maximization of MTTF
is equivalent to minimization of the aging effect A;(Ag).
Equation 10 can therefore be re-written as

minimize f(z) = m}gx{Al(k)7 Ag(k)} (11)

D. Solution Approach

The objective function in Equation 11 is convex (proof is
omitted for space limitations) and is solved using CVX, a
package for specifying and solving convex programs [14],
[15]. However, to use this tool, the objective and the con-
straint functions needs to be modified into disciplined convex
programming. This is shown in Equation 12.

minimize  f(z) = A
VkeP:Ai(k) <A
Vke P: Ag(k) <\
constraints [2-5]

subject to (12)

VI. PROBLEM FORMULATION FOR USE-CASES

In this section use-case level optimization problem is for-
mulated based on the results obtained in Section V. As estab-
lished previously, the ThRiCoDB contains 3D databases with
throughput and MTTF number for every core count of every
application. The problem addressed here is to merge these 3D
databases for applications enabled simultaneously such that
the distribution of cores among these applications maximizes
the system MTTE. For the ease of problem formulation, the
following notations are defined:

ai,---,an = n applications enabled simultaneously
ZTq; = number of cores for application a;
M,, = MTTF of a; mapped on z,, cores
= ThRiCoDB.get MTTF(xa,)
T., =  Throughput of a; mapped on z,, cores

ThRiCoDB.getThr(za;)

Motion
Estimation

H.263
Encoder

Motion 9
Compensation
'
1

Fig. 3. SDFG of H.263 Encoder

A. Formulation

The optimization problem is formulated as below.

maximize  f(x) = min{Ma, }
subject to Zx‘” =|P| (13)
i=1

Vj,Ta, > throughput constraint of a;

B. Solution Approach

Algorithm 1 provides the pseudo-code to solve Equation 13.
A list is defined (RiList) to store the applications (its ID)
of the use-case, the number of cores dedicated to it and the
corresponding MTTF value. For every core in the target MP-
SoC (line 3), the RiList is sorted to determine the application
with the least MTTF (line 4-5). A core is dedicated to this
application (line 6) and the corresponding MTTF is fetched
from the ThRiCoDB (line 7) and the RiList is updated.

VII. EXTENSION TO SDF GRAPHS

Synchronous Data Flow Graphs (SDFGs, see [16]) are often
used for modeling modern DSP applications and for designing
concurrent multimedia applications implemented on a multi-
processor system-on-chip. The nodes of an SDFG are called
actors; they represent functions that are computed by reading
tokens (data items) from their input ports and writing the
results of the computation as tokens on the output ports. The
number of tokens produced or consumed in one execution of
actor is called port rate, and remains constant. The rates are
visualized as port annotations. Actor execution is also called
firing, and requires a fixed amount of time, denoted with a
number in the actors. The edges in the graph, called channels,
represent data that is communicated from one actor to another.

Figure 3 shows the SDF Graph of H.263 encoder. There
are eight actors in this graph. In the example, actor
motion estimation has an input rate of 1 and output rate
of 99. An actor is called ready when it has sufficient input
tokens on all its input edges and sufficient buffer space on
all its output channels; an actor can only fire when it is
ready. The edges may also contain initial tokens, indicated
by bullets on the edges, as seen on the edge from actor
motion compensation to motion estimation in Figure 3. A
set Ports of ports is assumed, and with each port p € Ports
a finite rate Rate(p) € N \ {0} is associated.



TABLE I
EXECUTION TIME WITH VARYING TASKS AND CORES

Execution Time (in sec.)

Tasks | cores =2 cores=4 cores=6 cores =8
8 1.95 47.0 500 600
16 500 1,100 2000 2,500
24 1,050 2,500 3,850 5,500
32 1,800 4,000 8,000 13,500

A. Changed Variable Definitions and Additional Constraints

Let Ggpp = (V, E) represent an application SDFG with V
actors and F edges. The following are defined.

. th . . .
start time of u"" iteration of actor 7 on core k

Sik,au =
1 task ¢ and j are mapped on core k
Q. = and u'" iteration of ¢ starts execution before
ik~ v'" iteration of j

0 otherwise

o Actor iteration assignment (iterations of an actor must be
assigned to the same core)

(%)

Vit Y ik =0 or (i) (14)
u=1

o Auto-concurrency of actors (multiple iterations of an
actor are not enabled simultaneously)

Vi, k and 2 < u < 7r(7) : Sik,u > Sik,u—1 + €t(i) (15)

o Data-dependency of actors (u'" iteration of task i can
start only after its dependent task finishes)

Vk,l € Pand V(,j) € E : Sik,u = €ji,m (16)
where m is defined as follows

- [%’1 +init(i, §)

p = tokens produced by actor i on edge (%, j)
g = tokens consumed by actor j from edge (4, 7)
init(é,j) = initial token on edge (%,7)

B. Objective Function

The objective function is same as that for the acyclic graph
derived in Section V.

VIII. RESULTS

Experiments are conducted on a quad-core Intel Xeon
2.4GHz server running Linux with synthetic application task
graphs generated using TGFF tool [17]. The number of tasks
range from 4 to 32 and the targeted MPSoCs consist of
2 to 8 homogeneous cores. Additionally, a set of real-life
applications are considered both from streaming and non-
streaming domain. The following parameters are used for
computing MTTF, [5]: current density J = 1.5 x 1054 /cm?,
activation energy F, = 0.48¢V, slope parameter 5 = 2,
temperature 7' = 350K and n = 1.1. The scale parameter
of each core is normalized so that its MTTF is 75 years for
the characterization temperature of 350K.

— App_4
90 App_12
—=FFT

—= App_8
— App_16
MPEG

——Romberg Integration ———H263 Encoder

MTTF (Years)

4 5
Number of cores

Fig. 4. MTTF of applications with varying cores

A. Single Application Results

Table I reports the execution time of our approach (using
CVX solver) as the number of tasks and cores scales. In
comparison, the simulated annealing-based heuristic proposed
in [5] reported an execution-time of 50 to 200sec for the same
range of tasks and cores on a similar CPU configuration. The
convex optimization approach proposed here is slower than the
heuristic approach and grows exponentially with the number of
tasks and cores. However, as the problem is solved at compile-
time, the reported time growth is feasible.

Figure 4 plots the variation in MTTF for different applica-
tions as the number of cores in the MPSoC increases. MTTF
of most applications increases initially due to the distribution
of tasks among the available cores (fewer computations per
core imply less aging). As the number of cores increases
further, the aging due to increased usage of NoC links (as
communicating tasks are mapped on different cores) becomes
significant. Thus, the two opposing effects balance out and
the MTTF saturates either to its peak value (called the point
of diminishing returns, PODR) or somewhat lower value. The
PODR for an application depends on the task computation and
data communication for the application.

In previous research works, NoC aging is ignored (no
PODR). MTTF is assumed to grow with the number of cores
and therefore the calculated MTTF value is an overestimate.

Figure 5 plots the MTTF (in years) of a reference MPSoC
with 4 cores for 8 applications (synthetic and real-life). The
number of tasks in each application is indicated in the cor-
responding name of the application. There are three results
for each application as shown in the figure. The first bar
corresponds to the MTTF obtained by optimizing the aging
of cores assuming no communication medium in the platform.
However, this is not realistic. The MTTF for the same platform
with NoC included but optimizing only the aging of cores is
indicated by the second bar. Finally, the third bar plots the
results obtained using our technique, where MTTF is obtained
by jointly optimizing the aging of cores and NoC-links.

As can be seen from the figure, ignoring NoC aging can over
estimate MTTF of MPSoC by average 50% (first and second
bar in the figure). The MTTF obtained using our technique
is better than the MTTF obtained by optimizing the aging of
cores alone (second and thrid bar in the figure). The percentage
improvement is dependent on the ratio of the computation and
communication in an application. For computation-dominated
applications such as App_24 and App_32, the improvement
is less than 0.5%. On the other end, for communication-
dominated applications such as Romberg integration, more
than 80% gain is obtained. On average, our proposed approach
increases the MTTF of an MPSoC by more than 30% as



90

80
m MTTF of NoC-based MPSoC considering aging of cores (Ref [4-7])

m MTTF of NoC-based MPSoC considering aging of cores and NoC

l[lliiii

App_16 App_24 App_32 FFT(15) MPEG (13)  H263 En:oder

i MTTF of MPSoC with no communication medium (not realistic)
70

60

50

MTTF (Years)

40

20

10

Romberg
Integration (10)

Fig. 5. Optimization results with synthetic and real applications

compared to the existing approaches.

B. Use-case Results

Since our work is the first work on use-case level MTTF op-
timization, there is no reference for comparison. However, two
standard strategies are developed for core distribution among
parallel applications — Throughput-based Core Distribution
(TCD) and Equal Core Distribution (ECD). Our approach is
referred as MTTF-based Core Distribution (MCD).

Figure 6 plots the MTTF for the three approaches for
different use-cases with synthetic (denoted by alphabets) and
real-life applications. The number in parenthesis for each use-
case indicates the number of simultaneous applications.

As can be seen (and also expected), the MCD achieves
highest MTTF among all the three approaches. On average,
MCD increases the lifetime of an MPSoC by more than 15%
as compared to TCD and more than 60% as compared to ECD.
The important conclusion to make from these results is that if
core distribution for use-case is not performed with MTTF as
an objective, some cores can age faster than others, thereby
reducing the operational life of an MPSoC.

Finally, the complexity of Algorithm 1 is calculated as
follows. For every iteration of the outer loop (number of
cores), sorting of MTTF is performed once followed by
memory lookup. If the memory lookup time is assumed to be
constant and there are n applications enabled simultaneously
on | P| cores, every loop is executed in O(n logn). The overall
complexity of Algorithm 1 is therefore O(|P| x nlogn). On
the same simulation platform, this algorithm takes between
80-100usec for 2 to 6 simultaneous applications on MPSoC
with 4 homogeneous cores.

Currently, one limitation of the use-case level analysis is
that the set of use-cases needs to be pre-defined for the target
MPSoC. However, the small execution time of use-case opti-
mization clearly motivates to shift the use-case optimization
to run-time. Thus, any combination of applications can be
supported. This is left as future research.

The heuristic techniques proposed in [5] and [6] needs
to be re-executed for every use-case to meet an MPSoC
MTTEF requirement. This is because the sub-optimal results for
individual application cannot guarantee to satisfy the MTTF
requirement when multiple of them (applications) are enabled
simultaneously. This can have huge impact on the execution
time (not feasible to move it to run-time phase) and a possible
limitation on the number of use-cases to be supported.

IX. CONCLUSION

This paper presents for the first time a convex optimization-
based mapping generation technique to maximize the MTTF

m Equal core distribution (ECD)
m Throughput-based core distribution (TCD)
B MTTF-based core distribution (MCD)

MTTF (Years)

A2) 8(3) c(a) MPEG-FFT H263Dec-MP3Dec Romberg-FFT

Fig. 6. MTTF improvements with synthetic and real use-cases

of an MPSoC considering aging of NoC-links. The paper also
proposes an algorithm to distribute the cores of an MPSoC
when multiple applications are enabled simultaneously. Re-
sults with synthetic and real-life streaming and non-streaming
applications demonstrate advantages of the proposed approach.
Although, homogeneous architectures are considered in this
paper, extension of the technique to heterogeneous MPSoC
platforms and analysis with multiple applications sharing the
same core are left as future work.

ACKNOWLEDGMENT

This work was supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 with grant number
R-263-000-655-133.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
1IEEE Micro, 2003.

[2] J. Srinivasan et al., “The case for lifetime reliability-aware micropro-
cessors,” in IEEE International Symposium on Computer Architecture
(ISCA), 2004.

[3] S. Wang et al., “Thermal-aware lifetime reliability in multicore systems,”
in International Symposium on Quality Electronic Design (ISQED),
2010.

[4] C.-L. Chou et al., “FARM: Fault-aware resource management in NoC-
based multiprocessor platforms,” in IEEE Conference on Design, Au-
tomation and Test in Europe (DATE), 2011.

[5] L. Huang et al., “Lifetime reliability-aware task allocation and schedul-
ing for MPSoC platforms,” in IEEE Conference on Design, Automation
and Test in Europe (DATE), 2009.

[6] A. Hartman et al., “A case for lifetime-aware task mapping in em-
bedded chip multiprocessors,” in IEEE/ACM/IFIP Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2010.

[71 A. Kumar et al., “Multiprocessor systems synthesis for multiple use-
cases of multiple applications on FPGA,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2008.

[8] L. Huang et al., “AgeSim: a simulation framework for evaluating the
lifetime reliability of processor-based SoCs,” in IEEE Conference on
Design, Automation and Test in Europe (DATE), 2010.

[9] X.Zhang et al., “A Dependability Solution for Homogeneous MPSoCs,”

in IEEFE Pacific Rim International Symposium on Dependable Computing

(PRDC), 2011.

A. K. Coskun et al., “Temperature aware task scheduling in MPSoCs,”

in IEEE Conference on Design, Automation and Test in Europe (DATE),

2007.

T. Chantem et al., “Temperature-Aware Scheduling and Assignment for

Hard Real-Time Applications on MPSoCs,” in IEEE Conference on

Design, Automation and Test in Europe (DATE), 2008.

L. Thiele et al., “Thermal-aware system analysis and software synthesis

for embedded multi-processors,” in ACM Design Automation Conference

(DAC), 2011.

J. S. S. T. Association et al., “Failure mechanisms and models for

semiconductor devices,” JEDEC Publication JEP122-B, 2003.

M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex

Programming, version 1.21,” 2011.

, “Graph implementations for nonsmooth convex programs,” Recent

Advances in Learning and Control (a tribute to M. Vidyasagar), Lecture

Notes in Control and Information Sciences, Springer, 2008.

E. Lee et al., “Synchronous data flow,” Proceedings of the IEEE, 1987.

R. P. Dick et al., “TGFF: task graphs for free,” in IEEE Workshop on

Hardware/software Codesign, 1998.

(10]

(11]

(12]

(13]
(14]

[15]

[16]
(17]



