
A Meta-Model Assisted Coprocessor Synthesis
Framework for Compiler/Architecture Parameters

Customization
Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, Cristina Silvano

Politecnico di Milano - Dipartimento di Elettronica e Informazione
E-mail: {xydis, gpalermo, zaccaria, silvano}@elet.polimi.it

Abstract—Hardware coprocessors are extensively used in mod-
ern heterogeneous systems-on-chip (SoC) designs to provide
efficient implementation of application-specific functions. Cus-
tomized coprocessor synthesis exploits design space exploration
to derive Pareto optimal design configurations for a set of targeted
metrics. Existing exploration strategies for coprocessor synthesis
have been focused on either time consuming iterative scheduling
approaches or ad-hoc sampling of the solution space guided
by the designer’s experience. In this paper, we introduce a
meta-model assisted exploration framework that eliminates the
aforementioned drawbacks by using response surface models
(RSMs) for generating customized coprocessor architectures. The
methodology is based on the construction of analytical delay and
area models for predicting the quality of the design points without
resorting to costly architectural synthesis procedures. Various
RSM techniques are evaluated with respect to their accuracy
and convergence. We show that the targeted solution space can
be accurately modeled through RSMs, thus enabling a speedup
of the overall exploration runtime without compromising the
quality of results. Comparative experimental results, over a set
of real-life benchmarks, prove the effectiveness of the proposed
approach in terms of quality improvements of the design solutions
and exploration runtime reductions. An MPEG-2 decoder case
study describes how the proposed approach can be exploited for
customizing the architecture of two hardware accelerated kernels.

I. INTRODUCTION

The increasing market demands in the field of consumer
electronics, impose strict time-to-market constraints to system
designers. High Level Synthesis (HLS) has been recognized
as a key enabler for automated coprocessor synthesis within
shortened design cycles. Being now in a mature phase [1],
HLS is the driving force of design abstraction, offering an
automated path from high level algorithmic specifications
down to circuit level implementations. Since a large number
of architectural configurations became explorable, designers
have faced the problem of reasoning on differing trade-offs.
Thus, efficient design space exploration (DSE) methodologies
accompanied with automated tools are of great importance for
fast and accurate evaluation of the solution space [2].

The efficiency of the exploration phase for coprocessor
synthesis is highly affected by two factors: (i) the core
HLS optimization algorithms, namely operation scheduling,
resource binding and register allocation and (ii) the RTL to
gate-level synthesis tool. Iterative coprocessor customization
implies the execution of two synthesis phases, namely (i)
the C-to-RTL and (ii) the RTL-to-gates. While the inclusion
of gate-level synthesis information during exploration enables
accuracy, it remains an extremely time consuming task. To
reduce exploration delay, designers usually adopt a less time
consuming exploration approach by shortening the exploration

loop to iterate through the HLS design space. Nowadays, it
is common practice [3]–[8] to adopt an iterative exploration
approach at the level of HLS by evaluating the quality of
the design solutions during the pre-synthesis phase. In this
way, only a reduced set of design configurations forming
the Pareto-front of the high level exploration is propagated
down to gate-level synthesis tools for further refinement.
For example, the execution time required for a single run
of the SPARK’s HLS engine [9] for the Inverse Discrete
Cosine Transform kernel from the MPEG2 application (when
unrolling the inner and outer loops) is approximately 8.5
minutes, while for a single gate-level synthesis evaluation, by
using Synopsys Design Compiler [10], the time required is 23
minutes. Even in the case of a high level exploration loop,
the aggregated delay of iteratively using the core HLS engine
imposes large and in many cases unaffordable exploration
runtime. A straightforward approach would suggest to limit the
design space, e.g. excluding from the exploration procedure
the compiler level parameters, (i.e. the loop unrolling param-
eters). However, many researchers [7], [8], [11], [12] have
proven that this type of exploration simplifications inherently
reduces the effectiveness of the DSE and thus the optimality
of the approximated Pareto curve.

In this paper, we address the coprocessor synthesis and
customization introducing Response Surface Methods. The
innovativeness of the approach consists of analytically mod-
eling and predicting the behavior of the synthesis engine, to
efficiently explore the design space in terms of both architec-
tural and compiler parameters. The main objective is not to
target the complete replacement of the synthesis engine, but
to introduce an abstract meta-layer that enables the reduction
of times the proposed exploration framework has to resort to
the costly architectural synthesis. More in detail, we propose
(i) the construction of delay and area predictive RSM models
to capture the behavior of the core synthesis optimization
algorithms, namely operation scheduling, resource binding and
register allocation and (ii) the development of an exploration
framework for coprocessor customization, which exploits the
predictive meta-models to iteratively refine and optimize to-
wards the exact Pareto frontier, thus exploring the design space
in a fast manner without compromising the quality of design
solutions. By adopting the proposed approach, we manage
to automatically build customized coprocessor architectures
through combined exploration of both compiler- and architec-
tural design parameters, and to accelerate the exploration by
eliminating the iterative resorting to the costly architectural
synthesis procedures. We show that RSM-based exploration
will be proved to be an efficient approach, even including

978-3-9815370-0-0/DATE13/©2013 EDAA

the time required for training the RSM. Experimental results
show that the HLS solution space can be accurately modeled
by using RSM techniques.

The rest of the paper is organized as follows. Section II
presents related work. Section III introduces the evaluated
RSM techniques and describes the proposed methodology.
Section IV provides experimental evaluation of the proposed
methodology, while Section V concludes the paper.

II. RELATED WORK

Coprocessor synthesis is strongly connected with the prob-
lems addressed by high level synthesis. During the evolution
of the HLS, we can recognize three main directions. The first
direction focuses on the development of efficient scheduling
algorithms [13], [5] for generating optimized hardware from a
behavioral description. This approach links with the historical
roots of HLS, since its main focus is to provide algorithms
to built efficient HLS tools. The second direction is mainly
driven by the advances in the fields of micro-architecture and
compiler technology. Specifically, it is focused on exploring
architectural optimizations, i.e. operation chaining [14], clock
selection [15] etc. for performance improvement, or exploiting
code transformations for datapath optimization [9], [16], [17].
The third direction is the most recent one and is guided by the
increased maturity and the availability of the modern industrial
and academic HLS tools, i.e. CatapultC [3], AutoESL [18],
CyberWorkBench [4], [19], Legup [20], GAUT (Chap. 9 in
[1]), SPARK [9]. It proposes the usage of the HLS engine
as a “black box” focusing on the tuning of the design pa-
rameters and targeting mainly to multi-objective optimization
for deriving Pareto optimal trade-offs of conflicting design
metrics i.e. delay, area, power. Within this context, Shafer and
Wakabayashi [6] proposed a combination of parameter clus-
tering along with an adaptive simulating annealer to accelerate
exploration’s runtime.

Response surface meta-models have recently gained a lot
of attention in micro-architecture community as efficient per-
formance prediction tools of parameterized microprocessor
architectures [21]–[23]. The incorporation of predictive RSMs
within DSE strategies targeting platform based design, has
been also investigated in [24], [25]. In our paper, we differenti-
ate from the aforementioned approaches, since we are applying
Response Surface Methods to model and predict the behavior
of high-level synthesis optimization algorithms rather than a
specific processor parameters. Recently, Zuluaga et al [26]
proposed a predictive design methodology for the resource
sharing synthesis problem. However, the efficiency of both
the exploration methodology (in terms of runtime) and the
actual coprocessor architecture (in terms of area complexity,
execution latency, power etc.) are highly affected from synthe-
sis steps prior to resource sharing, i.e. operation scheduling,
resource binding and register allocation. This paper is rather
complementary with the work in [26], since we will show
that with the proposed meta-model assisted methodology the
aforementioned synthesis steps can be accurately predicted and
furthermore the generated models can be used within the actual
optimization procedure.

III. META-MODEL ASSISTED COPROCESSOR SYNTHESIS

The key idea of this paper is to investigate the usage of
analytical meta-models to predict the behavior of a synthesis
engine. We focus on the fundamental architectural synthesis
problem of discovering design solutions that derive Pareto op-
timal delay-area trade-offs. Specifically, given a design space

Delay
DB

C-to-IR

RTL

Application
C code

Operation
Scheduling

Op. & Variable
Binding

Presynthesis
Area Estimation

Latency-Area
RSM

Compiler
Design Space

Architectural
Design Space

Intermediate
Pareto Set

Final Pareto
Set

Full-Search
DOE

Random DOE

RSM
Training

Refining
Synthesis
Iterations

STOP
Synthesis and Area

Estimation Framework

Area
DB

Resource
Library

DoE
Generator

Pareto
Filtering

Fig. 1. The meta-model assisted coprocessor synthesis framework

D, the targeted problem can be formulated as the following
multi-objective optimization problem:

min
x∈D

[
Delay(x)
Area(x)

]
∈ R2 (1)

subject to: [
Delay(x)
Area(x)

]
≤

[
Max Delay
Max Area

]
(2)

The optimization goal is to find those configuration vectors,
x, that are mapped to Pareto (non-dominant) designs in the
solution space. To address the aforementioned problem, we
exploit Response Surface Modeling (RSM) techniques to
capture in an analytical manner the relationships between
several design parameters and one or more response variables.
A typical RSM-based flow involves a training phase, in
which known data (or training set), generated by Design of
Experiments (DoE), are used to tune the RSM configuration,
and a prediction phase in which the RSM is used to predict
the unknown system response.

The proposed RSM-based framework, shown in Figure 1,
adopts RESPIR [24] exploration strategy to tackle a new
target problem. The left part of the design flow (namely
coprocessor synthesis and area estimation framework) includes

the typical HLS steps (intermediate representation (IR) gen-
eration, operation scheduling and operation/variable binding)
for generating the coprocessor RTL description. The RTL de-
scription together with a gate-level pre-characterized resource
library are used as inputs for estimating (at the pre-synthesis
level) the area complexity of the architectural solution. The
innovative feature of the proposed framework consists of
extending the typical coprocessor synthesis flow with a set
of new modules, i.e. the DoE generator, the RSM training
function, the trained RSM model, Pareto analysis functions.
These modules implement the proposed meta-model assisted
exploration framework, which is composed of the following
steps:

1) Setup an initial random design of experiments (DoE). The
selected design points are synthesized through the coprocessor
synthesis and area estimation framework to extract execution
latency and area complexity of each point.

2) Train the selected RSM by using the current set of synthesized
design points;

3) Compute the intermediate Pareto set by using a full-search
DoE on the RSM trained in the step 2.

4) For all the points belonging to the intermediate Pareto set
and not yet synthesized, proceed with synthesis through the
coprocessor synthesis tool flow. This enables new promising
points to be part of current set of synthesized design points.

5) If the new set of synthesized design points has at least one
new point dominating the previous set, restart from step 2.
Otherwise, the final Pareto set is derived from the latest set of
synthesized points.

A. Pre-synthesis Area Estimation
In this section, we briefly introduce the targeted coprocessor

architectural template (Figure 2) and we present the adopted
pre-synthesis area model used in the proposed methodology to
avoid the costly gate-level synthesis. We consider a realistic
datapath model that enables more accurate evaluation of the
costs, associated with each examined solution, unlike the sim-
plified datapath models (number of Alu and Mul units) used
in several previous exploration frameworks for coprocessor
synthesis [5], [13], [15], [17].

The target architectural template (Figure 2) resembles a typ-
ical structure found in hardware accelerators and it is able to
model architectures with various degrees of horizontal and/or
vertical parallelism (pipelining). It consists of (i) datapath
components (Alus and Muls), (ii) the register bank (scratch
registers) for locally storing the intermediate results, (iii) the
steering logic that moves data from the register bank to the
datapath component and vice versa, (iv) the memory interface
components (memory ports and Load/Store (LD/ST) units)
to read/write data from/to the memory and (v) the control
unit (FSM based) that generates control signals on a cycle-
by-cycle basis. The total area complexity (A) for the adopted
architectural template is described by the following model:

A = ADP + AMemIF + ARegs + ASteer + ACtrl

where the components are the following:
• Datapath (ADP) and Memory Interface (AMemIF) Area:

ADP = #Alu× AAlu + #Mul× AMul

AMemIF = #LD/ST × ALD/ST + #MemPort× AMemPort

• Register Bank Area, ARegs:

ARegs = #Regs× ANbit
Reg

• Steering Logic Area, ASteer:

ASteer =

#Mux∑
i=0

AMuxi

MUL
ALU ALU

Register Bank
(#Registers)

C
on

tro
l U

ni
t

(#
S

ta
te

s,
 #

S
ta

te
R

eg
)

Architectural Template

MUL

Memory Interface (#MemPorts)

LD/ST LD/ST LD/ST

...
...

...

...

Datapath
 (#MULs, #ALUs)

S
te

er
in

g
Lo

gi
c

 (#
M

ux
es

)

Fig. 2. Target architectural template.

AMuxi = (#OperandsMuxi
− 1)× AMux2to1

• Controller Area, ACtrl:

ACtrl = AStates + ASel.Bits
Mux + ASel.Bits

Alu

AStates = (dlog2(#StatesFSM)e)× A1bit
Reg

ASel.Bits
Mux = (#Mux× (#OperandsPerMux − 1))× A1bit

Reg

ASel.Bits
Alu = (#Alu× (dlog2#OperationAlue)× A1bit

Reg

In the previous model, AStates is the area of FSM registers
that encode the state space, ASel.Bits

Mux and ASel.Bits
Alu are the

area of FSM registers for the Mux selection signals and for
the ALUs operation selection, while obviously AAlu, AMul,
ALD/ST , AMemPort, ANbit

Reg and AMux2to1 are respectively the
area for a single ALU, Multiplier, Load/Store unit, Memory
Port, N-bit Register and 2 to 1 Multiplexer.

From the previous equations, ADP and the AMemIF can
be directly estimated from the configuration vector that drives
the DSE. However, this is not the case for the other area coef-
ficients (ARegs, ASteer and ACtrl) since their area complexity
depends on the decision made by the HLS engine. Specifically,
the aforementioned coefficients include some terms deter-
mined only after (i) operation scheduling, i.e. #StatesFSM ,
(ii) register allocation, i.e. #Regs, (iii) variable-to-register
binding, i.e. #OperandsMuxi

. Due to their strong depen-
dence with the core synthesis optimization algorithms, these
terms form the area coefficients that RSM techniques are
required to predict their impact on area complexity.

The presented area model is based on the measurements of
the following primitive components, (i) AAlu, (ii) AMul, (iii)
ALD/ST , (iv) AMemPort, (v) ANbit

Reg , and (vi) AMux2to1. For
these components we derived area estimation through post-
synthesis characterization by using Synopsys Design Compiler
[10] and TSMC 0.13 um standard cell library [27]. To validate
the area model, we synthesize the HDL descriptions that
derived as output of the SPARK HLS tool for several design
configurations of our benchmark suite. Validation data in terms
of gate-level synthesized area with respect to the pre-synthesis
area estimation for the aforementioned designs show that the
minimum, average and maximum errors are 0.3%, 11% and
25.6%, respectively.

B. Accuracy analysis for RSM selection
This section describes the procedure for selecting the most

suitable analytical description for the (i) targeted design space,
(ii) synthesis engine and (iii) benchmark kernels.

The set of parameters composing the design space are of
great importance regarding the quality of the approximated
Pareto designs. For example, recent studies [7], [8], [11], [12]
proved that the combination of compiler- with architectural-
level design parameters, enables exploration in a more global
manner and leads to higher quality design solutions. We extend
the compiler-architecture parameter space targeted in [7], [8],
[12], by introducing architectural design decisions regarding
the clock frequency following [15] and the memory interface
configuration of the coprocessor architecture. The targeted
design space (in terms of both compiler and architecture
parameters and their ranges) is shown in Table I. The SPARK
HLS tool [9] has been used within our DSE framework.
Among the HLS tools that are now available to the community,
such as Legup [20], we selected SPARK due to its advanced
core HLS algorithms and its configurability on both compiler-
and architectural level parameters. However, the proposed
methodology is general enough and can be easily retargeted
to other HLS tools. Finally, we formed a representative set
of benchmarks found into real-life DSP and multimedia ap-
plications. The benchmark suite consists of 7 computationally
intensive kernels of various sizes and complexities: (i) the 1D
DCT, (ii) the YUV to RGBA filter, (iii) the MESA 44 Matrix
Multiplication algorithm, (iv) the 2D DCT kernel of JPEG,
(v) the 2D Inverse DCT kernel of MPEG-2, (vi) the Gauss
Blur image transformation from Cavity Detector algorithms,
(vii) the 8×8 Sobel edge detection image filter. Although the
benchmarks would expose a variety of design spaces, we target
the unified design space shown in Table I.

The RSM selection is based on the minimization of
the accuracy error and maximization of convergence be-
havior. Specifically, we considered five RSM models (three
regression-based and two interpolation-based): (i) Linear Re-
gression, (ii) Spline-based Regression [28], (iii) Artificial Neu-
ral Networks (ANNs) [29], (iv) Shepard-based Interpolation
and (v) Radial Basis Functions [30]. The RSMs have been
trained considering the aforementioned setup. After training,
we validated the average normalized error (on both area and
delay metrics) computed by the selected set of RSMs over the
entire design space by varying the number of random configu-
rations used as a training-set (known points) from 200 to 1800.
In this context, to further improve the prediction accuracy, we
introduced a Box-Cox power transform on each sample of the
observed data [22] to reduce the data variation and improve
the correlation between parameters and response functions. We
examined three power parameters ξ ∈ {1, 0.5, 0}. For the cases
under analysis, we found that the log power parameter (ξ = 0)
outperforms all the selected Box-Cox transformations in terms
of approximation error for the considered design space for
almost all the RSMs and training set size.

Detailed analysis showed that the accuracy of linear and
spline-based regression models remains almost stable and
constant in the selected range of training set size. In particular,
for the targeted set of Box-Cox transformations, the average
normalized error remains between 25% and 13.5% for the
linear regression, while between 21% and 11% for the spline-
based regression. Concerning linear regression, we considered
also a second order model without interaction that presented
an average prediction error that is from 2% to 4% better

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 200 400 600 800 1000 1200 1400 1600 1800

Av
er

ag
e

no
rm

al
iz

ed
 e

rro
r

Number of synthesized designs

Linear
Spline

ANN
Shepard

RBF

Fig. 3. Validation results for the adopted RSM methodologies,with a training
data set corresponding to less than 3.4% of the solution space.

TABLE I
UNIFIED COMPILER/ARCHITECTURE DESIGN SPACE.

Parameter Min. Max.
Compiler Level:
Strength Reduction 0 1
Copy and Constant Propagation 0 1
Sub-expression Elimination 0 1
Outer loop unrolling factor 0 2
Inner loop unrolling factor 0 3
Architectural Level:
No. of ALU 1 20
No. of MUL 0 8
No. of Mem. ports 1 4
Clock period (ns) 1 8
Operation Chaining 0 1
Operation Multicycling 0 1

than the first order model including interaction (considering
the same Box-Cox transformations). For the remaining RSMs,
we observed an estimation error decreasing from 26-20% to
16-14% when considering the Shepard’s interpolation, from
20-15% to 11-8.5% when considering the ANN and from 16-
13% to 9-8% for the radial basis functions (depending on the
adopted Box-Cox transformation).

Figure 3 shows the validation results considering the best
configuration from each examined RSM with respect to esti-
mation accuracy. For the given set of data, we can see that RBF
and ANN present the best estimation accuracy when increasing
the size of the training data. However, radial basis functions
also present a very consistent decreasing of the validation
error, making its behavior more stable with respect to the
artificial neural network. Thus, our analysis can conclude that
the RBF model is the most suitable RSM to be used within
a meta-model enhanced exploration strategy for the target
problem. For this reason, we select the RBF to be used as
the estimation model in the proposed meta-model assisted
methodology to carry out the experimental campaign.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of the proposed
meta-model assisted exploration strategy in comparison to
state-of-art multi-objective optimizers. In addition, we further
prove the effectiveness of the proposed approach by applying it
to a more complex and realistic design problem that considers
the synthesis of MPEG-2 coprocessors.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 800 900 1000 1100 1200 1300 1400

AD
R

S

Number of synthesized designs

MOSA
NSGA-II

PROPOSED

Fig. 4. Application of the MOSA, NSGA-II and Meta-Model assisted design
space exploration strategies to the targeted benchmark suite: Accuracy vs.
Efficiency.

A. Comparison Results
We have ran an experimental campaign by plugging in the

RBF models selected from the validation results presented in
the previous section, combined with a Random DoE strategy
for selecting the initial set of points1. The Random DoE has
been ran 5 times to account for the associated unpredictability
of the designs. In order to evaluate the efficiency of the
proposed RSM-based strategy, we compared with two state-
of-art non RSM-based meta-heuristics for multi-objective op-
timization: (i) the Multi-Objective Simulating Annealing [31]
(MOSA) and the (ii) NSGA-II multi-objective genetic algo-
rithm [32]. For a fair comparison with state-of-art optimizers,
we run the explorations by varying the MOSA and NSGA-
II parameter configurations (such as, number of generations,
population size and annealing coefficient), to avoid the possi-
bility of a biased behavior.

We present results in an aggregate manner for all bench-
marks. For the design space denoted in Table I, we compare
the three exploration strategies in terms of (i) optimality of
results through the Average Distance from Reference Set
(ADRS) [33] metric (the lower the better), with respect to
the exact Pareto curve and (ii) number of synthesized solu-
tions that are proportionally correlated with the exploration’s
runtime efficiency. In case of proposed exploration strategy,
synthesized solutions refer to the number of solutions that
needed during runtime for the initial Design of Experiments
and the refinement training of the RBF model, while in case
of MOSA and NSGA-II, they refer to the number of examined
solutions by the algorithms. Figure 4 shows the ADRS of
the approximate Pareto front with respect to the exact Pareto
front, by varying the number of synthesized designs for each
exploration strategy (in the range between 800 and 1400,
corresponding to a range of 1.5% - 2.7% of the examined
design space). The efficiency of each exploration strategy is
layered in different ranging zones. It is clear that the zone
of the proposed methodology dominates almost completely
both MOSA and NSGA-II variants. For the same or smaller
number of synthesized configurations, the proposed RSM-
based methodology delivers design solutions that are closer to

1The initial DoE is made up with 50 points, which roughly corresponds to
the sum of all the levels of the parameters of the design space.

the exact Pareto set with respect to the other DSE strategies.
Specifically, it approximates the exact Pareto frontier with an
average error (ADRS) close to 1%. The ADRS values for
MOSA range between 2%-6%, while for the NSGA-II between
5%-10%, respectively. We notice that all the 5 runs of the
proposed strategy belong to the Pareto frontier of the ADRS
vs. Number of synthesized designs solutions space, showing
also its robustness.

B. The MPEG-2 Decoder Case Study
To further show the effectiveness of the proposed method-

ology, in this section we present the results obtained for an
MPEG-2 decoder case study. The goal of this case study is
the minimization of the average time needed for elaborating
each pixel in order to maximize the application throughput.
We focus our attention on the design of two HW coprocessors
used by the algorithm: the 2D inverse DCT (2D-IDCT) and
the YUV to RGBA (YUV2RGBA) space converter. Following
this decomposition, the average pixel elaboration time for the
algorithm is composed of the sum of three components: the
software part and the two accelerators. Since the software
part of the application is not impacted by the HW design
of the coprocessors (once the HW/SW interfaces have been
decided), the minimization of the average pixel elaboration
time can be seen as by the minimization of the sum of the
average elaboration time for the two accelerators. Moreover,
the minimization problem has been constrained with an area
value that should be less than 230000 um2 considering both
coprocessors. To solve this problem, we applied the proposed
methodology to the two accelerators in order to find the
two Pareto curves. Then, we combined the results of the
two explorations into a single Pareto curve representing the
solution space in the area and average latency per pixel
space. The design space used for each accelerator is the same
presented in Table I.

More in detail, Figure 5 shows the approximate Pareto
curves for the two accelerators, found by using the proposed
methodology, compared to the exact Pareto curves 2. In
particular, Figures 5(a) and 5(b) present the results for the 2D-
IDCT and YUV2RGBA obtained respectively after 154 and
263 evaluations. Despite of the small number of evaluations,
it can be noticed that in both cases the proposed methodology
is very close to the exact Pareto curve.

Once we found the two approximate Pareto curves, we
combined the two sets of solutions in terms of delay per
pixel (the delay values for the 2D-IDCT should be divided
by 64 since the accelerator works on a 8x8 matrix of pixels).
After this step, we found a new set of points that have been
Pareto filtered considering the area and average delay per pixel
objectives (see Figure 5(c)). Finally, among all the Pareto
points we select the combined solution that reduces the average
delay per pixel while respecting the area constraint.

V. CONCLUSION

In this paper, a meta-model assisted coprocessor customiza-
tion framework has been introduced leveraging Response
Surface Models to analytically represent the behavior of a
coprocessor synthesis engine. The approach is based on the
construction of analytical delay and area models (RSMs) for
predicting the quality of the design points without resorting
to costly architectural synthesis. The proposed meta-model

2For validation purposes, we have run exhaustive search, even if the size
of the targeted design space is approximately 52K configurations.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 40000 60000 80000 100000 120000 140000 160000 180000

D
el

ay
 [n

s]

Area [um2]

"exactPareto"
"approximatePareto"

(a) 2D-IDCT: Exact vs. Approximate Pareto

 50

 100

 150

 200

 250

 300

 350

 400

 20000 40000 60000 80000 100000 120000 140000 160000 180000

D
el

ay
 [n

s]

Area [um2]

"exactPareto"
"approximatePareto"

(b) YUB2RGB: Exact vs. Approximate Pareto

 100

 200

 300

 400

 500

 600

 700

 50000 100000 150000 200000 250000 300000 350000 400000

Av
ge

ra
ge

 D
el

ay
 [n

s/
pi

xe
l]

Area [um2]

Selected Configuration
 Area[um2] = 229796

 Delay[ns] = 153.3
Region violating

 the area constraint
 Area[um2] > 230000

(c) Combined Pareto curve for the selected
MPEG-2 decoder accelerators.

Fig. 5. Pareto curves for the MPEG-2 use case.

customization strategy iteratively refines the accuracy of the
approximate Pareto curve towards the exact Pareto frontier.

To evaluate the efficiency of the proposed RSM-based
strategy, we compare it with respect to two state-of-art non
RSM-based meta-heuristics for multi-objective optimization:
Multi-Objective Simulating Annealing (MOSA) and NSGA-II
multi-objective genetic algorithm. For the given set of bench-
marks, the proposed methodology outperforms both MOSA
and NSGA-II improving the solutions quality by 3% and 7%
respectively for the same number of evaluated designs.

REFERENCES

[1] P. Coussy and A. Morawiec. High-Level Synthesis: From Algorithm to
Digital Circuit. Springer, Berlin, Germany, 2008.

[2] A. Gerstlauer, C. Haubelt, A.D. Pimentel, T.P. Stefanov, D.D. Gajski, and
J. Teich. Electronic system-level synthesis methodologies. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(10):1517 –1530, oct. 2009.

[3] Catapult, www.mentor.com/esl/catapult.
[4] CyberWorkBench, www.nec.com/global/prod/cwb/.
[5] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Exploring

Time/Resource Trade-offs by Solving Dual Scheduling Problems with
the Ant Colony Optimization. ACM Trans. Design Autom. Electr. Syst.,
12(4), 2007.

[6] Benjamin Carrión Schäfer and Kazutoshi Wakabayashi. Design space
exploration acceleration through operation clustering. IEEE Trans. on
CAD of Integrated Circuits and Systems, 29(1):153–157, 2010.

[7] Sotirios Xydis, Christos Skouroumounis, Kiamal Pekmestzi, Dimitrios
Soudris, and George Economakos. Designing Efficient DSP Datapaths
Through Compiler-in-the-Loop Exploration Methodology. In Proc. of
IEEE International Symposium on Circuits and Systems (ISCAS), pages
2598–2601, 2010.

[8] Sotirios Xydis, Christos Skouroumounis, Kiamal Pekmestzi, Dimitrios
Soudris, and George Economakos. Efficient High Level Synthesis
Exploration Methodology Combining Exhaustive and Gradient-Based
Pruned Searching. In Proc. of the IEEE Annual Symposium on VLSI
(ISVLSI), pages 104–109, 2010.

[9] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Coordinated
Parallelizing Compiler Optimizations and High-Level Synthesis. ACM
Trans. Des. Autom. Electron. Syst, 9:2004, 2002.

[10] Synopsys Inc. www.synopsys.com/products/. 2009.
[11] Alastair Colin Murray, Richard Vincent Bennett, Björn Franke, and

Nigel P. Topham. Code Transformation and Instruction Set Extension.
ACM Trans. Embedded Comput. Syst., 8(4), 2009.

[12] Paolo Bonzini and Laura Pozzi. Code transformation strategies for
extensible embedded processors. In CASES ’06: Proceedings of the 2006
international conference on Compilers, architecture and synthesis for
embedded systems, pages 242–252, New York, NY, USA, 2006. ACM.

[13] Pierre G. Paulin and John P. Knight. Force-directed scheduling for the
behavioral synthesis of asics. IEEE Trans. on CAD of Integrated Circuits
and Systems, 8(6):661–679, 1989.

[14] P. Marwedel, B. Landwehr, and R. Domer. Built-in Chaining: Introduc-
ing Complex Components into Architectural Synthesis. In Proc. of the
ASP-DAC, pages 599–605, 1997.

[15] Stephen A. Blythe and Robert A. Walker. Efficient optimal design space
characterization methodologies. ACM Trans. Des. Autom. Electron. Syst.,
5(3):322–336, 2000.

[16] Srikanth Kurra, Neeraj Kumar Singh, and Preeti Ranjan Panda. The
impact of Loop Unrolling on Controller Delay in High Level Synthesis.
In DATE ’07: Proceedings of the conference on Design, automation and
test in Europe, pages 391–396, 2007.

[17] Joachim Gerlach and Wolfgang Rosenstiel. A Methodology and Tool
for Automated Transformational High-Level Design Space Exploration.
In ICCD, pages 545–548, 2000.

[18] AutoESL, www.autoesl.com.
[19] ROCCC 2.0, http://www.jacquardcomputing.com/.
[20] Legup HLS, http://legup.eecg.utoronto.ca/.
[21] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. A

predictive performance model for superscalar processors. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 161–170, Washington, DC, USA, 2006. IEEE
Computer Society.

[22] P.J. Joseph, Kapil Vaswani, and M.J. Thazhuthaveetil. Construction and
use of linear regression models for processor performance analysis. In
High-Performance Computer Architecture, 2006. The Twelfth Interna-
tional Symposium on, pages 99 – 108, feb. 2006.

[23] Tejas S. Karkhanis and James E. Smith. A first-order superscalar proces-
sor model. In Proceedings of the 31st annual international symposium
on Computer architecture, ISCA ’04, pages 338–, Washington, DC,
USA, 2004. IEEE Computer Society.

[24] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Respir:
a response surface-based pareto iterative refinement for application-
specific design space exploration. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 28:1816–1829, December 2009.

[25] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz.
Efficiently exploring architectural design spaces via predictive modeling.
Proceedings of the 12th international conference on Architectural sup-
port for programming languages and operating systems, 40(5):195–206,
2006.

[26] Marcela Zuluaga, Edwin Bonilla, and Nigel Topham. Predicting Best
Design Trade-offs: A Case Study in Processor Customization. In DATE
’12: Proceedings of the conference on Design, automation and test in
Europe, 2012.

[27] Artisan Components. Tsmc 0.13 library databook.
[28] Benjamin C. Lee and David M. Brooks. Spatial sampling and regression

strategies. Micro, IEEE, 27(3):74 –93, may-june 2007.
[29] S. E. Fahlman, D. Baker, and J. Boyan. The cascade 2 learning

architecture, Technical Report CMU-CS-TR-96-184. Carnegie Mellon
University, 1996.

[30] M. J. D. Powell. The theory of radial basis functions. In Advances
in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis
Functions, W. Light (ed), pages 105–210. University Press, 1992.

[31] K.I. Smith, R.M. Everson, J.E. Fieldsend, C. Murphy, and R. Misra.
Dominance-based multiobjective simulated annealing. Evolutionary
Computation, IEEE Transactions on, 12(3):323 –342, june 2008.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation,
IEEE Transactions on, 6(2):182 –197, apr 2002.

[33] Tatsuya Okabe, Yaochu Jin, and Bernhard Sendhoff. A critical survey of
performance indices for multi-objective optimisation. In Proc. of 2003
Congress on Evolutionary Computation, pages 878–885. IEEE Press,
2003.

