
Fast Cache Simulation for Host-Compiled
Simulation of Embedded Software

Kun Lu, Daniel Müller-Gritschneder and Ulf Schlichtmann
Institute for Electronic Design Automation

Technische Universität München, Munich, Germany

Abstract—Host-compiled simulation has been proposed for
software performance estimation, because of its high simulation
speed. However, the simulation speed may be significantly low-
ered due to the cache simulation overhead. In this paper, we
propose an approach that can reduce much of the cache simula-
tion overhead, while still calculating cache misses precisely. For
instruction cache, we statically analyze possible cache conflicts
and perform cache conflicts aware annotation for host-compiled
simulation. Within loops, the conflicts are dynamically captured
by tagging the basic blocks instead of performing the expensive
cache simulation. In this way, a vast majority of the cache
accesses can be saved from simulation. For data cache, aggregated
cache simulation is used for a large data block. Further, the data
locality can be bound by considering the data allocation principle
of a program. Experiments show that our approach improves the
speed of host-compiled simulation by one order of magnitude,
while providing the cache miss numbers with high accuracy.

I. INTRODUCTION

Over the years, the cost and effort of software development
has the tendency to outweigh the hardware development in the
design of system-on-chip (SoC). For software development,
virtual prototypes (VPs) have been widely used to enable
early software performance estimation, debug and verification.
To simulate the SW programs before the actual hardware is
available, instruction set simulators (ISS) are often used. An
ISS interprets the instructions of a cross-compiled program
as the target processor would do. However, besides the high
modeling effort, the simulation speed of ISSs is usually not
high enough for simulating long software scenarios, design
space exploration or real-time simulation. To overcome this
problem, researchers have proposed host-compiled simulation
as an alternative and faster way of software performance
estimation [1]–[11], [15] In this approach, the programs are
first annotated and then directly compiled for the simulation
host. The annotated information is usually extracted from
the cross-compiled target binary and models the performance
aspects of a program, such as timing and memory accesses.
In this way, the software performance can be estimated with
relatively high accuracy.

One problem in host-compiled simulation is that the high
overhead of cache simulation may significantly lower the sim-
ulation speed. To illustrate this problem, consider the basic an-
notation process of host-compiled simulation in Figure 1. First,
the source code is cross-compiled to the target binary code.
Then the basic blocks, i.e. nodes, in the control flow graphs
(CFGs) of the source and binary code are mapped against

source code cross compile
...!
0x740 move t3, a2!
... !
0x78c lw t5, 0(t3)!
0x790 move t1, t7!
...!
0x808 beq t3, a1,78c!
...!
0x860 bne a3,t0,740 !
...

target binary code

annotated source code

matching
of CFG

debug
info

for(;j<n;){ !
 ... !
 for(;i<32;){ !
 tmp=a[k*j+i] !
 ... !
 } !
 ... !
} !

bb3

bb4

bb5

sb3

sb4

sb5

for(;j<n;){ ... !
 for(;i<32;){ !
 tmp=a[k*j+i] !
 ... !

 ... !

 /*annotation for bb4*/
 cyc+=2;
 iCache(0x78c);
 dCacheRd(a+4*(k*j+i));
 cyc+=1;
 iCache(0x790);
 ...
 iCache(0x808);

in-place cache simulation

too much overhead

Fig. 1. Basics of host-compiled simulation with in-place cache simulation.

each other. For each binary basic block, execution cycles
and memory accesses are extracted, which are then annotated
in the corresponding source code basic block, based on the
CFG mapping. Finally, the annotated source code is directly
compiled for and executed on the simulation host. During the
simulation, instruction and data caches are simulated with the
annotated addresses. When a cache miss happens, the cache
miss penalty will be added to the simulated cycles. On one
hand, cache simulation is indispensable for an accurate model.
On the other hand, it may cause the problem of excessive
annotation, which may diminish the speed-up offered by host-
compiled simulation. As of now, existing approaches use in-
place cache simulation. This means that cache accesses are
annotated to the basic block that contains them, as shown in
Figure 1. However, in-place cache simulation may cause too
much simulation overhead. In the shown example, there are
53 cache accesses to be simulated within a source basic block.
Since this basic block is in the inner loop, a large loop iteration
count will incur very high cache simulation overhead. Besides,
when used in transaction level models (TLM), a transaction
can be called after a cache miss to simulate the cache refilling.
This causes additional overhead due to synchronizing and
simulating those transactions. The overhead of in-place cache
simulation can slow down the host-compiled simulation to a
great extent. When there are many cache misses, the gain
of simulation speed over ISS simulation can be significantly
redueced. Additionally, we point out that non-functional cache978-3-9815370-0-0/DATE13/ c©2013 EDAA

models are used in host-compiled simulation, meaning that no
actual data are transferred and stored in the cache.

A. Our contribution

We propose an approach that is capable of removing much
of the cache simulation overhead while providing precise
numbers of cache misses. It identifies a vast majority of cache
accesses that do not need to be annotated and performs cache-
conflict aware annotation for host-compiled simulation. Con-
sider a simple example: assume we are reading an instruction
100 times consecutively. Then only the first read requires
instruction cache simulation. The remaining 99 reads do not
need to be simulated, because the instruction is already cached.
Likewise, only a few cache accesses need to be simulated for
loops that execute an instruction sequence repeatedly. Further,
our approach can handle all possible execution paths of the
control flow to accurately capture the cache misses due to
cache conflicts. Specifically, it presents efficient strategies for
both instruction and data cache simulation.

For instruction cache simulation, our approach performs
cache miss analysis for all loops at annotation time. The
addresses of the instructions are known after compilation.
Thus, given a particular cache configuration, it can usually
be determined statically whether there are internal instruction
cache conflicts within a loop body. If not, then the instruction
cache accesses need only to be simulated once, e.g. after
the loop body. If there are internal conflicts, our approach
identifies the execution paths causing those conflicts. It then
annotates a variable in corresponding source code basic blocks
to count the number of conflicts. Then after the loop body, the
number of cache misses is calculated using the count variables.
Hence, no instruction cache simulation needs to be performed
within the loop body. This considerably reduces the overhead
of instruction cache simulation.

For data cache simulation, aggregated cache simulation is
used. This means that data cache simulation is performed for
a large address range, instead of for each accessed byte or
word. The address range is the range of a large data block,
e.g. an array. If the size of the data block does not exceed the
data cache capacity, then there would be no internal data cache
conflicts among the accesses to the data block. Thus, these data
cache accesses need to be simulated only once irrespective of
the actual access count and order. Furthermore, our approach
considers the data allocation principle used by a program.
All data accessed by a program locate in the stack, heap or
data section in the memory. Correspondingly, we can bound
the data locality to simplify data cache simulation and avoid
in-place data cache simulation. This is also useful when the
data addresses can not be determined, due to complex pointer
dereferences or data structures.

B. Related work

Since its advent [1], host-compiled simulation of embedded
software has been continually researched over the years [2]–
[11], [15]. Substantial progress has been made regarding the
back annotation of timing information [2]–[6]. In order to

set 1

1

3 2

5 4

6

cached tag and comparator cache line (block)

×100

set 2 set 3 set 4

t
t tag of the instruc-
tion in a basic block
:=

Fig. 2. Cache miss calculation - an example.

perform realistic performance estimation, memory accesses
must also be annotated to enable cache simulation [7]–
[11], [15]. Although researchers are aware of the problem
of cache simulation overhead, all existing approaches use
in-place cache simulation. No concrete approach has been
proposed to specially tackle this problem in the area of host-
compiled simulation. Analytical cache miss equations have
been developed for compiler or memory hierarchy optimiza-
tion [12]. The concept of symbolic execution [13] is used for
statically estimating the cache misses or timing for WCET
analysis.These are not proposed for and can not directly
be used in host-compiled simulation. Motivated by [13], we
investigate the concept of cache miss equation and symbolic
execution to reduce cache simulation overhead for fast host-
compiled simulation.

In the following, Sec. II and III present our approach.
Sec. IV gives experimental results, followed by the conclusion.

II. BASIC IDEA AND PRELIMINARIES

A. Basic Idea

The proposed idea is that cache simulation does not need
to be performed for a vast majority of the cache accesses.
Consider the control flow graph of an exemplary code block
in Figure 2. Without loss of generality, we assume the instruc-
tions within one basic block are cached to the same cache
set and they have the same tag1. Further, assume a two-way
associative instruction cache is used and all basic blocks in the
loop are visited. As shown, both the instructions containing
tag 1 and 4 are cached into cache set 1. Since there are two
cache lines in each cache set, the capacity of the cache set 1
suffices to store these instructions. Therefore, no matter how
many times the loop iterates, there are no more cache misses at
cache set 1, except the first two cold misses. Similar analysis
holds for other cache sets. In terms of annotation, instruction
cache simulation can be pushed outside of the loop body, e.g.
after the loop body, to capture the cold misses. In this way, the
overhead of cache simulation is almost eliminated. If there are
cache access conflicts within the loop, the number of conflict
misses can be accurately calculated, without performing the
costly cache simulation on each access. To do this, one needs

1Even if a basic block contains instructions with different tags, the analysis
in Sec. III-A still holds, since the principles of deriving the access graph of
the cache sets and calculating the cache miss counts remain the same.

to consider cache configuration, execution paths of the control
flow, loop structure, etc. Details are given after introducing
some preliminary terms.

B. Preliminaries

Here we give several terms that are used later in the
strategies of fast cache simulation. These strategies are valid
for caches with least-recently used (LRU) or first-in-first-out
(FIFO) replacement policy.

Must-access: if a basic block is visited by all paths from a
program point A to program point B, then a memory access
within this basic block is a must-access. For example, the
access to tag 1 in Figure 2 is a must-access. For loops, the
must-access basic blocks are those that are within the loop
body and post-dominate the loop head node. The dominance,
post-dominance and loop analysis among the basic blocks can
be found in [5].

May-access: if a basic block may be visited by the paths
from a program point A to program point B, then a memory
access within this basic block is a may-access. For example,
the access to tag 4 in Figure 2 is a may-access. For loops,
the may-access basic blocks are those that are within the loop
body and do not post-dominate the loop head node.

Mutually exclusive may accesses: for two may accesses
between two program points, if there is no path that visits both
these two may accesses without passing the loop back edge,
then they are mutually exclusive. For example, the accesses to
tag 4 and 5 in Figure 2 are mutually exclusive.

Access trace of a cache set: a sequence of addresses
accessing a set. In this paper, we only consider the tag part of
an address. For cache set 1, an exemplary access trace is:

..., 1,1,1,3,6,3,6,3,4,6,3,6,1,1, ...,
where all the numbers are tags.

Access graph of a cache set is a graph that models possible
access traces of this cache set.

Cold misses are the cache misses that are caused by the
accesses to certain tags for the first time. The number of cold
misses can not be reduced irrespective of the cache size.

Conflict misses are the cache misses that are caused by
previous eviction of existing cache lines (blocks) due to
accesses to other tags.

Lemma 2.1: Assume LRU or FIFO replacement policy,
there are no conflict misses for a given access trace of a cache
set, if the number of different tags in this trace is smaller than
the number of cache lines (blocks) in this cache set.

Theorem 2.1: For the accesses to a continuous address
region, there are no conflict misses, if the size of this region
is smaller than the cache size.

Proof: Within a continuous address region, the number of
tags cached to a cache set is smaller than the number of cache
lines (blocks) within the cache set. According to Lemma 2.1,
there are no conflict misses.

III. STRATEGIES FOR FAST CACHE SIMULATION

In this section, we first show the proposed strategies for
fast simulation of both instruction and data caches. Then
we show how the source code is annotated and discuss the
corresponding timing simulation.

1

3 2

5 4

6

exemplary access
trace at cache set 1:

may access

... 1, 6, 1, 6, 1, 4, 6, 1, 6, 1, 6, ...

cache misses

1

4

6

access graph of cache set 1 ×100

set 1

Fig. 3. Conflict misses in loops.

A. Fast instruction cache simulation

At annotation time, the instruction addresses are known.
For a given cache configuration, it can be determined which
cache set an instruction will be cached to. Thus we can
obtain the access graph for each cache set from the control
flow graph. For a specific execution of the access graph, the
number of cache misses at a cache set is deterministic and
thus can be accurately calculated. In the following analysis,
we assume 2-way associative caches are used, with LRU or
FIFO replacement policy.

1) Handle a single loop: Without loss of generality, we
show how to calculate the number of cache misses at one
cache set, considering several cases.

Case 1) Cache set capacity is not exceeded. The number of
tags is not larger than the number of cache lines. This is the
simplest case, in which no conflict misses will happen. The
example in Figure 2 shows one such case.

Case 2) Cache set capacity is exceeded, which results in
conflict misses. The number of conflict misses can be precisely
calculated under the following conditions.

Case 2a) The must-accesses fill up the cache set and
the conflict misses are caused by a may-access or several
mutually-exclusive may-accesses. Consider the example in
Figure 3. For the code block under analysis, an access graph of
cache set 1 is constructed. In this graph, accesses to tag 1 and
6 are must-accesses, while those to tag 4 are may-accesses.
In every loop iteration, accesses to tag 1 and 6 will fill cache
set 1 to capacity. Thus, a cache miss occurs each time for
each access to tag 4. After this miss, tag 6 will be evicted.
Thus, the next access to tag 6 gives a miss and evicts tag 1.
As depicted, three consecutive misses are caused. In total, the
number of cache conflict misses for this code block at cache
set 1 is calculated as

Mset1 = (Nway + 1)× cnttag4 = 3× cnttag4, (1)

where Nway = 2 is the number of cache lines in a cache set
and cnttag4 is the count of accesses to tag 4. To capture the
count of conflict misses, we accumulate the execution count
cnttag4 of the basic block containing the access to tag 4. Then
after the loop body, this count is substituted in (1) to calculate
Mset1. Now assume tag 5 is also cached into cache set 1.
Since accesses to tag 4 and tag 5 are mutually exclusive, we

1

2

4 3

5

1

2

6

6

1

2

6

2

access graph of
cache set 1

Fig. 4. Consider nested loops.

have the number of conflict misses as

Mset1 = 3× (cnttag4 + cnttag5). (2)

Case 2b) The must-accesses exceed the cache set capacity.
This leads to the most conflict misses. Assume in a loop body
there are three must-accesses to tag 1, 4, 9 cached at cache
set 1. Then the access trace of cache set 1 within this loop is:

..., 1,4,9,1,4,9,1,4,9, ...

Every access in this trace will cause a miss, due to similar
reasons of those misses in Figure 3. If there are other may-
accesses at cache set 1, then each may-access will also give a
miss. For example, assume a may-access to tag 3, one possible
access trace is:

..., 1,4,9,1,3,4,9,1,4,9,1,3,4,9, ...

Each access to tag 3 will cause a miss. The total number of
misses at cache set 1 is calculated as:

Mset1 = cnttag1 + cnttag4 + cnttag9 + cnttag3

= 3× cntloop + cnttag3,
(3)

where cntloop = cnttag1 = cnttag4 = cnttag9 is the loop
iteration count.

Summing up the considered cases, we have

Mseti =


0, case1

(1 + Nway)× Σcntmay, case2a

Σcntmust + Σcntmay, case2b

(4)

The total number of cache misses is:

M = ΣS
i=1Mseti , (5)

where S is the number of cache sets.
2) Handle multiple loops: For loops that are sequentially

executed, (4) can be used to handle them independently. For
nested loops, we first decouple them to single loops and then
apply (4) to estimate the cache misses for each of them.
Consider the example in Figure 4. For loop 1, based on its
access graph of cache set 1, The number of conflict misses for
loop 1 is 3×cntloop1. Within loop 2, there is no conflict misses
at cache set 1. Thus for these two loops, the total number of
cache misses at cache set 1 is 3× cntloop1. Similar principle
can be used to handle more complex nested loops.

B. Fast data cache simulation
Unlike instruction accesses, the addresses of data accesses

are usually unknown statically at annotation time. Although
it is possible to obtain the precise data access addresses
for host-compiled simulation [15], it may be inefficient to
simulate every data cache access. Here we present a fast and
approximate way of data cache simulation.

Firstly, our approach uses aggregated data cache simulation
for an accessed data block. This means that the address range
of the data block is considered as a whole to simulate data
cache misses. This is normally useful when looping over large
data blocks. Consider the following example:

1 c h a r tmp ;
2 f o r (i =0 ; i < N−1; i ++){
3 f o r (j = i ; j < N; j ++){
4 tmp= buf [j] ;
5 . . .
6 }
7 }
8 dcReadDataBlock (bufAddr , N) ; / / dc s i m u l a t i o n

If a data cache simulation is annotated for every byte after line
4, then approximately N2 cache accesses will be simulated.
Instead of doing this, data cache simulation is annotated after
loop with the whole buffer size. Assume the buffer size is
smaller than the data cache size, there will be no internal cache
conflicts (see Theorem 2.1) and the number of cache misses
is correctly simulated. Additionally, in aggregated data cache
simulation, the address is increased by the size of a cache
line (32 bytes). So only dN/32e cache accesses need to be
simulated. The buffer size and address is obtained by using
the Cparser [14] and a tool from [5].

Secondly, the data locality of certain data accesses can be
bound by considering the principle of data allocation in the
execution of a program. Data are allocated in three major
memory sections, which are the stack, heap and data sections.
By distinguishing the corresponding sections of the accessed
data, the data locality can be bound for data cache simulation.
Consider an example for data allocated in the stack:

1 sp = 0 x1000 ; / / i n i t o f sp
2
3 vo id s e t k e y () {
4 sp−=530; / / 530 : s i z e o f l o c a l s t a c k
5 c h a r s t a t e [1 6] [1 6] ;
6 c h a r buf [2 5 6] ;
7 f o r (i =0 ; i <16; i ++){
8 p t r = i<8 ? s t a t e [8− i] : s t a t e [i] ;
9 f o r (j =0 ; j <16; j ++){

10 buf [i∗ j] = . . .
11 ∗ p t r = . . .
12 p t r ++;
13 . . .
14
15 dCache (sp , 530 , numDCAccesses) ; / / dc s i m u l a t i o n
16 sp +=530; / / r e s t o r e s t a c k p o i n t e r
17 }

The local variables state and buf are allocated in the local
stack of the function. The size of a function’s local stack can be
obtained from the cross compiled binary. The actual addresses
of the variables in the stack are tracked by the stack pointer
sp register. Assume a downward growing stack, the sp register
is decreased and increased at the function entrance and exit,
respectively. The actual stack address of a function depends
on when it is called. To trace the dynamic value of the sp
register, a global variable sp is annotated and updated at the
function entrance and exit. Hence we can use sp for data cache
simulation. In this example, since only local variables are used,

the accessed data addresses are bound within [sp, sp + 530].
If state and buf are defined as global variables, they will be
allocated by the compiler in the data section. Their addresses
are fixed at compile time and can be provided explicitly by
the debugger. In both case, the address range can be used to
bound the number of data cache misses.

The presented approximate data cache simulation is that it
can not handle internal data cache conflicts. Besides, not all
data in the range are accessed, hence over estimation of cache
misses is possible. However, it still gives good approximation,
as long as the data range is smaller than the cache size. If data
cache conflicts are present, it resorts to the in-place data cache
simulation for the part of code where conflicts may occur.

C. Annotation and Simulation
Here we show how the source code is annotated

with respect to cache simulation. Then we discuss the
corresponding timing estimation. Consider a code snip-
pet in Figure 5. The annotated code lines are shaded.

void mix(){ !
 sp -= 270; !
 ... !
 nLoopCnt=0; nbb2=0;...!
 for (...){!
 nLoopCnt++; !
 m=b[i]; //bb1 !
 cyc+=5; !
 if(m>0){ //bb2 !
 a[i] = x; !
 nbb2++; cyc+=2; !
 }else{ //bb3 !
 a[i] = -x; !
 nbb3++; cyc+=3; !
 } !
 tmp=a[i-1]; //bb4 !
 ... !
 } !
 //simulate cold misses!
 nICMiss+=iCache(0x530); //bb1 !
 ... !
 if(nbb2) //bb2 is visited!
 nICMiss+=iCache(0x540); !
 ... !
 //conflict misses in the loop!
 nICMiss+=nbb2*(NUM_WAY+1)+...; !
 nDCMiss+=dCache(sp,270); !
 sync(cyc, nICMiss, nDCMiss);!
 ... !
 sp+=270; !
} !

Fig. 5. Annotation example.

Assume the accesses to the in-
structions within basic block
bb2 cause conflicts at a certain
cache set in a way as in (1). To
capture the conflicts, the anno-
tated variable nbb2 records the
execution counts of bb2 within
the loop. Then after the loop
body, according to (1), nbb2 is
used to calculate the number of
conflict misses that happen dur-
ing the execution of this loop.
Additionally, instruction cache
simulation is performed for all
the must accesses and the actu-
ally visited may accesses. This
can simulate the cold misses
with respect to the loop. It also
simulates the conflict misses be-
tween the loop and the codes
outside of the loop. Finally, the
sync() function calculates the
simulated time with the accu-
mulated cycles and cache miss numbers. Then it calls the
SystemC wait statement to synchronize timing. This means
the expensive wait is not called every time when a cache miss
occurs, but only once after a large code block. In this way, the
simulation speed can be further improved. As a limitation, our
approach does not provide the exact occurrence times of the
cache misses. However, for fast software performance analysis,
it is often sufficient to use the cache miss numbers for timing
estimation. Even for multiprocessor simulation, the timing can
also be approximately estimated by knowing the cache miss
numbers [16].

IV. EXPERIMENTAL RESULTS

The experiments are performed to evaluate the simulation
speed-up and accuracy given by removing the unnecessary
cache simulation overhead. Several benchmark programs are
simulated on a 4-core Intel machine with 4GB RAM running
Linux at 2.33GHz. They are compiled with optimization level

(a) With a 2KB instruction cache.

(b) With a 1KB instruction cache.

(c) With a 512B instruction cache.

Fig. 6. Traced cache misses for jpegdct.

O2. Firstly, they are simulated by an instruction set simulator
(ISS), whose results are used as the reference. Secondly, host-
compiled simulation is used with in-place cache simulation
(HS+ic). Finally, host-compiled simulation with the proposed
fast cache simulation is used (HS+fc).

The statistics of cache accesses and misses are shown
in Table I. First of all, we can see that the results of the
host-compiled simulation are very accurate, compared to ISS
simulation. The number data and instruction cache accesses
and misses are all well estimated. Secondly, after removing a
vast majority of unnecessary cache simulation, the proposed
approach is still able to give accurate cache simulation results.
This can be seen from the almost identical instruction cache
miss numbers in HS+ic and HS+fc simulations among all
cache configurations. This implies that our approach has
successfully captured both the cold misses and conflict misses.

For the program jpegdct, the traced cache misses in ISS
simulation are given in Figure 6. There are 4 levels of nested
loops in the program. Instruction cache conflicts happen within
the loop at level 2, when the instruction cache size is changed
from 2KB to 1KB. For a 512B cache, conflicts happen within
the loop at level 3, an inner loop of the loop at level 2.
Thus a lot of instruction cache misses are observed. From
Table I we can see that the cache miss rate is over 10%. In
the program aes, several small functions are called in a nested
loop. For a 512B instruction cache, conflicts happen among
those functions and the loop body. We first embed the CFG of
the called functions into that of the caller functions and then
use the proposed approach to capture the conflict misses. For
jpegdct, aes and edge detect, the proposed approach is able
to handle the different cache conflict scenarios and provides
accurate simulation results. In other programs, no instruction
cache conflicts exist. The number of instruction cache misses
is mostly caused by cold misses and does not change with the
cache configuration.

Now we examine the gain of simulation speed offered
by our approach. First, the upper figure in Fig. 7 shows
the simulation performances of HS+ic simulation for the
program jpegdct. For instruction caches with the same size,
the performance slightly decreases when there are more cache
lines per cache set, because there are more comparisons of
tags for each cache access. For a smaller instruction cache,
a clear drop of performance is observed, which is caused by
the additional effort after cache misses to synchronize with
SystemC kernel and perform transactions. Second, the lower
figure shows the speedup of two simulation modes over host-
compiled simulation with in-place cache simulation. In one
mode, we use host compiled simulation with no annotation

TABLE I
BENCHMARK SIMULATION RESULTS.

sim # of dc # of ic num. of instruction cache misses for different cache configurations (size-associativity)
SW mode access/miss access 2KB-1W 2KB-2W 2KB-4W 1KB-1W 1KB-2W 1KB-4W 512B-1W 512B-2W 512B-4W

ISS 32157/424 189980 13 13 13 13 13 13 13 13 13
fir HS+ic 32156/427 189731 13 13 13 13 13 13 13 13 13

HS+fc 32156/500 189731 13 13 13 13 13 13 13 13 13
ISS 27517/99 66877 46 46 46 229 321 425 2985 4105 4105

jpegdct HS+ic 27464/100 66895 46 46 46 228 309 425 2980 4100 4100
HS+fc 27464/157 66895 46 46 46 228 309 425 2980 4100 4100

ISS 16099/26 73139 7 7 7 7 7 7 7 7 7
isort HS+ic 16105/27 73177 7 7 7 7 7 7 7 7 7

HS+fc 16105/27 73177 7 7 7 7 7 7 7 7 7
ISS 2825/49 7551 71 71 71 72 72 72 202 195 242

aes HS+ic 2833/51 7564 71 71 71 71 71 71 198 200 246
HS+fc 2833/76 7564 71 71 71 71 71 71 198 200 246

ISS 163416/281 879263 16 16 16 31 26 26 48 38 38
edge detect HS+ic 163477/279 880443 15 15 15 30 25 26 47 37 37

HS+fc 163477/279 880443 15 15 15 30 25 26 47 37 37

 0
 10
 20
 30
 40
 50
 60
 70
 80

2KB-1Way 2KB-2Way 2KB-4W 1KB-1Way 1KB-2Way 1KB-4W 512B-1Way 512B-2Way 512B-4Way

Pe
rfo

rm
an

ce
 (M

IP
S)

Performance of host-compiled simulation with in-place cache simulation.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

2KB-1Way 2KB-2Way 2KB-4W 1KB-1Way 1KB-2Way 1KB-4W 512B-1Way 512B-2Way 512B-4Way

Sp
ee

d-
up

Speedup over simulation with in-place cache simulation.

HS+fc
HS+nil

15.8

Fig. 7. Comparison of simulation performance for program jpegdct.

at all (HS+nil), which gives the upper bound of possible
simulation performance. In the other mode the proposed
approach is used. We can see that the proposed approach
offers a gain of about 16 to 85 over the HS+ic simulation.
This is a significant gain, considering that there is no trade-
off of simulation accuracy in terms of cache miss numbers. For
other programs, similar observations are obtained regarding the
relation of simulation performance and the cache simulation
overhead. On average, host-simulation with the proposed fast
cache simulation yields an average speed-up of 12× over the
simulation with in-place cache simulation.

V. CONCLUSIONS

This paper has shown that a vast majority of the cache sim-
ulation can be saved for fast host-compiled simulation, while
cache miss numbers can still be well approximated for timing
estimation. Our approach statically analyzes possible instruc-
tion cache conflicts and performs conflict-aware annotation to
dynamically capture the conflicts. Limited symbolic simulation
is used, instead of actual cache simulation. Memory allocation
mechanism is considered to bound the data locality, which
simplifies the data cache simulation. Experiments show that
the proposed approach greatly reduces the cache simulation

overhead. The simulation speed is comparable to that of native
execution without annotation.

ACKNOWLEDGEMENTS
This work is party sponsored by the German Federal Ministry

of Science and Education (BMBF) in the project SANITAS (16 M
3088).

REFERENCES
[1] V. Zivojnovic and H. Meyr, “Compiled HW/SW co-simulation ,” in

ACM/IEEE Design Automation Conference (DAC), 1996.
[2] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Lan-

gen, “Source-Level Timing Annotation and Simulation for a Hetero-
geneous Multiprocessor,” in Design, Automation and Test in Europe
(DATE), 2008.

[3] P. Gerin, M. M. Hamayun, and F. Petrot, “Native MPSoC co-simulation
environment for software performance estimation,” in International
conference on Hardware/Software codesign and system synthesis, 2009.

[4] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Dominator homo-
morphism based code matching for source-level simulation of embedded
software,” in International conference on Hardware/Software codesign
and system synthesis (CODES+ISSS), 2011.

[5] D. Mueller-Gritschneder, K. Lu, and U. Schlichtmann, “Control-flow-
driven Source Level Timing Annotation for Embedded Software Models
on Transaction Level,” in EUROMICRO Conference on Digital System
Design (DSD), Sep. 2011.

[6] S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann, and W. Rosen-
stiel, “Hybrid Source-Level Simulation of Data Caches Using Abstract
Cache Models,” in Design, Automation and Test in Europe (DATE),
2012.

[7] K. Karuri, M.A.A.Faruque, S. Kraemer, R. Leupers, G. Ascheid, and
H. Meyr, “Fine-grained Application Source Code Profiling for ASIP
Design,” in ACM/IEEE Design Automation Conference (DAC), 2005.

[8] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate Retargetable
Performance Estimation at the Transaction Level,” in Design, Automa-
tion and Test in Europe (DATE), 2008.

[9] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel, “High-
performance timing simulation of embedded software,” in ACM/IEEE
Design Automation Conference (DAC), 2008.

[10] A. Pedram, D. Craven, and A. Gerstlauer, “Modeling Cache Effects at
the Transaction Level,” in IESS, 2009.

[11] H. Posadas, L. Diaz, and E. Villar, “Fast Data-Cache Modeling for
Native Co-Simulation,” Asia and South Pacific Design Automation
Conference (ASP-DAC), 2010.

[12] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: an
analytical representation of cache misses,” in International conference
on supercomputing (ICS), 1997.

[13] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, “Exact analysis
of the cache behavior of nested loops,” in ACM SIGPLAN conference
on Programming language design and implementation, 2001.

[14] pycparser, “http://code.google.com/p/pycparser,” 2011.
[15] K. Lu, D. Mueller-Gritschneder, and U. Schlichtmann, “Memory Access

Reconstruction Based on Memory Allocation Mechanism for Source-
Level Simulation of Embedded Software,” in Asia and South Pacific
Design Automation Conference (ASP-DACA) , 2013.

[16] K. Lu, D. Mueller-Gritschneder, and U. Schlichtmann, “ Analytical Tim-
ing Estimation for Temporally Decoupled TLMs Considering Resource
Conflicts ,” in Design, Automation and Test in Europe (DATE), 2013.

