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Abstract—Recent trends in embedded system architectures
brought a rapid shift towards multicore, heterogeneous and
reconfigurable platforms. This imposes a large effort for pro-
grammers to develop their applications to efficiently exploit the
underlying architecture. In addition, process variability issues
lead to performance and power uncertainties, impacting expected
quality of service and energy efficiency of the running software.
In particular, variability may lead to sub-optimal runtime task
allocation.

In this paper we present a holistic approach to tackle these
issues exploiting high level HW/SW modeling to customize
the runtime library. The customization introduces variability
awareness in task allocation decisions, with the final purpose of
optimizing a given objective: Execution time, power consumption,
or overall energy consumption.

We present a complete walkthrough, from top-level modeling
down to variability-aware execution using a parallelized com-
putational kernel running on a next generation, NoC based,
heterogeneous multicore simulation platform.
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I. INTRODUCTION

ULTICORE architectures are becoming indispensable to

high-end embedded computing as application energy-
efficiency requirements exceed 10 GOPS/Watt. Unfortunately,
sub-65 nm CMOS technology nodes will be increasingly af-
fected by the variation phenomena, and multicore architectures
will be impacted in many ways by the variability of the under-
lying silicon fabrics. In particular, intradie process variations
result in significant core-to-core frequency variations [2]. This
problem is being addressed at multiple levels of abstraction,
from the circuit to the architectural level. Variation-tolerant
multicore platforms require circuits to monitor variations and
to compensate them, as well as software policies to decide
when and how to apply compensation in response to static and
dynamic perturbations of the nominal operating characteristics
[2].

In that sense, chip design has turned enormously complex
and imposing a large effort for the programmers to develop
their applications. For this reason, new and more efficient
tools for software development are needed to ensure software
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productivity and time to market of new applications. Specif-
ically, the automation of the software design process starting
from high level models all-the-way down to a customized
implementation on specific architectures has become a key
factor to increase programmer productivity.

In this paper, an innovative approach for variability com-
pensation from a high level model of the underlying hardware
platform is being presented. The approach starts from a SysML
description of the target HW platform under Artisan Studio™
tool suite. The abstraction level of the description is thought
to be detailed enough to capture information relevant for the
runtime manager to make task allocation decisions: Types
and organization of cores, memory hierarchy, topology of
the interconnect. Variability-relevant information is annotated
in the SysML components as properties: Clock frequency,
static power, dynamic energy. These quantities results from the
post-manufacturing characterization, so that process variability
is taken into account. This information is passed through
a customization language to the runtime library to make
variability aware decisions. Artisan Studio is used to gener-
ate runtime customization information in XML format. To
characterize the type of information required for variability
aware runtime allocation, we considered state-of-art policies
and we implemented a simple test case to verify the whole
customization flow.

This paper is organized as follows. First, state of the art
works on high level modeling as well as variability awareness
and tolerance will be presented in Section II. A methodology
for modeling the target platform using the SysML modeling
language will then be illustrated in Section III. Runtime library
customization is reported in Section IV. A software application
is used as a benchmark to test the runtime customization
feasibility and efficiency. A description of experimental set-
up is reported in Section V. The paper closes by delivering
the overall results and conclusion as well as the prospect for
further development in Section VI

II. RELATED WORK

A. High-Level Modeling of Target Hardware Platforms

The increasing amount of hardware resources in next gen-
eration MultiProcessor Systems-on-Chip (MPSoC) calls for



efficient design methodologies and tools to reduce their de-
velopment complexity. In [4] presented is a candidate MP-
SoC design environment Gaspard2, which uses the MARTE
(Modeling and Analysis of Real-Time and Embedded systems)
standard profile for high-level system specification. Gaspard2
adopts a methodology based on Model-Driven Engineering.
It promotes separation of concerns, reusability and automatic
model refinement from higher abstraction levels to executable
descriptions.

In addition, [5] presents a novel methodology for modeling
partially dynamic reconfigurable hardware at transaction level.
The paper covers the lack of tools and mechanisms for the
design of reconfigurable logic at system level and for the ex-
ploration of the different configurations of such architectures.
The presented mechanisms have been implemented in ReSP,
a transaction-level simulation platform especially targeted to
multi-processor embedded architectures. The adopted method-
ology allows the definition of the reconfigurable functional-
ities through scripted languages, therefore the switching of
any software function for a hardware one, the modeling of
configuration delays, area use, etc., can be easily performed.
Overall, the methodology enables a powerful exploration of
the system functionalities by switching between hardware and
software components.

B. Awareness of And Compensating The Variability Factor

Recently, much attention has been given to task allocation
and scheduling strategies for MPSoCs affected by variability
and aging. [1] gives an overview of the concept of variabil-
ity. Concerning the allocation countermeasures proposed in
literature, a process variation-aware thread mapping has been
recently proposed in [6]. In that work, the main purpose is
to maximize performance and it targets loop-intensive appli-
cations. However, this approach does not provide an optimal
solution and does not take energy consumption into account.
Moreover, [7] proposes a statistic scheduling approach to
mitigate the impact of parameter variations in a multiprocessor
platform. The proposed policy is based on a static estimation
of task execution times and variability information but it does
not consider power consumption [3].

In paper [3], the concept of time-constrained variability-
aware task allocation methodology with the objective of min-
imizing the energy consumption is proposed. The allocation
problem was formulated in two sequential steps where the so-
lution computed by a Linear-Programming (LP) approach was
fed into a Bin-Packing (BP) algorithm for final task allocation.
That paper targets realtime streaming multimedia applications
[2]. Also in scope of streaming applications, [2] focuses on
software counter-measures which reshape application work-
load to account for variability in the underlying multiprocessor
fabric. Proposed is workload allocation policy to compensate
for core-level performance and power variations. The focus
is multimedia processing, which is typically characterized by
application-level frame-rate constraints. In that context, the
top-priority goal of variability compensation policies is to meet
the real-time constraints imposed by the frame rate of the

multimedia stream, while minimizing energy as a secondary
objective [2].

Most closely related to our approach, variability-aware
workload allocation policies for independent task sets are
presented in [8]. Two policies are considered, aiming at maxi-
mizing performance or minimizing power, with the assumption
that voltage scaling is available on a per-core basis (this is
not supported in our platform). Moreover [8] assumes that
the number of tasks is not larger than the number of cores
(in our paper, it is larger). Our results are obtained with
similar versions of the policies described in [8], with suitable
modifications to suit our system setup [3].

C. From High-Level Model to Runtime - A Top-down Ap-
proach

According to the aforementioned relevant work, there is
an obvious gap between top-level modeling of target hard-
ware MPSoCs and variability awareness at the runtime level.
In more detail, the center of the methodology is the high
level modeling language (UML/SysML) that will be used
to describe the target platform and application. High level
modeling allows an architectural independent description of
the application and for this reason it is prone to customization
for different architectural templates. Customization will be
performed in an automated way through generation of par-
allel code for multicore tiles and the required mechanisms
to manage reconfigurable DSPs/accelerators. In addition, the
customization environment will focus on energy efficiency and
robustness of the generated code, where the uncertainties due
to fabrications of transistors in nanometer technologies will
be hidden, thus mitigating their impact in terms of energy and
performance. From a research perspective, this work is taking
a lead in bringing variability issues into the software design
flow and thus closes the gap mentioned right before. That
is, coupling together the automatic toolchain customization
strategy with high level platform modeling.

The paper in hand presents a primary version of that
innovating approach for automatic runtime customization for
variability compensation and energy efficiency, by provision-
ing the customization information through a high-level model
of the target platform. The model is developed using one of
leading tools in the system modeling industry, Atrisan Studio.
Our platform is a software environment that simulates a
conceptual cut-down version of Genepy [9] hardware platform.

III. DESCRIPTION OF TARGET PLATFORM AND MODELING
METHODOLOGY

The target platform is a simulation environment for a
Genepy-like architecture. This simulator is a simplified version
of the Genepy platform, since it models only the MIPS
subsystem of each SMEP cluster, without the DSPs (Fig.
1). Nevertheless, it has the same NoC topology and though
all embedded applications could be tested on this first basic
version.

This platform performs simulation in HCE, or Host Code
Execution, mode. In this mode, compiling the application takes



Fig. 1. Simplified Genepy Platform

place for the user’s machine platform. For instance if the
underlying physical hardware is an x86 architecture, then the
application code is compiled for x86. A library is created from
the application source code, and is linked dynamically with the
platform. This mode is fast and allows the use of GDB, the
GNU Project debugger.

The platform is connected to an external unit called
CPU_TB. This unit is used to boot the clusters (illustrated
in Fig. 2), load the application in the internal memory of the
mips cores, and is able to interact with any of them via the
NoC routers (illustrated as blue squares in Fig. 1).
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Fig. 2. Platform Structural Modeling in Artisan Studio

From modeling perspective, a methodology is proposed for
abstracting existing RTL IPs into SysML? components. During
the abstraction flow, it is possible to set the level of detail
to be maintained in SysML, such as hierarchical structure
and data types of the IPs, in order to allows designers to
choose the level of detail to be preserved in the SysML model.
The methodology aims at producing SysML models with both
structural and behavioral information.

In that sense, the target platform consists of hardware
structure and also hardware capability information. Structural
information is all about hardware units (the building blocks)
and interconnections, while capability information describes
what mechanisms are supported for energy and variability
management of the target hardware.

3SysML is specified as a profile (dialect) of the Unified Modeling Language
(UML™), the industry standard for modeling software-intensive systems, so
SysML is frequently implemented as a plugin for popular UML modeling
tools.

In Artisan Studio, the hardware model, as illustrated in
Fig. 3, has been called “LimitedPlatform” and it consists of
a number of packages and subpackages (depicted as yellow
folders in Fig. 3). Inside the FourMIPSChip package we got
a component block named after the same name of the parent
package and depicted as a red cube (Fig. 3). This block is
composed of eight parts (four routers and four MIPS cores)
as well as an internal block diagram called “Genepy Chip”
(Fig. 3). This diagram shows how the Genepy platform is
structurally built, as appears in Fig. 2.
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Fig. 3. Model Composition

The capability information, however, are located under the
Cores package (Fig. 4). In the figure, the word “manufacture”
means that, for instance, clock frequency is a design-time
feature and its value is to be set by the model developer.

IV. RUNTIME LIBRARY CUSTOMIZATION

The objective of this part of the work is the development of
a methodology for the automatic customization of the runtime
library devoted to the mapping of tasks to processing cores and
the allocation of communication resources for the interfacing
with those cores. The customization includes energy-efficiency
and variability-awareness features. The runtime library will be
customized by automatically generating or deriving a hardware
description language from the hardware model developed in
section III. This language is in XML format and contains the
structural and capability information of the target hardware
platform. We also refer to it as a “customization language”.

The parameters used for customization of the runtime
library are specified here. These are the parameters that mainly
concern the dynamic decisions that are not taken at the
compiler level because they depend on runtime conditions
and will be related to both performance and power con-
sumption. Parameters are mainly clock frequency and power
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Fig. 4. Capability Modeling

consumption settings per each single core. The customization
methodology supports a class of policies for task allocation
and scheduling of tasks on the available cores. The policies
have the objective of either overall performance maximization,
power consumption minimization, or energy saving. A number
of policies have been discussed in [3] and [11]. The policies
are ranging in terms of approach (i.e. heuristic or probabilistic
etc.), complexity, and effectiveness. For our work we have
employed two of such policies, namely: frequency rank, and
power rank.

The XML customization language file is generated from
Artisan Studio, which we used in section III to model the
Genepy platform. The file contains the per-core frequency and
power values. Figure 5 displays part of the generated XML
file. It shows that the model designer has set the frequency
value to 0.87 and the power value to 1.2 for one of the cores
of the hardware platform. The other values have not been set
(so their values have been left unchanged to “manufacture”).
The rest of the XML file is pretty similar to Fig. 5 but for the
remaining cores. Also some other information is generated in
the XML file such as connection delays as in Fig. 6 (they have
been left here because they are believed to be rather small in
our platform).

Tailoring the runtime behavior relies on a selected ranking
policy. In scope of this work we target probabilistic fre-
quency ranking (for performance optimization) and probabilis-
tic power ranking (for power consumption cut). The XML
file is parsed and the frequency and power values for each

<Core name="MIPS" type="MIPS R3000" id="31"
ClockScalingDelay="missing"
CoreClockFrequencyMAX="manufacture"
CoreClockFreguencvMIN="manufacture"
CoreClockFrequencyManufacturedDefault="0.87"
CoreSupplyVoltageMAX="manufacture"
CoreSupplyVoltageMIN="manufacture"
CoreSupplyVoltageManufacturedDefault
IsClockGateable="true"
IsClockScalable="false"
CorelAveragePowerManufacturedDefault="1.2"
IsCoreDynamicPowerMonitorable="false"
IsCoreFrequencyMonitorable="false"
IsCoreInterruptible="trues"
I5CoreLeakagePowErMonitorable="Ealse"
IsVoltageGatable="false"
IsVoltageScalable="false"
VoltageScalingDelay="na"
></Core>

="manufacture"

Fig. 5. An Excerpt from The XML File - Parameters per One Core

<Platform name="FourMIPSPlatform" id="1">
<!-- inter chip connectors go here (but our platform has one
chip only) —->
<Chip name="FourMIPSChip" type="FourMIPSChip" id="2">
<!-— intra chip connectors external to clusters go here (8
connections) —->
<Connector endl="3" end2="18" 1d="5" latency="missing"

CommunicationType ="NoC"></Connector>

<Connector endl="4" end2="19" id="&" latency="missing"

CommunicationType ="NoC"></Connector>
<Connector endl="17" end2="18" id="7" latency="missing"

Fig. 6.  Another Excerpt from The XML File - Communication Delays

core are obtained. Core#00 is in charge of the runtime and
is responsible for calculating the allocation decisions (that is,
it’s considered as the master core). So no tasks are assumed
to be executed on core#00 i.e. locally. Instead, all tasks are
distributed over the other cores, which we consider as slaves.

The application is loaded to the master core only. Per each
task, a decision is calculated to determine which core of
the slaves is the one for the next task allocation. For the
probabilistic frequency ranking, to each core a probability
of allocation is associated which is proportional to the speed
difference among the cores, to achieve overall execution time
equalization. A reward/penalty is given depending on the
distance (as number of hops) from the master core. For power,
a similar approach applies, but without considering a reward or
penatly for distance since power estimation tends to be more
complex when taking the NoC elements into account.

The following pseudo code describes the execution and
allocation mechanism in general terms:

Load application to master core
Parse XML file

W R

Do for each task until end of input stream:

1 o b

Allocate task to the assigned core

Anticipate and read processing results from the core
8 Go back to loop beginning for a new task

9 End

Calculate allocation probabilities based on frequency or power—-saving values

Call a method to get a core (slave) number for processing the task



Homogeneous
Norm. Freq. | Weighted Values | Allocation Percentage
Core#01 0.95 1 34.3%
Core#10 0.95 1 34.2%
Core#11 0.95 0.9 31.5%
Quasi-Homogeneous
Norm. Freq. | Weighted Values | Allocation Percentage
Core#01 1.00 1.05 35.6%
Core#10 0.95 1.00 33.9%
Core#11 0.95 0.90 30.5%
Fully Heterogeneous
Norm. Freq. | Weighted Values | Allocation Percentage
Core#01 0.95 1.00 34.1%
Core#10 0.90 0.95 33.0%
Core#11 1.00 0.95 32.9%
TABLE I

RESULTS ABOUT ALLOCATION OF MATRIX MULTIPLICATION THREADS ON
THE MIPS CORES IN GENEPY PLATFORM SIMULATOR USING THE
PROBABILISTIC RANK FREQUENCY POLICY.

V. EXPERIMENTAL SETUP

Matrix multiplication was chosen as a convenient bench-
mark because it is representative of many multimedia kernels
and easily scales for a wide range of performance testing
because the work grows like N3 for matrices of order N.
There are three nested loops in the code; the inner loop is
short, consisting, in the simplest implementation, of a single
multiply and add.

Our application is aimed to be multiplication of two matri-
ces A and B. Each row of A is considered as a single thread
(i.e a task). So the total number of tasks to be mapped to slaves
is equal to the total number of rows of matrix A. Our target
hardware platform is restricted to just three slaves (referred to
as #01, 10, and 11). The reward given for the distance from
the master core is 0.05 on the normalized frequency values.

VI. RESULTS AND CONCLUSION

We ran the simulation, as described in Section IV, using
three different configurations: i) Homogeneous, where
all cores are equal; ii) Two equal frequencies; iii) Fully
heterogeneous, where all cores are different. These cases are
representative of variability scenarios. In the first we assume
the platform is homogeneously degraded. In the second the
degradation is localized while in the third the degradation is
randomly distributed across the cores. Note that frequencies
values are normalized with respect to the maximum frequency.
Results reported in Table I for probabilistic rank frequency
and in Table II for rank power.

Results show that the percentages of allocation depend
on the speed and power differences. In case of probabilistic
frequency policy we report also in the third column the
weighted frequency values accounting for the distance from
the master core (Core#00).

VII. ONGOING WORK

Future work will be devoted to test more complex allocation
policies considering also offloading to DSPs and accelerators.

Homogeneous
Power Value (mW) | Allocation Percentage
Core#01 15 33.7%
Core#10 15 32.9%
Core#l1 15 33.4%

Quasi-Homogeneous
Power Value (mW) | Allocation Percentage

Core#01 13 34.0%
Core#10 15 31.9%
Core#l1 13 34.1%

Fully heterogeneous
Power Value (mW) | Allocation Percentage

Core#01 15 31.8%

Core#10 13 35.2%

Core#11 14 33.0%
TABLE II

RESULTS ABOUT ALLOCATION OF MATRIX MULTIPLICATION THREADS ON
THE MIPS CORES IN GENEPY PLATFORM SIMULATOR USING THE
PROBABILISTIC RANK POWER POLICY.

Moreover, the HW/SW integration approach will be applied
not only to customize the runtime library, but also to generate
variability and energy-aware annotations into the application
code. To achieve this, we will extend the code generation
capabilities of the Artisan Studio tool within the ToucHMore
project.
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