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Abstract—In an effort to reduce the cost of specification testing
in analog/RF circuits, spatial correlation modeling of wafer-level
measurements has recently attracted increased attention. Exist-
ing approaches for capturing and leveraging such correlation,
however, rely on the assumption that spatial variation is smooth
and continuous. This, in turn, limits the effectiveness of these
methods on actual production data, which often exhibits localized
spatial discontinuous effects. In this work, we propose a novel
approach which enables spatial correlation modeling of wafer-
level analog/RF tests to handle such effects and, thereby, to
drastically reduce prediction error for measurements exhibiting
discontinuous spatial patterns. The core of the proposed approach
is a k-means algorithm which partitions a wafer into & clusters,
as caused by discontinuous effects. Individual correlation models
are then constructed within each cluster, revoking the assumption
that spatial patterns should be smooth and continuous across the
entire wafer. Effectiveness of the proposed approach is evaluated
on industrial probe test data from more than 3,400 wafers,
revealing significant error reduction over existing approaches.

I. INTRODUCTION

Current industrial test practice for analog/RF Integrated
Circuits (ICs) involves measuring the performances of each
fabricated device and comparing to the design specifications
prior to shipping it to customers, in order to detect spot defects
or excessive process variations due to imperfections in the
materials or excursions in the manufacturing process. The
excessive cost of specification testing, which requires complex
test equipment and elaborate measurement procedures, how-
ever, led to the development of various statistical approaches
in an effort to reduce this cost. The common theme of such
methods is that they employ die-level statistical models to
approximate the original test set or predict pass/fail labels
from a reduced or alternate low-cost set of measurements. For
example, the specification test compaction approach described
in [1] leverages the correlation amongst specification tests in
order to perform only a subset of these tests during production
and predict the values of the omitted ones and, thereby,
reduce test cost. Similarly, the alternate test approach [2]
replaces expensive specification tests by low-cost “alternate
tests” specifically designed to be well correlated, through
regression models, with specification tests. Along the same
lines, in [3], [4], a machine learning-based approach is used
to learn classification boundaries which separate passing and
failing population of devices in a multi-dimensional space of
low-cost measurements.

Recently, an orthogonal direction for leveraging statistical
correlation towards reducing test cost has also attracted inter-
est. This time, however, the sought after correlations are wafer-
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level. In other words, instead of completely eliminating some
specification tests and predicting them from other low-cost
tests, this approach performs these measurements on a sparse
subset of die on each wafer, and subsequently uses statistical
spatial correlation models in order to predict performance
outcomes at unobserved die locations. For example, in [5], the
expectation-maximization algorithm is used to estimate spatial
wafer measurements by assuming that data comes from a
multivariate normal distribution. Similarly, the “Virtual Probe”
(VP) approach [6], [7], [8] models spatial variation via a Dis-
crete Cosine Transform (DCT) that performs a frequency do-
main projection from spatially sampled measurements. Follow-
on work described in [9] has demonstrated the utility of VP
towards test time and test cost reduction. Along the same
lines, recent work described in [10], [11] indicates that using
Gaussian Process (GP) models, which were first explored in
[12] for capturing spatial correlation, can significantly improve
prediction results and computational time as compared to VP
models.

While these methods promise high prediction accuracy
through spatial correlation models, they rely on certain as-
sumptions. Specifically, both the VP and GP approaches as-
sume that spatial patterns of process variations are continuous
and smooth. In reality, however, there exist various localized
discontinuous effects which influence the spatial characteris-
tics of wafer-level data and violate these assumptions. These
effects may be caused by a variety of sources: multi-site test-
ing, reticle size, chemical aging or crystalline non-uniformity
resulting in individual spatial clusters on the wafer map, etc.
As a result, in the presence of discontinuous effects, the
prediction accuracy of the aforementioned methods for wafer-
level spatial correlation modeling deteriorates drastically.

In this work, we propose a method for enhancing spatial
correlation modeling of wafer-level tests so that it can handle
discontinuous effects. Our method is based on a clustering
approach, which partitions the wafer into % clusters, reflecting
and capturing the collective impact of discontinuous effects
on a measurement across the entire wafer. Subsequently, using
the GP approach, spatial models are trained separately within
each cluster, instead of a single model across the entire wafer
as in [10]. Results on industrial probe test data from more
than 3,400 wafers demonstrate significant prediction error
improvement.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews existing spatial correlation modeling
approaches, focusing mainly on spatial interpolation using the
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Fig. 1.

Overview of wafer measurement spatial interpolation [10].

GP model, which is the basis for our method. Section III
discusses the origins of discontinuous effects in spatial wafer
measurements. Section IV introduces the proposed method for
handling discontinuous effects. Section V provides experimen-
tal results, and conclusions are drawn in Section VI.

II. SPATIAL INTERPOLATION OF WAFER MEASUREMENTS
AND GAUSSIAN PROCESS MODEL

Recent research on modeling spatial measurement correla-
tion has shown great promise in capturing wafer-level spatial
variation and, thereby, reducing test cost [5], [6], [9], [10],
[12]. The underlying idea is to collect measurements for a
sparse subset of die on each wafer and subsequently train
statistical spatial models to predict performance outcomes at
unobserved die locations. Figure 1 shows an overview of the
general wafer measurement spatial interpolation approach.

In [5], the expectation-maximization (EM) algorithm is used
to estimate spatial wafer measurements, assuming that data
comes from a multivariate normal distribution. The Box-Cox
transformation is used in case data is not normally distributed.
The “Virtual Probe” (VP) approach [6] models the spatial
variation via a Discrete Cosine Transform (DCT) that projects
spatial statistics into the frequency domain. The author of
[12] lays the groundwork for applying Gaussian Process (GP)
models to spatial interpolation of semiconductor data based on
Generalized Least Square fitting and a structured correlation
function. As recently shown in [10], [11], using such GP
models can dramatically improve both prediction accuracy and
computational time, as compared to the VP model.

The GP approach works by extrapolating a function over a
Gaussian random field on limited observations [13]. Consider
a training set of nt data points {my,...,m,:} located at the
Cartesian coordinate denoted by X = {x1,...,Xn:}, X =
[x,y]. Using the GP approach, we define a Gaussian process
as a collection of random variables f(x;), ¢ = 1,...,m,
for which any finite set of n, function evaluations f(x;),
7 = 1,...,ns, ng < ny over the coordinates is jointly
Gaussian-distributed. To derive a GP model for regression,
we first consider a a noise-free linear model:

fx) =o(x)"w (1)

where ¢(x) is a function of x mapping the input columns into
some high dimensional feature space, and w is the coefficient
of the linear model which can be assigned a Bayesian prior
such that w ~ N(0,%,). By assuming the random variables
f(x;) have mean zero, we can then specify the GP with mean
and covariance functions:
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Fig. 2. Spatial wafer measurement data that (a) can be modeled efficiently
by GP model and (b) cannot be modeled efficiently by GP model
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It can be shown that the covariance function in (3) can be
further written as a kernel function k(x,x’), which enables
us to express the covariance between f(x) and f(x') as a
function of x and x’, without explicitly computing ¢(x). Any
kernel function that satisfies Mercer’s condition is a valid
kernel function [14]. Once the covariance function is specified,
for new input x,, we can readily predict m, = f(x.) by
computing the conditional distributions of the joint Gaussian
distribution.

The effectiveness of the GP approach in spatial correlation
modeling of wafer measurements and its ability to handle
non-linear variation has been established through the studies
reported in [10], [11]. Its success, however, relies on the
assumption that the generative function f underlying the
spatial variation should be continuous, albeit possibly affected
by noise. This assumption is explained by the way the GP
models are constructed: proximal data points are modeled as
being highly covariant, and distant points are modeled with
low covariance. Similar assumptions are made when applying
the VP and EM approaches. However, our experience with
production data shows that these assumptions may not hold
for certain measurements. For example, spatial features of
certain test data on a wafer can involve localized effects such
as discontinuous trends. We describe in detail these effects in
the next section.

III. DISCONTINUOUS EFFECTS IN SPATIAL WAFER TESTS

As discussed in the previous section, GP models are able to
handle highly non-linear data even when the latter is affected
by noise. An example of wafer measurement data that can
be modeled efficiently by GP model is shown in Figure 2(a).
As can be observed, despite the non-linear behavior of the
measurements, the GP model is able to capture the spatial
correlation. Similar continuity assumptions are made when
applying the VP approach [6], wherein a small number of
dominant DCT coefficients at low frequencies are assumed to
represent most spatial patterns of process variations.

However, these assumptions may not always hold true:
spatial features of wafer measurements can exhibit localized
effects such as discontinuous trends. These localized discon-
tinuous effects may be caused by a variety of origins: a reticle
shot that produces several die patterns at the same time in the
lithography process resulting in individual rectangular regions,
multi-site testing strategy leading to systematic variations for



die that are tested at the same time, chemical aging or crys-
talline non-uniformity resulting in individual spatial clusters on
the wafer, etc. Our experience with production test data shows
that, for certain measurements, these localized discontinuous
effects (a) dominate spatial variations on the wafer and (b)
are stationary, i.e., most wafers have very similar spatial
discontinuous patterns. Figure 2(b) illustrates an example of
spatial discontinuous effects on a wafer measurement.

These discontinuous effects can result in violation of the
assumptions made when learning spatial correlation models
of wafer measurements. As a consequence, training with such
data may result in spurious spatial models. In this work, we
propose a novel approach to handle discontinuous effects,
without making any assumption about the discontinuous forms
caused by different origins during semiconductor production.

IV. PROPOSED METHODOLOGY
A. Overview

In this section, we describe in detail the proposed method-
ology for handling discontinuous effects in spatial correlation
models. Figure 3 shows an overview of the method, which
consists of two main stages, namely pre-training and training.
The objective of the first stage is to partition the wafer into &k
clusters, which reflect the & “levels” of wafer measurements
induced by discontinuous effects. For this purpose, a k-means
clustering algorithm is applied on a wafer, on which all
measurements for all die locations are explicitly collected.
The left hand side of Figure 3 shows an example of k-means
clustering where the wafer is partitioned into 2 clusters. The
k-means clustering algorithm and the method for choosing an
optimal value for k is presented in detail in Sections IV-B1
and IV-B2, respectively. We note that the clusters might be
different for each measurement, yet we assume stationarity
across wafers, so identifying the clusters is a one-time effort.
Furthermore, the number of wafers needed to compute k-
means clustering is typically very small.

Once the k clusters are identified on the wafer for each
particular measurement, we proceed to the second stage, where
we capture spatial correlation within each cluster. For this
purpose, we employ the spatial interpolation methodology
based on GP [10], which was summarized in Section II. In
particular, for each new wafer, we collect a sparse subset of die
from each individual cluster and subsequently train k spatial
models in order to predict the test outcomes at unobserved
die locations, as shown on the right hand side of Figure
3. Individually training and predicting measurements in each
cluster allows us to avoid modeling spatial correlation on an
entire wafer, which can lead to erroneous spatial models due
to discontinuous effects.

B. Pre-training stage

1) k-means clustering algorithm: The k-means clustering
algorithm aims to partition n observations into %k clusters, in
which each observation belongs to the cluster with the nearest
mean. Formally, let the set
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Fig. 3. Overview of proposed methodology

include the values of the i-th measurement on all die of a
wafer, with m; denoting the measurement on the j-th die and
n denoting the total number of die which are to be clustered.
The k-means clustering algorithm aims to partition M* into k
sets (k < n): {S1,S9,...,Sk} so as to minimize the expected
distortion D, which is defined as the sum of squared distances
between each observation and its dominating cluster mean:

D =" |myg — mjl” (5)
i

where my(;) denotes the nearest cluster mean value for
observation m;. In this work, we use the most common
iterative refinement technique to refine the choices of cluster
means in order to reduce the distortion D. The technique
involves the following steps [15]:
Step 1 - Initialization: Set k
{m1,Ma,..., My} to random values.
Step 2 - Assignment: Each measurement in M® is assigned
to the cluster with the nearest cluster mean. The assigned
p-th cluster is denoted by Sp:

cluster means

Sp = {my + m; — mp||* < [lm; — mg|*,V1 < ¢ <k} (6)
Step 3 - Update: Compute the new cluster means.

> m; (7)

_ 1
my, = —
Tp

m_jGSp

where n,, is the number of observations in the p-th cluster.
Step 4 - Iterative Refinement: Repeat steps 2 & 3 until the



assignments do not change.
The k-means clustering algorithm is a simple, unsupervised
learning approach which allows us to separate the die on
a wafer into k different clusters caused by discontinuous
effects. Subsequently, individual spatial correlation models can
be learned on each cluster, without the need for a priori
information on the form and origin of discontinuous effects.
2) Optimal choice of k: The question that naturally arises
next concerns the choice of k. In this subsection, we dis-
cuss a method to determine the optimal value for k, since
this choice is crucial in the k-means clustering algorithm.
Underestimating k£ would result in clusters that still contain
discontinuous patterns, while overestimating & would reduce
the amount of available data in each cluster during training
of spatial correlation models. The authors of [16] conducted
a very comprehensive comparative study of 30 methods for
determining the number of clusters in data. Among the variety
of examined methods, the approach suggested in [17] generally
outperformed the others. This approach consists of choosing an
optimal value for k£ by maximizing the between-cluster disper-
sion and minimizing the within-cluster dispersion. Formally,
the optimal value for k is defined as [17]

k = argmax C'H(g) 8)
9

where C'H(g) is the Calinski and Harabasz index when g
clusters are considered and is defined as

Blg)(g—1)
W(g)(n—g)
where n is the total number of die on the wafer, B(g) and

W (g) are the between- and within-cluster sums of squared
errors computed as

CH(g) = €))

B(g) = an(mp —m)(my, — m)T

(10)
W(g) = (> (mj—mp)(m;—my)") (1)
p=1 m;€S),

where n,, denotes the number of samples in the p-th cluster,
m,, denotes the cluster mean of the p-th cluster, and /m denotes
the mean of all measurement samples in M.

Equation (8) allows us to automatically choose an optimal
value for k£ for a particular measurement without making any
assumptions about its discontinuity trends.

C. Training stage

Once the wafer map is partitioned into k clusters, for each
new wafer we can readily predict the test outcomes at unob-
served die locations by collecting a sparse subset of die from
each cluster and training % distinct models. Formally, let the
set S, = {m1,..., My, } denote the observed measurement
samples in the p-th cluster, and X = {x1,...,X;;, } denote the
corresponding Cartesian coordinate of each sample, x = [z, ],
where nt,, is the number of training samples in the p-th cluster.

As described in Section II, we train a GP model f that maps
the input parameter x to the target variable m, and we use
m. = f(x.) to predict test outcome values at unobserved
locations with new input X.. Finally, we combine prediction
results from all k£ clusters to generate test outcome predictions
(i.e. expected Test Escape and Yield Loss figures) for the entire
wafer.

D. Prediction outcome evaluation

To evaluate effectiveness of the proposed methodology, we
compute the mean absolute percent error across all predictions:

1 Ntest

> [on® = m®) fmi

n
test i1

€jp = (12)
where ¢;;, represents the mean percent error of predicting
the h-th measurement for all unmeasured die locations on a
particular wafer j, and n.s; denotes the number of predicted
die locations on the j-th wafer. Then, we can summarize the
mean prediction error over all considered wafers as:

Nyafers

D,

i=1

1

—_ 13
Nwafers ( )

€Ep =
where Nyqfers denotes the number of considered wafers.

In order to gain insight about the prediction outcome, it is
also worthwhile to compute the Test Escape (TE) and Yield
Loss (YL) incurred by applying the spatial correlation models.
For a particular measurement, let the indicator functions 1 {Z)
and 12(1) be equal to ‘1’ if the predicted value of the i-th die
location passes/fails its specification, while the actual value
fails/passes the specification, and let Il(q’) and Iz(z) be equal to
‘0’ otherwise. Then the overall TE and YL are defined as:

; 1 & )

TE = ¥ ;:1 I (14)
. 1 & 9

YL=+ ;:1 I (15)

where N is the number of predicted die locations on all wafers.

V. EXPERIMENTAL RESULTS

We now demonstrate results of applying the proposed
method on probe test data from high-volume semiconductor
manufacturing. The device under consideration is an RF
transceiver with multiple radios built in a 65nm technology.
Our dataset contains a total of 3,406 wafers, each of which has
approximately 2,000 devices, with 71 probe test measurements
collected on each device. The number of clusters, &, and the
shape of the clusters are computed by (8) during the pre-
training stage, using only the first wafer. The minimum and
maximum values of k obtained for the 71 measurements are
2 and 5, respectively, with an average of 3.9. Once the k
clusters are known, we use a randomly chosen training sample
of 20 devices from each cluster in order to train the spatial
correlation models. Thus, a total number of 20xk devices
are used for training in each wafer. The trained models are



wafer #25 wafer #1000

wafer #2110 wafer #3400 1
* it T e 1 * e

10 20 30 4 50 10 50

(d)

Fig. 4. Wafer maps of measurement 69 sampled randomly in the (a) 1st (b)
2nd (c) 3rd (d) 4th quarter of the 3,406 wafers

TABLE I
CLUSTER STATIONARITY VERIFICATION

Wafer # 25 Wafer # 1000 Wafer # 2110 Wafer # 3400
Clustering #1 #25 #1 #1000 #1 #2110 #1 #3400
on wafer
€ (%) 4.9 4 4.4 33 35 3.3 44 4.2
TE 0.03 | 0.03 0.02 0.02 0.03 0.03 0.04 0.03
YL 0 0 0.001 0.001 0 0 0.001 0

then used to predict the untested probe test outcomes at the
remaining die coordinates, and the mean prediction errors
across all wafers are computed through Equation (13).

A. Stationarity verification of discontinuous spatial patterns

The procedure outlined above relies on the assumption that
the discontinuous spatial patterns are stationary over time,
i.e. the clusters for a given measurement remain more or
less the same across wafers. To illustrate that this is, indeed,
the case, Figure 4 (a)/(b)/(c)/(d) shows the wafer maps of a
measurement exhibiting discontinuous patterns, on randomly
chosen wafers from the 1st/2nd/3rd/4th quarter of the 3,406
wafers. As can be observed, the discontinuous patterns remain
very similar across wafers. To further investigate this issue,
we performed the following experiment: for each of the four
wafers shown in Figure 4, we ran the k-means clustering
algorithm and used the obtained clusters, instead of the ones
learned from the first wafer, to build the correlation models.
What we found is that the number of clusters remained
the same (i.e. 4) and that for the vast majority of die, the
cluster that they ended up belonging to was the same. Most
importantly, as shown in Table I, the differences in error rate,
TE and YL were insignificant, corroborating stationarity.

We note that in cases where the discontinuous spatial
patterns vary across wafers from different lots over different
periods of time, a re-calibration of k-means clustering may be
needed to adaptively learn the clustering over time.
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Fig. 5. Prediction error of proposed method for each probe measurement

B. Prediction errors using the proposed approach

Figure 5 summarizes the prediction error, with 10%-90%
error bars shown, for each of the 71 measurements computed
by (13). As can be observed in Figure 5, the prediction error
for most measurements is below 5%, verifying the excellent
capability of the proposed method in capturing spatial wafer
correlation.

C. Comparison to existing approaches

In Figure 6, we compare the prediction error, as defined
in (13), of the proposed approach to the error of the VP [6]
and the GP [10] methods, using the same number of training
samples per wafer and setting the VP error as the baseline at
0%. As can be observed, the GP method outperforms the VP
approach, and the proposed approach achieves a significant
further improvement in prediction error for several measure-
ments. The measurements that enjoy a large improvement in
prediction error are those who exhibit spatial discontinuous
effects, yet we stress that, even for the measurements which
show no discontinuous patterns, the proposed approach per-
forms at least as well as the GP method.

Figure 7 shows the prediction wafer map of measurement
11 which exhibits discontinuous effect, using the proposed
approach, the VP model and the GP model, respectively.
Figure 7(a) shows the normalized actual wafer map, and
Figures 7(b)/(c)/(d) show the prediction wafer map using the
proposed approach/VP model/GP model, respectively. As can
be observed, the discontinuous effect is correctly captured by
the proposed approach, while the VP and GP models are
very inaccurate when such discontinuous patterns exist on
the wafer. This observation is further supported by the large
improvement in percentile prediction error.

D. Test escape and yield loss improvement

To further elucidate the impact of the improved prediction
error, in the 2nd and 3rd column of Table II we compare the
Test Escape (TE) and Yield Loss (YL) computed using (14)
and (15) for the VP, the GP, and the proposed method, for all
71 measurements and for all die of the 3,406 wafers. Evidently,
the proposed approach achieves a significant TE improvement
as compared to the VP and GP methods, while maintaining
the same YL as the GP model.
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wafer map using the proposed methodology (c) predicted wafer map using
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The 4th to 7th columns of Table II report the TE and
YL for two individual measurements, namely 53 and 69,
where significant improvement in percentile prediction error
is observed. The TE and YL are computed using (14) and
(15) as before. As can be observed, the proposed approach
consistently outperforms VP and GP, which is in-line with the
percentile error improvement shown in Figure 6, and justifies
the use of k-means algorithm in building spatial correlation
models.

VI. CONCLUSIONS

In this work, we have demonstrated an approach to handle
discontinuous effects in spatial correlation modeling of wafer
measurements which drastically reduces prediction error for
measurements exhibiting discontinuous patterns. The core of
the proposed approach is a k-means algorithm which partitions
a wafer into k clusters, as instigated by discontinuous effects.
Effectiveness of the proposed approach is evaluated in compar-
ison to existing approaches on industrial probe test data from
over 3,400 wafers, demonstrating significant improvement in
terms of percentile prediction error and, by extension, reduced
Test Escape and Yield Loss rates.

TABLE II
TEST ESCAPE (TE) AND YIELD LOSS (YL) COMPARISON

All measurements | Measurement 53 | Measurement 69

TE YL TE YL TE YL
VP 2.8e-2 8.5e-2 44e-6 | 4.8e-5 | 6.6e-6 | 8.le-5
GP 2.8e-2 4.4e-3 3.9e-6 Te-6 6.3e-6 | 3.2e-5
Proposed | 1.4e-2 4.4e-3 1.9e-7 | 2.8e-6 | 6.3e-6 | 1.9e-7
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