
Hot-Swapping Architecture with Back-biased
Testing for Mitigation of Permanent Faults

in Functional Unit Array
Zoltán Endre Rákossy∗‡, Masayuki Hiromoto∗§, Hiroshi Tsutsui∗,

Takashi Sato∗, Yukihiro Nakamura†, and Hiroyuki Ochi∗
∗Department of Communication and Computer Engineering, Kyoto University,

Yoshida-honmachi, Sakyo, 606-8501 Kyoto, Japan, Email: paper@easter.kuee.kyoto-u.ac.jp
†Research Organization of Science and Engineering, Ritsumeikan University,

1-1-1 Noji-higashi, Kusatsu, 525-8577 Shiga, Japan, Email: y-nakamr@fc.ritsumei.ac.jp

Abstract— Due to latest advances in semiconductor integration,
systems are becoming more susceptible to faults leading to
temporary or permanent failures. We propose a new architecture
extension suitable for arrays of functional units (FUs), that will
provide testing and replacement of faulty units, without inter-
rupting normal system operation. The extension relies on data-
path switching realized by the proposed hot-swapping algorithm
and structures, by use of which functional units are tested and
replaced by spares, at lower overheads than traditional modular
redundancy. For a case study architecture, hot-swapping support
could be added with only 29 % area overhead. In this paper
we focus on experimental evaluation of the hot-swapping system
from a fabricated chip in 65 nm CMOS process. Autonomous
testing of the hot-swapping system is enhanced with back-bias
circuitry to attain an early fault detection and restoration system.
Experimental measurements prove that the proposed concept
works well, predicting fault occurrence with a configurable
prediction interval, while power measurements reveal that with
only 20 % power overhead the proposed system can attain relia-
bility levels similar to triple modular redundancy. Additionally,
measurements reveal that manufacturing randomness across the
die can significantly influence identical sub-circuit reliability
located in different parts in the die, although identical layout
has been employed.

I. INTRODUCTION

Increasing dependence on computing systems in business
and life-critical applications demands reliable designs at low
cost and long life-time. Concurrently, flexible, low-power,
but high-performance designs are in high demand, especially
in the fields of wireless communication, bio-informatics and
avionics. Post-manufacturing tests like BIST, MISER [1,2] and
burn-in [3], ensure defect-free delivery, but there are a host of
environmental and physical effects which shorten the lifetime
and reliability of the circuits. Such effects like hot-carrier
degradation, single event upsets (SEU), electro-migration, and
negative bias temperature instability (NBTI), get stronger with
transistor scaling, low supply voltages and high operating
frequencies.

While transient faults can be mitigated by various software
methods, permanent faults, which damage the circuit (e.g.,
stuck-at-0 faults), need mitigation methods like modular re-
dundancy: several copies of the circuit are used in parallel

‡Presently with RWTH Aachen University, Germany.
§Presently with Panasonic Corporation, Japan.
978-3-9815370-0-0/DATE13/ c©2013 EDAA

and their results are compared using a majority voter at the
cost of increased area and power. Advanced versions employ
additional spare units to protect the already replicated units,
and have been proposed for over 30 years (hybrid redundancy)
[4].

This gives conflicting requirements for high-performance
and high reliability at low cost, which are hard to satisfy. In
this paper, we address both, by employing a coarse-grained
reconfigurable array (CGRA) and proposing a way to guard it
against permanent faults. In CGRAs, several large configurable
functional units (FU) are connected with a programmable in-
terconnect, representing the perfect balance between flexibility
and computational power. The lower amount of configuration
bits and bus-interconnect make it less flexible than FPGAs,
but several parallel FUs yield better performance than general
purpose processors. Guarding such a structure from permanent
faults with traditional methods like triple modular redundancy
(TMR) would be unfeasible.

Enhancing array yield in the presence of faulty processing
elements by autonomously reconfiguring the data path has
been researched in works like [5,6]. A good example of an
FPGA-based fault tolerant system is presented in [7]. On-line
testing of free portions of the FPGA is done to detect and
repair permanent faults, then active portions are moved via
partial run-time reconfiguration to test locations which were
in use before. Such solutions either come with huge resource
costs, require pausing system operation while recovery is
performed, presume ‘golden’ parts, or are limited to FPGAs.

The proposed architectural extension for CGRAs, targets
mitigation of permanent faults due to aging during circuit
life-time. While being realized at lower overheads than mod-
ular redundancy, it provides additionally automatic detection,
testing and replacement of faulty units based on the concept
of hot-swapping, without needing to suspend execution of
running applications. The proposed hot-swapping algorithm
and the structures which implement it, test and replace units
with spares transparently, successively swapping spares with
FUs in-use, until full FU test coverage is attained. The testing
is performed on those units which are swapped out of the
active data-path, keeping execution uninterrupted. The system
is designed to be scalable to large arrays and has a constant
implementation area cost per additional FU.

A proof-of-concept chip has been fabricated in a 65 nm
CMOS process for a CGRA of 12×6 FUs. In this chip,
fault detection employs N-well bias selectors to raise the
bias voltage of FUs under test, to predict permanent faults
due to aging before manifestation. Experimental results prove
that each 0.1 V back-bias increment translates into 4 MHz
prediction window. This concurrent testing method enables
detection of faulty FUs before the aging effects can trigger
faults and serves as an early detection system preventing
manifestation of errors at circuit run-time.

In Section II we will make a description of the proposed
algorithm and its structures, followed by a reliability analysis
in Section III. Sections IV and V will focus on implementation
and experimental data.

II. HOT-SWAPPING ARCHITECTURE EXTENSION

Hot-swapping is a concept used to describe the function of
removing or replacing system components while the system
is still in operation, without disruption or any effect on the
operation being carried out.

A. Structure

Applying the hot-swapping concept to a regular structure
such as CGRA, high reliability can be achieved at low cost,
if some of the FUs of the array are assigned as spares, which
then can logically roam the array and functionally replace
faulty units. Starting from an initial CGRA structure shown
in Fig. 1(a), the necessary structural units to realize the hot-
swapping system are described as follows.

The basic structural unit is the cluster as shown in Fig. 1(b).
The cluster realizes efficient spare sharing, testing and hot-
swapping at lower area and power cost than TMR. After
application mapping on the CGRA, any unassigned FU within
a cluster group can take the role of a spare unit shared among
all assigned FUs, improving reliability. Every cluster contains
a switch matrix and a controller, which are responsible for
seamless testing and replacement of faulty units. The role of
a spare unit is hot-swapped across the cluster, enabling testing
of units in use by the application, without interrupting the
application and ultimately allowing all FUs access to a spare,
without employing a complex routing network.

Unlike TMR, which requires two additional units to protect
the function of one, the cluster allows sharing of one spare
to all cluster members, minimizing area and power overhead.
When no spares are assigned or none are available due to FU
failures, the hot-swapping system is disabled.

Spare sharing (data-path switching) is realized by the switch
matrix, a structure which consists of leading and trailing
switch boxes for each FUs in the array. Each switch box can
redirect data in four ways: straight (north to south), left (north
to west and east to south), right (north to east and west to
south) and pass-through (east to west or west to east) as shown
in Fig. 2. Straight state binds an FU at the same column as
input and output ports. Left- and right-redirect states are used
to bind an FU of a different column than the input and output
ports. Pass-through state is activated when multi-hop redirects
are needed over disabled FUs (Fig. 1(b) cluster 1).

FU FU FU FU

FU FU FU FU

Row 0

Row 1

crossbar network
(user-programmable)

crossbar network
(user-programmable)

(a) Conventional reconfigurable FU array.

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

FU SP FU SP FU SP FU

FU SPFU FU FU

Cluster 0

Cluster 1

crossbar network
(user programmable)

crossbar network
(user-programmable)

DEAD DEAD

switch boxes
(autonomous)

switch boxes
(autonomous)

switch boxes
(autonomous)

switch boxes
(autonomous)

c
o

n
tr

o
lle

r
c
o

n
tr

o
lle

r

FU functional unit in use SP spare unit DEAD faulty unit

(b) Clustered FU array with the hot-swapping switch matrix.

Fig. 1. Hot-swapping architecture extension. Cluster 0 has three spares and
cluster 1 has two faulty FUs. Switch matrix adapts accordingly, while keeps
testing for other faulty units while spares still exist.

N

S

W E

N

S

W E

N

S

W E

N

S

W E

Straight (default) Left redirect Right redirect Pass through

Fig. 2. Internal states of a switch box.

B. Hot-swapping algorithm

The proposed hot-swapping algorithm is implemented in the
controller, which controls the switching, assigns testing of the
units and keeps track of faulty units.

The top-level finite state machine of the controller is shown
in Fig. 3. In the CONFIG state (07), the controller receives
parameters, such as the columns of data-in ports used within
the cluster and the intervals of testing and idle states. In IDLE
state (00), the controller disables the spares, and enters a sleep
state for an arbitrary period. Testing (and hot-swapping) is
comprised of states 01-05, executed independently for each
FU. Tracking of test results, available spares and their location,
but also setting valid switch-box states for each FU is non-
trivial, due to combinations of ‘faulty’, ‘spare’ or ‘in-use’
states of the FUs within the cluster. The number of possible
states increases exponentially to the number of FUs in a cluster
and one change (exchanging spares) can cause switch-box
state recursive dependency.

Therefore, the proposed algorithm makes switching state
decisions, tracks spares and tests FUs in a way that the state
of one FU switch-box only depends on adjacent unit state. In
this way, clusters can be scaled to any size and mapping to
hardware results in simple combinational logic.

The listing in Fig. 4(a) elaborates on how the algorithm
independently checks and migrates the spares during FSM
states 01-05 recursively across the cluster in two migration
phases (left: L1, right: L2). Moves are done only if the switch
can accommodate it without breaking the data-path.

For clarity, the testing phase is shown in Fig. 4(b), for

[00]

IDLE

[07]

CONFIG

[01]

CHECK

ALIVE

cfg_enable

[02]

MARK

DEAD

[03]

UPDATE
SWITCH

[04]

TEST

(std)

[05]

TEST

(adv)

all tests OK

faulty FUs found

at least 1 spare is alive

at least one faultiy FU is found

all tests OK

at least one faulty FU is found

OR

testing complete

testing... testing...

testing is completed

in both directions

testing...

idle time

start test

no spares alive

Fig. 3. Controller core finite state machine.

CONF: download parameters
IDLE: sleep for time t, power off spares -> L0
L0:
IF there are any units marked as spare

test them; mark any faulty spares as dead;
ELSE ->IDLE;
FOR ALL spares that passed L0 test:
L1: (left spare migration)

IF no spares can move left -> L2
ELSIF funit(left)=used;

IF switching state allows it
swap spare with FU;
test new spare;
IF test=ok -> L1;
ELSE mark dead, -> L0;

ELSE -> L1;
ELSE -> L1;

L2: (right spare migration)
IF no spares can move right -> IDLE;

ELSEIF funit(right)=used;
IF switching state allows it

swap spare with FU;
test new spare;
IF test=ok -> L2;
ELSE mark dead, ->L0;

ELSE -> L2;
ELSE -> L2;

(a) Algorithm details during independently testing each spare. Two migration phases
ensure full test coverage while switch-box states allow it.

IDLE

TEST TEST TEST

TEST TEST

TEST

TEST

t =1

t =2

t =3

t =4

t =5

FU

FU

functional unit in use

functional unit in use
(already tested)

SP

SP

spare unit

spare unit
(already tested)

TEST

DEAD

spare unit under test

faulty unit

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

FU SP FU SP FU SP FU

FU FU FU FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU FU

FU

SP

SP

SP SP

FU FU

FU

DEAD

DEAD

DEAD

DEAD

(b) Time-lapse of the algorithm for an example cluster (in-use:spare 4:3).

Fig. 4. Hot-swapping algorithm for testing and replacing faulty units.

a cluster of four active FUs with three spares. At t=0, the
controller is in IDLE state. When a testing cycle begins at
t=1, first all available spares are tested. Already tested units are
marked in Fig. 4(b) with a check box. In this example, the third
spare is deemed faulty, so it will be marked as ‘faulty’, while
the other two spares are hot-swapped with the left-adjacent in-
use FUs, shown by the arrows. After testing the FUs at t=2,
the spares cannot be swapped to the left anymore, so they will
shift to the right, to test all FUs within the cluster. From t=3
to t=4 it is required to jump over the faulty FU, the data-path
being rerouted using the ‘pass-through’ state of the switch-
box above the faulty FU, completing the testing cycle. The
algorithm stops if all active FUs have been tested returning to

IDLE and spares can be turned off.

C. Testing procedure
Testing occurs by applying a set of patterns to detect

faults, some of them forcing traversal of the critical path
of the FU. Since testing is periodical, any error that occurs
between these testing cycles remains undetected until the
next cycle. To solve this vulnerability, early fault detection
is employed. Permanent faults, such as those caused by hot
carrier degradation effect occur in time, often with graceful
degradation. Therefore, forcing harsher operating conditions
during the test cycle, such as applying back-bias voltages
would cause any aged circuits to manifest faults during the
test-phase. If tests complete successfully even under forced
operating conditions, the tested FU can be considered ‘fit’
enough to operate without faults until the next test cycle,
providing a dependability buffer. Hardware-wise such testing
requires an additional supply voltage grid and test-pattern
storage or generation, described in detail in Section IV.

III. RELIABILITY ANALYSIS

To further highlight the flexibility of the hot-swapping
system, a reliability analysis was conducted in comparison
with TMR in the following.

A. Basic considerations
For one component of a system, reliability depends on the

cumulative distribution function (CDF) constructed from the
lifetime distribution model, or probability density function
(PDF) of the component. Such a function models the prob-
ability of failure due to different possible failure mechanisms
of the component.

In our analysis we employ the exponential PDF model
(Eq.1) but complex models can be constructed given accurate
failure mechanism models which are strongly dependent on
the process technology for integrated circuits.

f(t) = λe−λt, (1)

where λ is the failure rate, representing the combined effect
of all failure mechanisms.

B. Reliability model
To calculate overall reliability of one system, consideration

of the combined effect of the reliability of each component Rc

is needed. Both TMR and the Hot-Swapping cluster are k of n
models, which mix series and parallel components, described
by Eq.2.

Rkofn(t) =
n∑

i=k

(
n
i

)
[Rc(t)]

i
[1−Rc(t)]

n−i (2)

TMR uses a 2 out of 3 model combined with the effect of
the voter. All three units are constantly operating to mask one
fault.

RTMR(t) = Rvot

3∑
i=2

(
3
2

)
[RFU (t)]

2
[1−RFU (t)]

1

= Rvot

[
R3

FU + 3R2
FU (1−RFU)

]
= Rvot

(
3R2

FU − 2R3
FU

)
(3)

The proposed hot-swapping system is also a k out of n
model, however the spares are on warm or cold stand-by (are
not necessary for system operation). For the time the spares are
turned off, the failure rate is typically reduced (e.g. λoff =
0.1λon). The total system lifetime for such a system is the
sum of n identically distributed random lifetimes, but with
each component having its own CDF. In case of exponential
lifetime distributions, the PDF follows the gamma function
(Eq.4)

fn(t) = λn t
n−1e−λt

(n− 1)!
(4)

Given a set of n identical elements with n− k cold spares,
the system reliability is the sum between the reliability of
k working elements and the incremental reliability of n − k
spares. Therefore, the reliability of k active elements R0 is
the series reliability, for identical elements. One spare element
reliability takes the different λoff into account(Eq.5).

R0(t) = Rk
FU =

(
e−λt

)k
; Rspare(t) = e−λoff t (5)

The incremental reliability of each spare for element i (i =
1, n− k) is shown in Eq.6.

Ri(t) =
Ri−1(t)

i

[
((i− 1)λoff + kλon)

1−Rspare(t)

λoff

]
(6)

Hence, the overall system reliability of a stand-by k of n
system is shown in Eq.7.

Rstandby(t) =
n−k∑
i=0

Ri(t) (7)

By using Eq.7 and considering the switch and controller re-
liabilities, the Hot-Swapping cluster reliability equation shown
in Eq.8 can be calculated.

Rhswap(t) = Rswitch(t) ·Rctrl(t) ·
n−k∑
i=0

Ri(t) (8)

To make a comparison, we assumed some typical values
for λ, considering one failure in 106h for λFU , 0.1λFU for
the controller and off-line spares, and 0.3λFU for the switch
matrix and the TMR voter. Controller failure late is low due to
complete error correction code-protection of its functionality
in the implementation.

Figure 5 plots reliability decrease of simplex FU, TMR
and various hot-swap combinations (in-use+spare). The lower
continuous line is the simplex FU (no protection), while the
highest one is for the turned off FU. When many units have
to be protected by a single spare, the Hot-Swapping reliability
goes below that of TMR and even below of the unprotected
unit. Adding an extra spare yields high reliability values for
early mission times even if there are many protected units.
For one spare protecting two units, similar reliability can be
gained as for TMR. For an equal or higher number of spares,
the Hot-Swapping has superior reliability than both TMR and
simplex, even for longer mission times, based on the current
assumptions.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200000 400000 600000 800000 1e+06

R
e
lia

b
ili

ty

Mission time [h]

simplex
offline

tmr
hswap 1+1
hswap 2+1
hswap 2+2
hswap 2+3
hswap 3+1
hswap 3+2
hswap 3+3
hswap 4+1

Fig. 5. Reliability plot for various hot-swap (in-use+spare) configurations

IV. IMPLEMENTATION

To evaluate the proposed algorithm and testing scheme
we have chosen a medium-sized homogeneous CGRA of
12×6 FUs. The interconnect of the CGRAs is a cascade
style crossbar, allowing outputs of one row to connect to
the inputs of any FU of the next row. The array ends are
connected to a 512-word dual combined-port data memory,
split into 6 banks of 64-bit wide words serving 2 FUs each.
FU instruction set contains arithmetic operations (ADD, ADD-
immediate, SUB, SUB-immediate, MULT, MULT-immediate-
and-ADD, DIV) and logic operations (NOT, AND, OR, EX-
OR, SHIFT-Left, SHIFT-Right, and NOP). All FUs can take
up to two operands and yield one output value of 16-bit word
size. Application-specific array interconnect and FU op-codes
are user-configurable. Such a CGRA could execute data-flow
centric applications such as FFT, filtering and video streaming
applications.

The array is clustered into 6 clusters and for each cluster
the hot-swapping structures are added (Fig. 6). The switch
matrix is placed between the user-configurable interconnect
and FUs, thus input operands are routed to the correct FU
within the cluster, along with the respective opcode during
data-path switching. For our case study architecture, separate
SRAMs were assigned to each controller of a cluster, such that
individual sets of test patterns can be applied to each cluster.
In a real-world application case, compressed test patterns or a
generator can be shared among all clusters for area efficiency.
The test RAMs contain 512 patterns, tailored for stuck-at faults
and critical path traversal for each FU opcode. New Test RAM
contents can be uploaded during run-time if special testing is
desired.

Additionally to the test patterns, fault detection is enhanced
by a back-bias circuit, which forces less favorable conditions
to the FUs under test, for early detection. Figure 7 shows the
schematic of an N-well bias selector, which consists of an
inverter, two cross-latch level-shifters, and two high-voltage
PMOS transistors. When SEL is low level, bottom PMOS turns
on and VNW is driven to VDD level (=1.2 V). Otherwise, top
PMOS turns on and VNW is driven to VNWIN level, which
is given a little higher voltage than VDD (e.g., 1.3 or 1.5 V).

384-bit x 512-word 2-port SRAM

Write Data

Read Data

Cluster 0

Cluster 1

Cluster 5

crossbar network
(user programmable)

crossbar network
(user programmable)

crossbar network
(user programmable)

SRAM for
test pattern

controller

SRAM for
test pattern

controller

SRAM for
test pattern

controller

h
o

t
s
w

a
p

p
in

g
c
o

n
fi
g

u
la

ti
o

n

te
s
t

p
a

tt
e

rn
d

o
w

n
lo

a
d

c
o

n
fi
g

u
la

ti
o

n
 o

f
F

U
s
 a

n
d

 c
ro

s
s
b

a
r

n
e

tw
o

rk
s

FU FU FU FU FU FU

FU FU FU FU FU FU

FU FU FU FU FU FU

(384 bits for 16 bits x 2 operands x 12 FUs)

 12 FUs

 6
 C

lu
s
te

rs

(a
p
p
lic

a
ti
o
n
 s

p
e
c
if
ic

)

Fig. 6. Overview of the cluster array.

VNW

L/S

L/S

VNWIN

VDD

SEL

W=5.6um

L=0.19um

W=5.6um

L=0.19um

Fig. 7. N-well bias selector.

 Normal domain (VNW=VDD)

 FU00
 domain

N
-w

e
ll

b
ia

s
 s

e
le

c
to

r
fo

r
e
a
c
h
 F

U

 FU01
 domain

 FU02
 domain

G
lo

b
a
l
V

N
W

IN
a
n
d
 V

D
D

 m
e
s
h

 Local VNW mesh

Fig. 8. N-well voltage domain.

VNWIN pad

2
,1

0
0
 u

m

4,200 um

PLL

 64-bit x 256-word 2-port SRAM macro x 6 for data

 Cluster 0

 F
U

0
0

 F
U

1
1

 Cluster 1

 F
U

0
0

 F
U

1
1

 Cluster 2

 F
U

0
0

 F
U

1
1

 Cluster 3

 F
U

1
1

 F
U

0
0

 Cluster 4

 F
U

1
1

 F
U

0
0

 Cluster 5

 F
U

1
1

 F
U

0
0

2,704 um

1
,3

1
0
 u

m

6
4

-b
 x

 5
1

2
-w

 S
R

A
M

 x
3

 f
o

r
te

s
t

p
a

tt
e
rn

6
4

-b
 x

 5
1

2
-w

 S
R

A
M

 x
3

 f
o

r
te

s
t

p
a

tt
e
rn

Fig. 9. Chip micrograph.

TABLE I
AREA OVERHEAD FOR HOT SWAPPING.

(a) cluster-level core components (FU×12) 189,252 µm2

(b) cluster-level hot swapping components 132,552 µm2

N-well bias selector×12 1,104 µm2

switch boxes + state machine 93,805 µm2

test pattern SRAM 37,643 µm2

(c) cluster-array core components 2,746,928 µm2

(a)×6 1,135,512 µm2

data SRAM 264,582 µm2

other (crossbar network etc.) 1,346,834 µm2

(d) cluster-array hot swapping components ((b)×6) 795,312 µm2

cluster-array-level overhead ((d)/(c)) 29 %
(e) useful 8×6 cluster-array core components 2,083,621 µm2

(f) hot swapping comp. incl. spares (d)+FU×24 1,173,816 µm2

cluster-array-level overhead incl. spares (f)/(e) 56 %

Each of 72 FUs has its own N-well bias selector, so that N-
well voltage can be controlled individually as illustrated in
Fig. 8.

The prototype chip is fabricated in a 65 nm CMOS process
using vendor’s standard cell library (typical, 1.2 V, 25◦C), with
target operating frequency of 190 MHz. Hierarchical synthesis
and layout was employed. Figure 9 shows the micrograph of
the fabricated chip. The die size is 4,200µm×2,100µm in
which the active area for the architecture except I/O and PLL
macro is 2,704µm×1,310µm.

Table I shows the additional area (overhead) due to the
addition of hot swapping support structures, which amounts to
only 29 % for a CGRA of 12×6 FUs. In the case of TMR, a
failure of 33 % can be tolerated (1 replica out of 3). Reliability
analysis done in Section III reveals that if in a cluster 33 % are
spares, similar or better reliability can be achieved, since 33 %
failure rate can be tolerated. In the hot-swapping cluster, the
spares are not bound to any particular FU, tolerating multiple
closely localized faults, which for TMR is fatal. Hence, 4
spares are needed to protect 8 FUs in a 12 FU cluster to cover
TMR reliability. Counting these spares also as ‘overhead’ area,
resulting total overhead is only 56 %. Note that this is much

Device under test

Fig. 10. Measurement setup.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 170 174 178 182 186 190

N
u

m
b

e
r

o
f

m
a

rk
e

d
-f

a
u

lt
y
 F

U
s

Clock frequency [MHz]

Back-bias [V]
0.30 V
0.20 V
0.10 V
0.00 V

Fig. 11. Measured number of marked-faulty FUs in a cluster.

smaller than TMR which needs additional 200 % area and
power for a protected FU, not including a voter.

V. MEASUREMENT RESULTS

Measurement setup and procedure: Figure 10 shows the
measurement setup. The fabricated chip in QFP package is
mounted on MU200-SX FPGA board using a daughter-card.
The FPGA runs a test-bench which gives the necessary control
signals and reads chip outputs. The FPGA analyzes the output

TABLE II
EXPERIMENTAL POWER CONSUMPTION DATA (170MHZ, AT 27◦C).

Input Cluster configuration Power (mW) Cost
none Leakage power (idle clock signal) < 1
none PLL only, 170MHz 49
Static Hotswap: 8 FUs + 4 NOP/clus. 54
data Hotswap: 8 FUs + 4 SP/clus. 181 3.4×

TMR: 8 FUs + 16 replicas/clus. (est.) 108 > 2×
Busy Hotswap: 8 FUs + 4 NOP/clus. 420
data Hotswap: 8 FUs + 4 SP/clus. 498 1.2×

TMR: 8 FUs + 16 replicas/clus. (est.) 840 > 2×

data and signals results on the on-board LEDs for quick
evaluation.

Measurements have been conducted in two stages: critical
path test with fault detection and power evaluation tests.

Critical path testing: One cluster was evaluated at a time
while the rest have hot-swapping disabled. Cluster configura-
tion used 2 FUs for processing and 10 spares were assigned
for fault detection test. Tests occur every 64 k cycles (config-
urable) and one complete test takes max. 6 k cycles (variable
based on available spare amount). Under critical path stress-
test inputs, frequency was increased gradually to simulate ag-
ing. 0 V back-bias results are compared with 0.1 V incremental
steps of back-bias voltage to observe the operation of the early
fault detection mechanism. Figure 11 shows how each 0.1 V
increment in back-bias voltage predicts a fault 4 MHz earlier
than the actual fault frequency value. This can be directly
translated into circuit lifetime. In a 190 MHz design, 4 MHz
(or 2%) performance margin is worth monitoring, since a
2% performance loss can happen even within one hour using
worst case input patterns, triggering faults. It is reported that
static NBTI causes an exponentially steep degradation in early
circuit life. In 65 nm process technology, a static NBTI causes
10 mV VTH degradation in one hour [8], which causes 2%
performance degradation [9]. As NBTI degradation saturates
exponentially, the circuits with a larger margin will have a
much longer life-time. A 4 MHz early warning would support
a quick-fix in early life and graph an estimated fail time in
late circuit life.

Another interesting fact to note is that for the same kind of
FU on the same die, fault manifestation times differ. Some FUs
are ’weaker’ while some last longer before fail. This is due to
manufacturing randomness since exactly the same layout has
been used for all FUs (hierarchical synthesis). In such a case
early detection of faulty units is especially useful.

Power evaluation: Table II shows the measured power
consumption for 8 used FUs in a cluster, for two data sets:
static data (low switching activity) and busily switching data
(high switching activity). The datasets for dynamic power
have been experimentally determined across multiple measure-
ments, taking the set that attains maximum power. To measure
how much the hot-swapping structure uses, comparisons are
done in Table II between the case where hot-swapping is
disabled or enabled, for both data sets. For a conservative
comparison, TMR power consumption has been estimated
from the disabled case, without considering voter power and
glue logic for splitting input data, which can significantly
contribute to power consumption. It can be observed that for

low dynamic power, hot-swapping increases dynamic power
significantly due to swapping the FU data across the cluster.
When high switching activity data is used, with only 20 %
extra power, hot-swapping can provide similar protection as
TMR. These comparisons are extremely conservative, as no
power/clock gating structures are implemented for the spares
and each cluster contains its own test-SRAM. We are confident
that an optimized version with the possibility of turning off
spares and faulty units, and/or with shared test patterns across
clusters would yield even better results.

VI. CONCLUSIONS

In this paper, implementation and measurement work is
presented for an automatic permanent fault detection and
functional restoration for coarse-grained reconfigurable archi-
tectures. The proposed system employs the concept of hot-
swapping, allowing testing, early detection and replacement
of faulty units in an array at lower cost than traditional TMR,
from both area and power perspective. Early detection of faults
due to aging effects is realized by the addition of a back-
bias circuit which can flexibly predict circuit failure with
an arbitrary margin. A chip has been designed, fabricated
and tested to evaluate the proposed system and measurement
results highlight the advantages of the hot-swapping system.
Also, measurements revealed that even with identical layout
and same physical substrate, the reliability of sub-circuits
greatly varies, underlining the need for early fault detection
and repair systems.

ACKNOWLEDGMENT

This research was performed by the authors for STARC as part
of the Japanese Ministry of Economy, Trade and Industry spon-
sored “Silicon Implementation Support Program for Next Generation
Semiconductor Circuit Architectures”. Also it is part of a JST
CREST project, and is supported by VDEC, the University of Tokyo
in collaboration with e-Shuttle, Inc., Fujitsu Ltd., Synopsys, Inc.,
Cadence Design Systems, Inc., and Mentor Graphics, Inc.

REFERENCES

[1] B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the core of the
problem,” IEEE Computer, vol. 29, pp. 32–38, 1996.

[2] H. Al-Asaad and J. P. Hayes, “Logic design validation via simulation and
automatic test pattern generation,” J. Electron. Test, vol. 16, pp. 575–589,
2000.

[3] E. Wu, J. Sune, W. Lai, E. Nowak, J. McKenna, A. Vayshenker, and
D. Harmon, “Interplay of voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides,” Solid State Electronics, vol. 46,
no. 11, pp. 1787–1798, 2002.

[4] D. Siewiorek and E. J. McCluskey, “An iterative cell switch design for
hybrid redundancy,” IEEE Trans. Comput., vol. 100, no. 22, pp. 290–297,
1973.

[5] M. Fukushi and S. Horiguchi, “A self-reconfigurable hardware architec-
ture for mesh arrays using single/double vertical track switches,” IEEE
Trans. Instrum. Meas., pp. 357–368, Apr. 2004.

[6] S. Y. Kung, S. N. Jean, and C. W. Chen, “Fault-tolerant array processors
using single track switches,” IEEE Trans. Comput., vol. 38, pp. 501–514,
1989.

[7] M. Abramovici, J. M. Emmert, and C. E. Stroud, “Roving STARs: An
integrated approach to on-line testing, diagnosis, and fault tolerance for
FPGAs,” in Proc. NASA/DoD Workshop on Evolvable Hardware, 2001,
pp. 73–92.

[8] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and
Y. Cao, “The impact of NBTI on the performance of combinational and
sequential circuits,” in Proc. DAC, Jun. 2007, pp. 364–369.

[9] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao, “The
impact of NBTI effect on combinational circuit: modeling, simulation,
and analysis,” IEEE Trans. VLSI Syst., vol. 18, no. 2, pp. 173–183, Feb.
2010.

