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Abstract—Caches provide significant performance improve-
ments, though their use in real-time industry is low because current
WCET analysis tools require detailed knowledge of program’s
cache accesses to provide tight WCET estimates. Probabilistic Tim-
ing Analysis (PTA) has emerged as a solution to reduce the amount
of information needed to provide tight WCET estimates, although
it imposes new requirements on hardware design. At cache level,
so far only fully-associative random-replacement caches have been
proven to fulfill the needs of PTA, but they are expensive in size
and energy.

In this paper we propose a cache design that allows set-
associative and direct-mapped caches to be analysed with PTA
techniques. In particular we propose a novel parametric random
placement suitable for PTA that is proven to have low hardware
complexity and energy consumption while providing comparable
performance to that of conventional modulo placement.

I. INTRODUCTION

Safety-critical real-time systems, such as flight control sys-
tems, have experienced an unprecedented growth in computa-
tional demands to cope with more sophisticated functionalities.
This makes real-time designers to use processors with high
performance features. One of the most used features to improve
performance are cache memories. Unfortunately, the adoption
of caches complicates the computation of worst-case execution
time (WCET) estimates [9]. Several static methods have been
devised to provide WCET estimates for systems with caches
[12][18], but they require detailed knowledge of the sequence of
cache accesses in order to provide tight WCET estimates. When
the required knowledge is not available, pessimistic assumptions
must be made by the analysis, resulting in overly pessimistic
WCET estimates.

Recently, Probabilistic Timing Analysis (PTA) [7][6] has
emerged as an alternative to conventional timing analysis. PTA
provides WCET estimates with an associated probability of
occurrence, called probabilistic WCET (pWCET) estimates. A
pWCET estimate can be exceeded with a given probability, thus
leading to a timing failure. This is analogous to the behaviour of
hardware, for instance, which may fail with a given probability.
In that sense, PTA extends the notion of probability of failure
to timing correctness. To that end, PTA aims to obtain pWCET
estimates for arbitrarily low probabilities, so that even if that
pWCET estimate can be exceeded, it would be exceeded with
low probability (e.g. in the region of 10−15 per hour of oper-
ation, largely below the probability of hardware failures). PTA
can be applied either in a static (SPTA) [6] or measurement-
based (MBPTA) [7] manner, as explained in Section II. SPTA
derives a-priori probabilities for execution times from a model
of a system, while the second variant, MBPTA, derives those
probabilities by collecting observations of end-to-end runs of
an application running on the target hardware.
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PTA techniques, both SPTA and MBPTA, require that the
observed execution times of programs have a distinct probability
of occurrence and can be modelled with independent and identi-
cally distributed (i.i.d) variables. Unfortunately, these properties
are not met by current processors due to their deterministic
nature. For instance, if we run a given program fed with the
same input data several times on the same processor, we will
observe some variation in its execution time due to, for instance,
the fact that it is allocated in different locations in memory
resulting in different execution times. However, those execution
times are not necessarily probabilistically modelable, i.e, cannot
be modelled with random i.i.d variables.

At the cache level, the deterministic behaviour of the place-
ment (e.g. modulo) and replacement (e.g. LRU) policies makes
memory operations not to be modelable probabilistically. How-
ever, PTA has been shown to work with fully-associative (FA)
caches deploying random replacement (RR) policy for both
PTA variants, SPTA [6] and MBPTA [7]. FA-RR caches allow
obtaining an actual hit/miss probability for each memory access,
such that when a program runs several times on a processor
with such a cache the obtained execution times are modelable
with i.i.d random variables. Unfortunately, only small FA caches
can be used in general due to their power hungry and costly
implementation, thus constraining PTA applicability.

In this paper, we propose a new random placement policy
that allows applying PTA methods not only to FA-RR caches
but to set-associative and direct-mapped caches. While random
replacement has been used in the past [2], [3], existing place-
ment functions have a purely deterministic behaviour and thus,
they cannot be used in the context of PTA because there is no
way to determine the probability of each cache placement to
occur at design time. To solve this problem, we propose a new
cache design with parametric random placement, having the
following properties: 1) The placement function is deterministic
during the execution of the program enabling cache lookup to be
performed analogously to deterministic-placement caches. How-
ever, placement is randomised across executions by modifying
the seed of the parametric hash function used for placement. In
this way, each memory access has hit/miss probabilities which
leads to i.i.d. execution times as needed for PTA. 2) Our cache
design has similar average performance to that of deterministic
caches, which is important not to jeopardise other metrics such
as energy consumption. Similar to FA-RR caches, our design
also reduces drastically the amount of information required by
the analysis to derive WCET estimates.

II. BACKGROUND

State-of-the-art timing analysis techniques can be classified
into two types [9]: Static timing analysis techniques construct a
cycle-accurate model of the system and a mathematical repre-
sentation of the code that are combined with linear programming
techniques to determine a safe upper-bound on the WCET.



Measurement-based analysis techniques perform extensive test-
ing on the real system under analysis using stressful, high-
coverage input data, recording the longest observed execution
time and adding to it an engineering margin to make safety
allowances for the unknown. However, determining the engi-
neering margin is extremely difficult — if at all possible —
especially when the system may exhibit discontinuous changes
in timing due to unanticipated timing behaviour.

PTA has emerged as an alternative to current timing analysis
techniques. Both SPTA [6] and MBPTA [7] provide a cumu-
lative distribution function, or pWCET function, that upper-
bounds the execution time of the program under analysis,
guaranteeing that the execution time of a program only exceeds
the corresponding execution time bound with a probability lower
than a given target probability (e.g., 10−15). The probabilistic
timing behaviour of a program (or an instruction) can be rep-
resented with Execution Time Profiles (ETPs). An ETP defines
the different execution times of a program (or latencies of an
instruction) and its associated probabilities. That is, the timing
behaviour of a program/instruction can be defined by the pair of
vectors (

→
l ,
→
p ) = {l1, l2, ..., lk}{p1, p2, ..., pk}, where pi is the

probability the program/instruction taking latency li. The ETP
for a program (or instruction) may differ for different input sets
leading to different execution paths. Each PTA technique has its
own methods to combine results from different execution paths.
We refer the reader to those methods for further details [6] [7].

A. Requirements of SPTA and MBPTA on Cache Design
PTA techniques require that the events under analysis, pro-

gram execution times for MBPTA and instruction latencies for
SPTA, can be modelled with i.i.d. random variables [6]: two
random variables are said to be independent if they describe
two events such that the occurrence of one event does not have
any impact on the occurrence of the other event. Two random
variables are said to be identically distributed if they have the
same probability distribution.

The existence of an ETP ensures that each potential execution
time of the program (for MBPTA) or instruction (for SPTA)
have an actual probability of occurrence, which is a sufficient
and necessary condition to achieve the desired probabilistic i.i.d.
execution time behaviour [6].

A difference between SPTA and MBPTA, besides the level
of abstraction at which ETPs are to be constructed, is that
while SPTA requires ETPs for each instruction to be determined,
MBPTA simply needs those ETPs for the program to exist, but
not to be known.

Regardless of whether ETPs are obtained for instructions or
full programs, they cannot be derived with current determin-
istic architectures since events affecting execution time, e.g.
cache hits/misses, on those architectures cannot be attached
a probability of occurrence. At the cache level, the problem
resides on the deterministic behaviour of the placement and
replacement policies, which (1) lead to cache layouts for which
the corresponding execution times cannot be modelled with i.i.d.
random variables preventing the use of MBPTA and (2) each
memory request does not have an actual probability of hit/miss
preventing its use with SPTA.

Overall, a SPTA- and MBPTA-analysable cache must provide
the following properties:

a) SPTA: SPTA requires the i.i.d. hypothesis to strictly
hold at the granularity level at which ETP are built, i.e.
instructions. If the timing probability distribution captured by

the ETP of the instruction is fully independent of the execution
history, the ETP of the instruction would hold constant across
all executions of the instruction. However, this is unaffordable at
hardware level [6]. Instead, SPTA [6] also works with a SPTA-
imperfect approach. In such approach the timing vector of the
ETP is insensitive to execution history but the probability vector
is not, and therefore, there is a need for bounding probabilis-
tically this dependence. This PTA-imperfect approach provides
safe pWCET estimates and is the one used in this paper. Hence
SPTA requires that: 1) Each memory access has a hit-miss
probability, and 2) In case memory instructions are dependent,
that dependence must be probabilistically modelable.

b) MBPTA: The observed execution times fulfil the i.i.d.
property if observations are independent across different runs
and a probability can be attached to each potential execution
time. To that end, it is enough if we make the events that
may affect the execution time of a program random events.
Hence, taking measurements from a program is equivalent to
rolling a dice, with each face having a probability of appearance.
Making enough rolls is enough to apply MBPTA, which derives
upper-bounds of the execution time distribution by means of
Extreme Value Theory (EVT) [11][7]. Note that the existence
of the ETPs for each instruction ensures that the execution
times are probabilistic and therefore MBPTA can be applied.
As for SPTA, memory instructions may have dependences, but
it is enough that those dependences are probabilistic, so that
the measurements (execution times) obtained by running the
program probabilistically capture the effect of such dependence.

III. TIMING BEHAVIOUR OF RANDOM CACHES

This paper shows that randomising the replacement and
placement policies allows constructing ETPs for memory in-
structions: (

→
l ,
→
p ) = {lhit, lmiss}{phit, pmiss}, where lhit and

lmiss are the latency of hit and miss respectively and phit and
pmiss the associated probability in each case. In particular, in
this section, we show that phit and pmiss can be computed
analytically based on the properties of RR and our random
placement (RP) policy. As pointed out in Section II, the
existence of the ETPs ensures that the execution times are
probabilistic and therefore the system fulfils the i.i.d. properties.

A. Random Replacement (RR)
RR policy ensures that every time a memory request misses

in cache, a way in its corresponding cache set is randomly
selected and evicted to make room for the new cache line. This
ensures that (1) there is independence across evictions and (2)
the probability of a cache line to be evicted is the same across
evictions, i.e. for a W -way associative cache, the probability
for any particular cache line to be evicted is 1

W for each set.
In the particular case of a fully-associative (FA) cache, such
probability holds for the only cache set.

Given a sequence of cache accesses, the ETP for each of them
(i.e. its hit/miss probabilities) can be determined by computing
how likely previous accesses can evict the corresponding cache
line. For instance, in the sequence <A, B, C, A>, B and C can
evict A with a given probability that depends on the number of
cache ways and whether B and C were fetched before or not.
The fact that those probabilities exist and can be computed is
enough for PTA techniques. Since cache lines evicted are chosen
randomly, whether an access hits or misses depends solely on
random events for a given sequence of accesses regardless of
their absolute addresses, and thus hit/miss outcome is truly



(a) standard (b) proposed

Fig. 1. Block diagram of the cache design.

probabilistic. In particular, the hit probability (Phit) of a given
access Aj in the sequence < Ai, Bi+1, ..., Bj−1, Aj >, where
Ai and Aj correspond to accesses to the same cache line and
no Bk accesses cache line A, can be obtained as follows, with
Pmiss = 1− Phit for any access:

PhitAj
=

(
W − 1

W

) j−1∑
k=i+1

PmissBk

(1)

PhitAj
is the probability of A surviving all evictions performed

by < Bi+1, ..., Bj−1 >. The probability of A to survive one
random eviction is W−1

W . Meanwhile, given that one random
eviction is performed on every miss, the total number of
evictions equals the expected number of misses in between

Ai and Aj , which is
j−1∑

k=i+1

PmissBk
. Using Equation (1) the

hit/miss probabilities of each access can be derived sequentially
starting from the first cache access. If no access has been
performed to A before Aj , then the hit probability is zero.

Overall, the use of RR allows deriving an ETP for each
memory operation, thus enabling PTA.

B. Random Placement (RP)
The RP policy we are after has to ensure that the cache set

in which a cache line is mapped is randomly selected. Ideally,
assuming a cache with S sets, the probability for a cache set to
be selected is 1

S .
One fundamental difference between placement and replace-

ment policies is that placement assigns sets to cache lines based
on the index bits of the memory address, Figure 1(a). As a
result, if the placement policy assigns two memory addresses
to the same cache set, they will collide systematically. To deal
with this deterministic nature while randomising the timing
behaviour of the placement policy, we propose a new parametric
hash function that makes use of a random number as an input.
Such random number can be generated either by hardware or
software. Our hash function, given a memory address and a
random number called random index identifier (RII), provides a
unique and constant cache set (mapping) for the address along
the execution, see Figure 1(b). If the RII changes, the cache
set in which the address is mapped changes as well, so cache
contents must be flushed for consistency purposes. We propose
changing the RII only across program execution boundaries
(e.g., the OS can do it) so that programs can be analysed with
end-to-end runs without any further consideration than assuming
that the cache is initially empty. We assume that given a memory
address and a set of RIIs, the probability of mapping such
address to a given cache set is the same, i.e. 1

S , although this
is not needed as long as such mapping is probabilistic. How
we approximate this ideal distribution by hardware is shown in
Section IV.

Next we describe how to quantify the probability of each
memory address to be mapped into a given cache set, and
so conflicting with other memory addresses. Given u different

memory objects and S cache sets, we define cache layout as
the resultant mapping of assigning the u memory objects into
the S cache lines. Thus, every time the program is executed, a
new RII is generated leading to a new random mapping function
corresponding to a cache layout. Different cache layouts cause
different cache conflicts among memory addresses, resulting in
different execution times. The number of possible cache layouts
is given by Su, where S is the number of sets and u the number
of distinct memory addresses.

Note that different cache layouts may be different but equiv-
alent in terms of execution time. For instance, if we have
three memory objects (A, B and C) and 4 cache sets, any
cache layout where A is mapped in one cache set (e.g., set
0) and B and C in a different cache set (e.g., set 1) will be
equivalent. Similarly, even non-equivalent cache layouts may
lead to the same execution time. For instance, a particular
cache layout may not have any conflict whereas another may
create conflicts across addresses that would miss anyway. In
both cases, although cache layouts are different, accesses will
experience the same hits and misses.

By using a new RII on each execution, a random cache layout
is chosen and pathological scenarios can only occur with a given
probability.

In an arbitrary sequence A,B1, B2, ...Bq, A where ∀i, j : i 6=
j and Bi 6= Bj , the probability of the second occurrence of A
to survive (and so being a hit) in a direct-mapped cache is
determined by those cache layouts in which the q objects in
between are placed in a different cache set to A. If we consider
that A is placed in a particular entry, the number of cache layouts
in which the other q objects are placed in different cache sets is
(S−1)q: the q objects can be placed in all entries except where
A is placed. Because A can be placed in any position, the number
of cache layouts in which A survives is (S− 1)q ·S. Therefore,
and considering that the number of possible cache layouts is
determined by Sq+1, the probability of the second occurrence
of A being a hit can be computed using the following equation:

PhitA =
(S − 1)q · S

Sq+1
=

(
S − 1

S

)q

(2)

The reuse distance of A, defined as the number of unique
cache line addresses (q) between two occurrences of the same
memory address, determines how likely it will result in a
hit/miss. The higher the q-distance is between two occurrences,
the less likely is the second occurrence of A to survive. For
instance, A is more likely to be evicted in the sequence A, B,
C, A (q = 2) than in the sequence A, B, B, B, B, B, A (q = 1).

Overall, the hit probability for any access exists (and so the
miss probability). Therefore, the use of RP allows deriving an
ETP for each memory operation, thus enabling PTA as it is the
case for RR, because execution times will be i.i.d.

C. Putting All Together: Set-Associative Caches

The ETP of a memory operation accessing to a S · W
set-associative cache with random placement and replacement
policies is the combination of the ETPs of both policies. That
is, the random placement will allocate memory objects into the
S sets with a probability of 1/S while the random replacement
policy will evict a way to allocate a new fetched cache line with
a probability of 1/W . In particular, an access A will miss only
if a previous access misses in its same cache set and it randomly
evicts its cache line. This can be formulated as follows:



Fig. 2. Parametric hash function proposed for the RP cache.

PmissA(SA[S,W ]) = PmissA(DM [S]) · PmissA(FA[W ]) (3)

where PmissA(SA[S,W ]) stands for the miss probability
of A in a SA cache with S sets and W ways. Analogously,
PmissA(DM [S]) and PmissA(FA[W ]) stand for the miss prob-
abilities in DM and FA caches with S sets and W ways
respectively. Hit probabilities are obtained as Phit = 1−Pmiss.

In summary, hit/miss probabilities exist for all accesses, and
so their ETPs. As a consequence, execution times will be i.i.d.
and PTA can be safely applied on top of a SA cache.

IV. HARDWARE DESIGN OF A RANDOM CACHE

This section describes how to implement both random place-
ment and replacement policies.

A. Random Replacement

Random replacement policies have been extensively used
in various processor architectures, both in the the high-
performance and embedded markets. Examples for the latter
market are the Aeroflex Gaisler NGMP [2] or some processors
of the ARM family [3]. The most relevant element of a random
replacement policy is the hardware generating random numbers
which selects the way to be evicted on a miss. In general,
pseudo-random number generators (PRNG) are implemented.
The particular PRNG we have used in this paper is the Multiply-
With-Carry (MWC) [14] PRNG, since we have tested that (i) it
generates numbers with a sufficiently high level or randomness,
(ii) its period is huge, and (iii) it can be efficiently implemented
in hardware. Given that efficient implementations of a PRNG
exist and space is limited, we omit the details of our implemen-
tation of the MWC PRNG.

B. Random Placement Policy

In this section, we propose an implementation of a random
placement policy. The key components of this design are (1) a
low-cost PRNG if the RII is produced by hardware and (2) a
parametric hash function.

In order to keep cache latency and energy low, the imple-
mentation of both components must be kept simple. Moreover,
both components are placed ‘in front’ of the cache, so the
cache design is not changed per se, see Figure 1(b), but some
extra logic is added before accessing cache. As for random
replacement, we use the MWC PRNG if the RII is produced by
hardware.

The Parametric Hash Function is used to randomise the cache
placement. Figure 2 shows our implementation of the parametric
placement function. The hash function has two inputs, the bits
of the address used to access the set (index bits), ‘@’ in the
figure, and a RII. In the configuration of the particular example,
32 bytes per cache line and 32-bit addresses are assumed.
Therefore, the 5 lowermost bits are discarded (offset bit) and
only 27 bits are used.

The hash function rotates the address bits, based on some
bits of the RII as it is shown in the two rightmost rotate blocks
of the figure. By doing this, we ensure that when a different
RII is used, the mapping of that address changes. Analogously,
the address bits are rotated based on some bits of the address
itself. This operation, which is performed by the two leftmost
rotate blocks, changes the way that the addresses are shifted.
Note that addresses are padded with zeros to obtain a power-
of-two number of bits, so address bits can be rotated without
any constraint. Otherwise, rotation values between 27 and 31
would require special treatment.

Finally, all bits of the rotated addresses, the original address
and the RII (187 bits in the example), are XORed successively,
until we obtain the desired number of bits for indexing the cache
sets. For example, a 16KB cache with 32 bytes per line would
need 9 index bits for a direct-mapped organisation, 8 bits for a
2-way set-associative, and so on and so forth. Hence, 5 XOR
gate levels are enough to produce the index.

As shown in Figure 2, the hardware implementation of the
hash function consists of 4 rotate blocks and 5 levels of 2-input
XOR gates. Each rotate block can be implemented with a 5-level
multiplexer [19]. Since the latency and the energy per access of
a fully-associative cache is much larger than the one of direct-
mapped or set-associative caches, the relative overhead of the
hash function is small. We have corroborated this observation by
integrating our parametric placement function into the CACTI
tool [15]. Results for several cache configurations show that
energy per access grows around 3% and delay grows by 40%
(it is still less than half the delay of a fully-associative cache).
Note that hit latency has low impact in WCET since it is
typically some orders of magnitude lower than miss latency.
Nevertheless, we assume the same hit latency for our DM and
SA configurations, and the FA one, which plays against our
proposal.

V. RESULTS

A. Experimental Setup
We use a cycle-accurate execution-driven simulator based on

the SoCLib simulation framework [21], with PowerPC bina-
ries [23]. The simulator models a 4-stage pipelined processor
with a memory hierarchy composed of first level separated
instruction and data caches, and main memory. Both instruc-
tion and data cache size is 4-KB with 16-byte line size.
Associativities considered are 1-way (direct-mapped), 8-way
(set-associative), 32-way (set-associative) and 256-way (fully-
associative). Both caches implement random replacement and
our random placement policy.

The latency of the fetch stage depends on whether the access
hits or misses in the instruction cache: a hit has 1-cycle latency
and a miss has 100-cycle latency. After the decode stage,
memory operations access the data cache so they can last 1
or 100 cycles depending on whether they miss or not. The
remaining operations have a fixed execution latency (e.g. integer
additions take 1 cycle).

We use the EEMBC Autobench benchmark suite [16] that
reflects the current real-world demand of some automotive
critical real-time embedded systems.

B. Fulfilling the i.i.d properties
The use of random replacement and placement policies

guarantees that observed execution times fulfil the proper-
ties required by MBPTA. However, we further verify this



TABLE I
INDEPENDENCE AND IDENTICAL DISTRIBUTION TESTS RESULTS (OUTCOME

INDEPENDENCE TEST / OUTCOME I.D TEST)

Benchmarks 1w-256s 8w-32s 32w-8s 256w-1s
DM SA SA FA

a2time 0.63 / 0.43 0.90 / 0.64 0.88 / 0.75 0.53 / 0.57
aifftr 0.07 / 0.98 0.01 / 0.93 0.74 / 0.92 0.59 / 0.74
aifirf 0.39 / 0.83 0.27 / 0.84 0.76 / 0.28 0.21 / 0.36
aiifft 0.23 / 0.81 0.11 / 0.70 0.19 / 0.53 0.05 / 0.34
cacheb 0.53 / 0.48 0.51 / 0.40 0.27 / 0.97 1.20 / 0.36
canrdr 0.17 / 0.53 0.21 / 0.39 1.27 / 0.12 0.23 / 0.29
iirflt 1.27 / 0.84 0.11 / 0.80 0.05 / 0.49 0.71 / 0.75
puwmod 0.17 / 0.47 0.37 / 0.89 0.41 / 0.96 0.51 / 0.92
rspeed 0.33 / 0.89 0.33 / 0.27 0.25 / 0.24 1.24 / 0.60
tblook 0.51 / 0.35 0.47 / 0.93 0.67 / 0.91 0.03 / 0.54
ttsprk 0.82 / 0.13 0.63 / 0.73 0.19 / 0.92 1.12 / 0.80

point empirically by analysing whether execution times of
EEMBC benchmarks on 4 different cache configurations (see
Section V-A) are independent and identically distributed.

In order to test independence we use the Wald-Wolfowitz
independence test [5]. We use a 5% significance level (a typical
value for this type of tests), which means that absolute values
obtained after running this test is lower than 1.96 if there is in-
dependence, and higher otherwise. For identical distribution, we
use the two-sample Kolmogorov-Smirnov identical distribution
test [4] as described in [7]. For 5% significance, the outcome
provided by the test should be above the threshold (0.05)
to indicate identical distribution, and non-identical distribution
otherwise.

Table I shows the results of both tests for all EEMBC
benchmarks under cache configurations varying the number of
ways (w) and sets (s), when running each benchmark 1,000
times. As shown, both tests are passed in all cases.

C. Performance Analysis

Next, we compare the average performance of deterministic
and random caches. In particular, we compare different random
placement+replacement caches against modulo placement and
LRU replacement caches for different associativities. Table II
shows the average IPC (instructions per cycle) for all EEMBC
benchmarks under different cache configurations and 1,000 runs
per benchmark. Execution time variation is quite low except for
direct-mapped caches where some mappings are particularly
good (such as those for modulo placement) whereas others
create some conflicts.

If we focus on the DM-RP cache, we observe that, as
expected, it performs much worse than the FA one due to the
reduced associativity. Further, the DM-RP cache performs much
worse than the DM-modulo cache. This is so because memory
objects (for both code and data) are laid out sequentially
and hence, modulo placement minimises conflicts. Conversely,
even if random placement creates few conflicts, those hold for
the whole execution. On average, random placement does not
introduce an excessive number of misses, but their impact in
the IPC is relevant due to the large miss latency (100 cycles).

For the SA+RP-RR configurations we observe that few num-
ber of ways is enough to provide average performance close to
that of the FA-RR cache and to that of LRU+modulo caches.
In particular, 8- and 32-way SA-RP+RR cache designs provide
performance comparable to state-of-the-art cache designs (12%
and 10% slowdown respectively), and acceptable design cost
(largely below unaffordable large fully-associative caches) while
enabling PTA.

TABLE II
IPC OF RP+RR AND MODULO+LRU CACHES IN OUR ARCHITECTURE

1w-256s 8w-32s 32w-8s 256w-1s
DM SA SA FA

RP+RR 0.234 0.585 0.615 0.627
LRU+modulo 0.613 0.665 0.687 0.698

D. MBPTA: EVT projections
In this section we provide some pWCET estimates obtained

with the method provided in [7]. Note that MBPTA has been
used so far only on top of FA-RR caches. Although FA-
RR caches accomplish the properties required by PTA, they
have high hardware implementation cost and low scalability.
Therefore, this paper provides the first SA and DM cache
designs amenable for PTA.

Following the iterative method of [7] we carried out 1,000
experiments and use EVT to extract pWCET estimates. Figure
3 shows the EVT projections generated with [7] of aifftr
considering a FA-RR cache (labelled as 1s - 256w), two SA-
RP+RR caches (labelled as 8s - 32w and 32s - 8w) and a
DM-RP cache (labelled as 256s - 1w). As expected, the FA-
RR cache provides the lowest pWCET estimates. That is, the
random replacement policy has lower probability of resulting
in cache layouts with multiple cache conflicts because random
choices are taken on every miss instead of across different runs.
However, as we reduce the associativity of the cache, and so
we increase the number of sets, the number of cache layouts
decreases, thus increasing the probability of having more cache
conflicts.

The pWCET increment due to the reduction of the cache
associativity depends on the application: for instance, a2time is
very sensitive to cache associativity. Instead, aifftr experiences
pWCET estimate increments of only 9% and 11% when con-
sidering SA-RP+RR caches and up to 5x when considering a
DM-RP cache, with respect to the FA-RR cache.

Table III shows the pWCET increment of the SA-RP+RR
and DM-RP caches with respect to the FA-RR cache for all
benchmarks when considering an exceedance probability of
10−13. Our selection of the exceedance probability, i.e. the
probability that an instance of a task misses its deadline, is based
on the observation that for the aerospace commercial industry at
the highest integrity level DAL-A the maximum allowed failure
rate in a piece of software is 10−9 per hour of operation [1].
In current implementations, the highest frequency at which a
task can be released is 20 milliseconds (2× 10−3) [1]. Hence,
the highest allowed failure rate per task activation is 2×10−11,
which is largely above our exceedance probability. Nevertheless,
similar trends are observed for other exceedance probabilities.
Overall, our RP+RR cache designs provide the best tradeoff
between hardware complexity and pWCET for PTA while not
requiring information about the actual addresses accessed by
the programs analysed. Moreover, second level caches can be
used to mitigate the large impact of misses in both average
performance and pWCET estimates.

VI. RELATED WORK

Caches pose serious challenges on WCET analysis methods.
In fact, cache WCET impact has been studied extensively by the
research community [18], including several levels of cache [12]
and locking mechanisms [17] to increase predictability and
hence provide tighter WCET estimations.

Some current processors used in high-performance embed-
ded systems already implement random replacement policies
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TABLE III
PWCET INCREMENT OF THE SA AND DM CACHES WITH RESPECT TO THE

FA ONE, CONSIDERING AN EXCEEDANCE PROBABILITY OF 10−13

Benchmarks 32w-8s (SA) 8w-32s (SA) 1w-256s (DM)
a2time 452% 511% 1758%
aifftr 9% 11% 468%
aifirf 61% 65% 1418%
aiifft 9% 12% 653%

cacheb 9% 12% 904%
canrdr 8% 9% 2126%
iirflt 370% 478% 1448%

puwmod 29% 31% 855%
rspeed 23% 25% 12691%
tblook 167% 185% 1995%
ttsprk 13% 14% 3386%

on set-associative caches [3][2]. Randomised caches in high-
performance processors have been proposed to remove cache
conflicts by using pseudo-random hash functions [22][10][20].
However, the behaviour of all those cache designs is fully de-
terministic, and therefore, whenever a given input set produces
a pathological access pattern, it will happen systematically for
such input set. Therefore, although the frequency of pathological
cases is reduced, they can still appear systematically because
there is no way to prove that their probability is bound.

Some work on PTA has been done based on the assumption
that execution times are truly i.i.d. and that frequencies for
execution paths provided by the user match actual probabilities
of those paths [8]. Later work has shown how to perform PTA
with no assumption on the probabilities of execution paths and
how to use random caches in PTA systems [6][7]. Concretely,
authors showed that randomised replacement effectively avoids
pathological behaviour of deterministic replacement policies
while achieving reasonable performance. Some authors have
tried to perform PTA on top of conventional cache designs [13].
Unfortunately, this can only be done if the user is able to provide
the true probability (not the frequency) of each cache layout and
each execution path to occur for all instances of the system
deployed, which is, in general, unattainable.

To the best of our knowledge, our paper is the first enabling
the use of the most common and efficient cache designs, i.e.
set-associative and direct-mapped caches in probabilistically
analysable hard real-time systems while preserving the prop-
erties needed by sound PTA techniques [6][7].

VII. CONCLUSIONS AND FUTURE WORK

PTA enables affordable analysis of complex hardware in
safety-critical real-time systems by reducing the amount of
information about the hardware and software state required to
provide trustworthy WCET estimates. Yet, PTA relies on some
properties that existing hardware fails to provide. In particular
PTA requires that the execution times of the program on the
target platform can be modelled with i.i.d random variables.

In the case of the cache, the deterministic behaviour of
placement and replacement policies makes it impossible to

assign a true probability to different execution times. Only
unaffordable fully-associative caches with random replacement
would allow deriving true probabilities. This paper presents
the first random placement policy based on a parametric hash
function so that i.i.d. execution times are achieved, thus enabling
the use of efficient set-associative and direct-mapped caches in
the context of probabilistic timing analysis. We further show
that our cache design can be implemented with little overhead
in terms of complexity, energy and performance.

While in this paper we have focused on devising random
placement and replacement policies and implementations for
first level caches, we plan to extend random placement policies
to other components such as second level caches and translation
look-aside buffers (TLBs).
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