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Abstract—This paper introduces a novel approach towards the
statistical analysis of modern high-speed I/O and similar
communication links, which is capable of reliably to determine
extremely low (~10 ~ 2 or lower) bit error rates (BER) by using
techniques from extreme value theory (EVT). The new method
requires only a small amount of voltage values at the received eye
center, which can be generated by running circuit/system level
simulations or measuring fabricated 1/O circuits, to predict link
BERs. Unlike conventional techniques, no simplifying
assumptions on link noise and interference sources are required
making this approach extremely portable to any communication
system operating with very low BER. Our experimental results
show that the BER estimates from the proposed methodology are
on the same order of magnitude as traditional time domaln,
transnent eye diagram simulations for links with BER of 10 and
10 operating at 9.6 and 10.1 Gbps respectively.

Index Terms—BER, EVT, 1/0 Links

1. INTRODUCTION

Driven by the use of cloud computing and data streaming, chip
1/0 bandwidth needs are doubling each year, reaching data rates up to
28 Gb/s in 2012 [1]. These trends are met through sophisticated
architectures  including complex equalization techniques in
conjunction with advanced semiconductor process technology. The
increasing complexity requires improvements in link modeling and
development of trustable BER estimation methodology to enable
optimizations and des1gn validation. Such I/O links operate at very
low BER, (< 10™°) precluding the use of Monte-Carlo techniques
based on several s1mulat10ns of the circuit rnodel of the link. Indeed, a
probability of 10" means that roughly 10" simulations are needed
just to produce one erroneous bit (and many more are needed to obtain
a reliable estimate of error probability). However, current simulation
technology can only handle a few thousand simulations within a
reasonable time, and this is not expected to improve because advances
in simulation technology are offset by the increasing data-rate (as the
data rate goes up, the time step required for simulation becomes
smaller) and since link complexity and the need for more sophisticated
circuit models also increases.

In the past, link analysis was performed using worst-case
methods, such as peak distortion analysis (PDA) [2]. In that scenario,
worst-case interference noise sources, due to inter symbol interference
(IST) and crosstalk, are superimposed to compute voltage margins at
the sampling position. Fig. 1 depicts an eye diagram constructed by
simulating 100K symbols, where also the magnitude and importance
of a worst case ISI crosstalk sequence is shown as dashed line. Even
though this technique is extremely useful for equalizer architectures
exploration it cannot predict the BER of the system reliably.

More recently, statistical link analysis has been introduced. This
technique resorts to probabilistic techniques to derive BER estimates
analytically (without explicit circuit simulations) by starting with
appropriate probabilistic models of all random noise and interference
sources of the link, and by calculating intermediate probability
distributions due to the various link components to the receiver output.
However, the exact -calculation of intermediate probability
distributions is not possible for arbitrary and realistic probabilistic
noise models, and therefore inevitably these approaches entail many
assumptions and approximations both in the noise models and the
calculation of intermediate distributions. A summary of previous
methods is presented here.
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II.  RELATED WORK

Stojanovic et al. [3] proposed to compute ISI and crosstalk
bounded distributions analytically. They converted TX and RX jitter
noise from time domain to voltage domain (generating unbounded
distributions) and convolved interference and noise sources to
generate the RX sample distribution. By sweeping the sampling phase,
a statistical eye contour can be constructed for a defined BER target.
The shortcoming of this approach is that TX/RX jitter noise and
interference sources are assumed to be statistically independent. In
addition, the formulation is limited to Gaussian jitter only.
Recognizing the strong interaction between these two signal
impairments, Balamurugan et al. [4] proposed a segment-based
analysis where data transitions are divided into segments centered on
the nominal data transitions. The goal is to compute the contributions
of individual segments and appropriately combine them. Moreover,
they propose to use fitting methods to extract jitter information from
few jitter values (roughly 200K) generated from accurate Spice-like
simulations. Generally, I/O-link architects rely on the well-known
dual Dirac jitter model proposed by Agilent [5], where binomial
distribution is combined with two Gaussians. Although this
approximation is far from describing the physical original of jitter, it is
widely adopted for its tractability.

The current paper proposes an approach of statistical nature
towards BER estimation, which retains the benefits of simulation that
can handle any conceivable noise model, but attempts to statistically
estimate very low BERs from a small and tractable sample set of only
a few thousand link simulations (either system or circuit simulations).
The approach is based on the field of extreme value theory (EVT) [6]-
[9], which is the relevant branch of statistics for the estimation of very
low probabilities which lie away from the center and into the tail of an
unknown output distribution. Similar procedures based on EVT have
been successfully applied in the VLSI realm for maximum power
estimation [10], analog testing [11], and memory yield estimation
[12].

Interestingly, the proposed BER estimation method can also be
applied to I/O transceivers to perform BER analysis within seconds.
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Figure 1. Eye diagram showing the importance and the magnitude of worst-
case sequence computed using PDA. It could be noticed the large gap existing
between the simulated eye opening and the worst case sequence.



III. THEORETICAL BACKGROUND

A. Definition of BER

In T/O links using a BPSK signaling format, the binary symbols
‘0’ and ‘1’ are mapped to voltagesV,, V| before being transmitted
through the channel. In differential links V;, is defined as the
difference between the two differential lines, therefore V, =+V,
while V', ==V . Due to the superposition of various random noise and
interference sources along the link, the receiver (RX) voltages of
symbols ‘0’ and ‘1’ are regarded as random variables X_and X,
with (unknown) distribution functions (df) F (x) and F,(x), and

dF dF.
At st
dx dx
respectively (Fig. 2). The mean of X _ represents the nominal
voltage of ‘0’ and is negative (E[ X _]< 0), while the mean of X,
represents the nominal voltage of ‘1° and 1is positive
(E[X,]>0). The bit error rate (BER) for symbol ‘0’ is defined as
the probability of X _ to be positive (in which case it is erroneously
detected as ‘1°), i.e., By =Pr[X_>0]=1-F (0). Likewise, the
BER for ‘1’ is defined as the probability of X, to be negative (in
which case it is erroneously detected as ‘0’), ie.,
B, =Pr[X, <0]=F,(0).For both distributions the zero voltage

level lies far into the tail (right tail for ‘0’ and left tail for ‘1”), where
the probability is very small for the extremely low BERs needed in
modern links. For this region, standard methods designed to
approximate the mean are inadequate, and techniques based on EVT
have to be emploved instead.

density  functions  f (x)=

BER for Rx bit ‘0’

BER for Rx bit ‘1’

u

Figure 2. Probability density functions of RX voltages, and definition of bit
error rate (BER) for binary symbols ‘0’ and ‘1°.

B.  Approximation of the tail of a probability distribution via EVT

We will describe a procedure for estimating a very low
probability in the right tail of a distribution via EVT. This is the case

for By =Pr[X_>0] in our specific application, and for this
purpose let us denote X =X and F (x)= F(x) for the remainder
of the section. The estimation of B, = Pr[.X, < 0] can be treated in
a completely analogous manner by considering the distribution of
—X, and estimating Pr[-X, >0]. As pointed out in the

introduction, the objective is to estimate very low BERs on the basis
of a relatively small sample set of simulated RX voltages. Let

X=(X,,X,,...,X,) be a random sample set of RX voltages
corresponding to ‘0’ (for the estimation of B, from a sample set
X=(X,,X,,...,X,) of I’ wvoltages, just consider the
sample —X = (-X,,—X,,...,—X,)). By “random” here we mean

that the units X, X,,..., X, constitute independent and identically

distributed (iid) random variables with df F_(x) = F(x) each (the
way to form such a random sample by » simulations of the link will
be discussed in Section III). The units X, X,,..., X, of X can be

sorted in ascending order as X, < X,, <---< X, ,and the i-th

unit X, of this sequence is called the i-th order statistic of X. Let
us suppose that the k  upper order statistics
X iitn>s X ngromse--» X,y elong to the right tail of the distribution
(we discuss the appropriate selection of their number k& in Section II-
D). In other words, let the (n—k) -th order statistic X, ,.,
constitute a high threshold » marking the beginning of the right tail.
The sample set X, =(X, ;100X tiomoe--sX ) Of the order
statistics which are larger than u =X, ,  is called the sample of
exceedances over threshold u. It is not difficult to infer that this
sample set follows a distribution F,, (x) :

PrX <x, X >u]l _ F(x)- F(u)

(1) R =PrX x| X>ul=—2m 1= F(u)

>u

5 2

Now, a fundamental result from EVT [7] states that irrespective
of F(x) and under conditions normally satisfied in practice, the

exceedance df F,(x) approaches asymptotically (i.e., for large

enough u) a generalized Pareto (GP) distribution G, (x) with the
following form:

1y
- ’ <x<+ if <0
@) G 0=1-|1-p=2 ], T T
; g us<x<u+pfly if y>0

where >0 and y €R are parameters and u=X is the
chosen constant threshold. The parameter [ is a scale parameter
that characterizes the spread of the distribution around its mean, and
roughly corresponds to the standard deviation parameter ¢ of the
normal distribution. The parameter y is called shape parameter or
tail index, and is more important since it is connected with the right
tail of the parent distribution '(x). If ¥ <0 then F(x) has a long
(or heavy) right tail and the associated random variable X is
unbounded from above (i.e., sup{x F(x)< 1}: +00). If ¥ >0 then

n—kmn

F(x) has a short right tail and the random variable X is upper
bounded (i.e., sup{x:F(x)<1} is finite). The case y =0 is
interpreted as y — 0 [reducing the GP to the exponential
distribution G5 , (x) = 1—-exp(—x/ )] and indicates that F'(x) has

a moderate right tail.
If we can fit the GP distribution (2) to the sample of exceedances

X, (i.e., select appropriate values ,é and 7 of the parameters /3
and y) so as to approximate F,(x) by G 5.7 (x), and also
approximate 1—-F(u)=1-F(X,_,. )=Pr[X>X, , ] by the
percentage k/n of upper order statistics in total sample size, we can

estimate the unknown F'(x) for x > u (i.e., for points further into
the tail) from (1) and (2) as:

n—k:n n—k:n

(3) Fx)=[1-F@)F,(x)+Fu)=1-1-F@w)1-F,(x))
~1 —E[l -7 i

vy
n—kn
n

and finally the desired B, =1—F(0) as:

—_
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The next two sub-sections discuss the pending issues of finding

appropriate estimates ,[? , 7 of the GP parameters 3, 7 and setting an
appropriate number £ of order statistics belonging to the right tail.

C. Estimation of parameters of generalized pareto distribution

Maximum likelihood (ML) estimation is the standard way of
estimating the unknown parameters of a distribution on the basis of a
sample set. It amounts to maximizing the joint density function of the
iid units of the sample w.r.t. the unknown parameters (i.e., the
likelihood function), or more typically its natural logarithm (known
as the log-likelihood function). The density function of the GP
distribution (2) is

5 g (x)idGM(x)ii[li x_uj“ 7 u<x <40 if y<0
By - -

dx Yij r Yij Tu<x<u+pfly if y>0

and the corresponding log-likelihood function for the sample X, is

£ (1/y)-1
1 X -X
(6) logL(B,7)=1log _[1, y#]
[T
k
=k logﬁ{i—qug(l - wa .
= B

The maximization of the above bi-variate function w.r.t. (£,%)

to obtain the ML estimates (/3,7) can be performed by numerical
routines for multivariable nonlinear optimization. More effectively,
we can perform a  reparameterization (5,7)— (7,¥)

with7 = y/ 3, and differentiate Eq. (6) w.r.t. 7 and 7. The estimate
7 can then be found via numerical solution of the following one-

dimensional equation in the interval 7 € (—o0,(X,,, —u)™") (see [13]
for details)

k
1 1 1 X, i =X
(7) — - +— Z n—i+ln n—kn -0

¢ 10g(1 —T(X s — Xn—l(:n)) k = I=r(X, = Xo)
=

n—i+ln
and the estimate 7 (and /;’ = y/7) can be computed by

k
o 1 N
®) y=—;;mg(l—r(x,,,,m—XW))-

The ML estimation method has also the benefit of providing
confidence intervals for the estimates (/3,7) as well as the derived

estimate éo- Specifically, provided that ¥ <1/2 (the converse case

¥ 21/2 is very rare and corresponds to distributions with very short
tails and a right endpoint very close to their mean), the ML estimates

(,é, 7) are known to be jointly normally-distributed with means
(B,7) and the following covariance matrix [14] (where X is any

GP-distributed random variable with density function g, (x)):

E{az loggﬁ,ym} E{az logg/,‘,m} ’
1

Vo op’ opoy
k E{Wloggﬂ.y()()} E{azl"ggﬁ.y()()}
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(B=(B.)

1 123 B
=—(- A .
k( 7){ 5o }

The estimate Kk =k/n of 1-F(X,, ) in (4) has also a
variance that equals var(£) = k/n* (provided that k << n ) [8], and

n—k:n

is independent of the ML estimates (/3,7) (since it is known that the
number of exceedances k is independent of their numerical values

upon which ( ,B ,7) are estimated [15]). If we denote

a_éP b LX—k

d=| % |- —5[1 T yX—kJ AN .
% " s lﬁ[lh Iog[l + ﬁ@] I SSE = ]
oy & r\r B PXoen + B

the variance of the BER estimate, (4) can be found by applying the
so-called “delta” method [16] as

K
2 2
A X ~ X N X, ..
_Lg (2_1”) A{é—ljélog PRETE | PPN (R RV Y|
k V)X, +B \7 )Y B Kin + B

and the (1-0)x100% confidence interval (corresponding to
confidence level 1 — ¢ ) ultimately results in

< Zsny Var(éu) )

where z;, is the (0/2) -quantile of the standard normal
distribution N (0,1).

However, it must be remarked that the normal approximation
assumed by the delta method for the sampling distribution of the
estimate of Eq. (4) can be rather poor, and as such the above
confidence interval is not always particularly small. A better
confidence interval can often be constructed on the basis of the
profile likelihood ratio test statistics [17], or even sometimes by
adopting other parameter estimation methods such as the method of

probability-weighted moments [18] or the elemental percentile
method [19].

D. Selection of tail size

An important question in tail estimation via EVT concerns the
appropriate number k of upper order statistics that are assumed to
belong to the tail. In determining £ we are faced with a tradeoff
between variance and bias. ML estimation of £, ¥ on the sample

9) var(B,)=d"Vd + [ zBf J var(K)

10)  |B,-B,

X,, requires k to be large so that the estimates £, y (and the
corresponding BER estimate) are accurate, i.e., they have small
variance. A too large k, however, may incorporate units that do not
belong to the tail, and therefore cause X, to deviate from its
asymptotic GP distribution, i.e., introduce bias. In practice, a rule of
thumb that is often used is to set & at the upper 10% of the sample set
X, i.e., fix k =0.1n. However, this choice is totally arbitrary and a

much better strategy is to perform ML estimation of the tail index y



(which ought to be independent of the selection of k) for a whole
range of values between some k. (ork =1)andk__ , and seek the

min
optimum k" inside a region, where the estimated 7 is stable.
A graphical procedure can be adopted for this by drawing a plot
of 7 versus k. The plot is expected to exhibit a “plateau” that is

max >

surrounded by strong fluctuations of 7 on the left (due to large
variance for smaller k) and a gradual shift from the stable 7 on the

right (due to bias for larger k). The optimum k" is the largest value
of k& within this plateau. A heuristic to find the right endpoint of a
plateau, which works reasonably well in practice (but is still
advisable to be accompanied by visual judgment), consists of
choosing k= as the value between k, <k<k, _ where the
following function is minimized [6]

k.
A po=2 7, ~med(fiei7,)
i=1

where the estimate 7, of y is based on the i upper order statistics,

and med(-) denotes the median value.

More rigorous but more complicated procedures for automatic
selection of k£ can be found in [20] — [21]. We also note that there is
another graphical procedure for tail size selection called the mean
excess plot [9], which, however, has a greater degree of subjectivity
and does not lend itself to a good heuristic for automatic size
selection.

IV. PROPOSED METHODOLOGY

The first stage in the proposed statistical approach for BER
estimation is the creation of the random sample set of RX voltages
from n simulations of the link. This entails a circuit-level simulator or
an appropriate circuit model of the link. It also requires appropriate
realistic probabilistic models for all random noise contributions in the
link. If there are s random noise sources Y,Y,,...,Y, (not
necessarily independent), the specification of the probabilistic model
of their combined random vector Y =(1,,Y,,...,Y,) effectively
amounts to characterizing its joint (multivariate) distribution
function H(y,,¥,,...,y,) = H(y) . As already mentioned in the
introduction, the proposed approach does not impose any restrictions,
neither on the link circuit model nor on the probabilistic noise
models. The only real requirement is to ensure that the sample set of
RX voltages, upon which statistical BER estimation is to be carried
out, comprises of independent and identically distributed (iid) units
from the unknown target distribution. This is simply achieved by
randomly generating n independent noise vectors Y,,Y,,...,Y,

from their joint distribution H(y), and entering each specific vector
into the circuit simulator with the link model (e.g., a SPICE netlist),
in order to perform » simulations for the RX output. The result will
be a random sample set X = (X, X,,..., X,) with iid units from the
unknown distribution of the RX output voltage.

Regarding the sample size n, we have chosen a number of
n=20000 units to conduct our experiments (presented in
SectionV). Assuming that the tail comprises a portion of about 10%
of the sample, this provides a tail size of approximately & =~ 2000
units (upper order statistics) to fit the GP parametric model, which is
generally more than adequate for statistical estimation. Of course, if
we have the simulation capacity, we can increase the sample size
(along with the tail size) in order to improve the estimation accuracy.
As also pointed out in Section II-D, it is not recommended to rely on
a fixed tail size (like k& = 0.1n units) for tail estimation, but rather
conduct estimation for a whole range of £ values and choose the best

among them. A search within a range of k_, =0.005n to

k. =0.15n (ie. k,, =100 to k, =3000 for n =20000) has

proven to be sufficient in most practical cases.

After the n link simulations have been executed and the random
sample set X of RX voltages has been assembled, the second stage of
the proposed approach is the actual BER estimation via EVT on the
basis of the background developed in Section II. The resulting
procedure is as follows:

Step 0. If the sample X corresponds to symbol ‘1, revert it as —X=(-X;,-Xa,...,-Xa)

(leave X as is, if it corresponds to symbol ‘0”).
Step 1. Sort the units X;,X,,...,X; of X in ascending order as X;.,,<Xy,<...<Xy.
Step 2. For k=1 to kyy-1:
Step 2.1. Group together the ordered units X, k1.0, Xnk+2ms- - -»Xun that are larger
than X« as sample X, of exceedances over threshold u=X, k.
Step 2.2. Solve (7) w.r.t. T and obtain estimate T (for the current k).
Step 2.3. Calculate estimate “}k of the tail index y (for the current &) from (8).
Step 3. For k=kp, t0 Kay:
Step 3.1. Group together the ordered units X, c+1:n,Xn k2. - - Xnin that are larger
than X,,.., as sample X, of exceedances over threshold u=X,, ..
Step 3.2. Solve (7) w.r.t. T and obtain estimate T (for the current k).
Step 3.3. Calculate estimate :{k of the tail index y (for the current k) from (8).
Step 3.4. Evaluate p(k) of (12) and check whether it is smaller than the current.
If so, set k =k.
Step 4. For the resultant optimum k', retrieve yie=7 and =T and calculate B =1h.

Step 5. Calculate the estimate Boof B, from (4) and its confidence interval from (11).

V. EXPERIMENTAL RESULTS

A.  Behavioural simulations

For the purposes of this evaluation, we have developed a system-level
time-domain simulator to generate RX samples which are later used
for the fitting procedure. It should be noticed that in absence of
measured data from fabricated prototypes, assumptions have been
made for noise source distributions to generate time domain data.
However, this has no impact on the final result. The simulation
framework was written using MATLAB, due to the small run time
required to generate a large number of samples, and due to the
simplicity and ease of creating different system configurations, by
sweeping filter taps and different data rates (it should be noted that in
principle, a circuit simulator would be able to generate the same data
allowing to model more accurately noise sources in the system). The
modeled I/O link is depicted in Fig. 3. The TX features a feed forward
equalizer (FFE) for precursor equalization, while post cursor
components are removed on RX side using a decision feedback
equalizer (DFE). A pseudorandom bit generator (PRBS) creates
random data vectors for time domain simulations. The channel, whose
frequency response is depicted in Fig. 4(a) is an 8-lanes parallel bus,
therefore, far end crosstalk (FEXT) components are included in the
simulation. Fig. 4(b) depicts the forward and FEXT pulse responses
for a 166ps wide pulse. Cursor, precursor and postcursor components
are clearly visible. Since this pulse response has been sampled at the
RX input, precursors have been effectively removed by TX-FFE.
Apart from interference sources, unbounded noises sources have been
included in the simulation. TX and RX jitter samples, considered to be
white and independent are modeled with dual Dirac distribution (5%
UI deterministic jitter and 1% UI RMS value for random component),
capturing both deterministic and random jitter components. 5 MHz
sinusoidal jitter is superimposed. TX/RX jitter samples are
transformed into equivalent noise at the slicer input using the
methodology proposed in Stojanovic et al. [3]. Since the simulated
link is assumed to be source synchronous, the effective jitter seen at
RX is the difference between TX and RX jitter.
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Figure 4. (a) Frequency Response (S21) of server backplane channel. The
notches in the response are due to reflections. (b) Forward and croostalk pulse
response for a 166 ps pulse, corresponding to 6Gb/s symbol rate.

B. BER estimation

We evaluated our proposed methodology on three samples of
20,000 trials for each symbol ‘0°, ‘1’ on two different data links with
bandwidths of 9.6 and 10.1 Gbps. The tail of the empirical distribution
function of these samples can be approximated by a GP distribution as
shown in Figures 5 and 6. In order to find the £* we evaluated the ML
estimate of index y for different tail sizes k as shown in Fig. 7(a) and
then used the metric p(k). Finally we evaluated the BER for the £* as
shown in Fig. 7(b). Our experimental results in Table I show that the
BER estimates are on the same order of magnitude as Monte Carlo

estimates from brute-force simulations: 10 and 10 for 9.6 Gbps
and 10.1 Gbps link. respectivelv.
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Figure 5. (a) Data plot and (b) histogram for a sample of n=2500 units
corresponding to symbol ‘0’ in the 9.6 Gbps link. The data plot also shows the
exceedances over the threshold =X o.n.
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Figure 6. (a) Empirical distribution function (df) for the sample of Fig. 5, and
(b) exceedance df over the threshold u=Xj¢,, (together with the fitted GP
distribution, after ML estimation of parameters /3, y). The reader can notice
how great is the fitting of a GP distribution in the tail of the empirical
distribution function.
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Figure 7. Plots of the (a) estimates of the tail index y and (b) the BER for
symbol ‘0’ as function of the tail size £, for a sample of n=20,000 units in the
9.6 Gbps link. The tail size chosen by the metric p(k) was k =1954 upper
order statistics (at the right endpoint of the perceived plateau), and the BER

estimate for k” was B, =2.10x10™ .

TABLE I. BER ESTIMATES FOR SYMBOLS ‘0’ AND ‘1°, ALONG WITH 90%
CONFIDENCE INTERVALS AND SELECTION OF OPTIMUM TAIL SIZE, FOR 3
DIFFERENT SAMPLES OF 20,000 UNITS FROM THE 9.6 GBPS AND 10.1 GBPS
LINKS.

Link Binary | Sample | Tail size BER 90% conf.
g;:: symbol index selection estimate interval

#1 1244 2.95x107° 7.56x107°

0 #2 1954 2.10%x10°° 5.64x107°

96 #3 1434 5.96x10™° 11.9x10°°

Gbps #1 1496 4.13x107 8.98x107°

‘1 #2 1582 3.70x107° 8.33x10°

#3 1790 2.64x107° 6.66x107°

#1 2668 447%x107° 435%x107°

0’ #2 2304 4.40x107° 447x107°

10.1 #3 2112 4.09x107° 426%x107°

Gbps #1 2140 490x107° 4.76x107°

1 #2 2724 425%x107° 425x107°

#3 2026 4.71x107° 4.75x107°

VI. CoNcLUSION

In this paper we combine the advantage of probabilistic modeling
and the accuracy of detailed time domain simulations to generate
reliable estimates of very low BERs for a I/O link architectures. The
proposed methodology directly estimates bit error probability from a
small set of accurate voltage samples observed at the receiver, rather
than attempting to model all deterministic and random noise sources

in the system in an analytically trackable and therefore often overly
simplistic way. As a result, given the absence of assumptions
concerning the origins of noise, the method is applicable to any link
architecture and to complex scenarios.
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