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Abstract—This paper introduces a novel approach towards the 
statistical analysis of modern high-speed I/O and similar 
communication links, which is capable of reliably to determine 
extremely low (~10 -12 or lower) bit error rates (BER) by using 
techniques from extreme value theory (EVT). The new method 
requires only a small amount of voltage values at the received eye 
center, which can be generated by running circuit/system level 
simulations or measuring fabricated I/O circuits, to predict link 
BERs. Unlike conventional techniques, no simplifying 
assumptions on link noise and interference sources are required 
making this approach extremely portable to any communication 
system operating with very low BER. Our experimental results 
show that the BER estimates from the proposed methodology are 
on the same order of magnitude as traditional time domain, 
transient eye diagram simulations for links with BER of 10-6 and 
10-5 operating at 9.6 and 10.1 Gbps respectively.    

Index Terms—BER, EVT, I/O Links 

I. INTRODUCTION 
Driven by the use of cloud computing and data streaming, chip 

I/O bandwidth needs are doubling each year, reaching data rates up to 
28 Gb/s in 2012 [1]. These trends are met through sophisticated 
architectures including complex equalization techniques in 
conjunction with advanced semiconductor process technology. The 
increasing complexity requires improvements in link modeling and 
development of trustable BER estimation methodology to enable 
optimizations and design validation. Such I/O links operate at very 
low BER, (< 10-15) precluding the use of Monte-Carlo techniques 
based on several simulations of the circuit model of the link. Indeed, a 
probability of 10-15 means that roughly 1015 simulations are needed 
just to produce one erroneous bit (and many more are needed to obtain 
a reliable estimate of error probability). However, current simulation 
technology can only handle a few thousand simulations within a 
reasonable time, and this is not expected to improve because advances 
in simulation technology are offset by the increasing data-rate (as the 
data rate goes up, the time step required for simulation becomes 
smaller) and since link complexity and the need for more sophisticated 
circuit models also increases. 

In the past, link analysis was performed using worst-case 
methods, such as peak distortion analysis (PDA) [2]. In that scenario, 
worst-case interference noise sources, due to inter symbol interference 
(ISI) and crosstalk, are superimposed to compute voltage margins at 
the sampling position. Fig. 1 depicts an eye diagram constructed by 
simulating 100K symbols, where also the magnitude and importance 
of a worst case ISI crosstalk sequence is shown as dashed line. Even 
though this technique is extremely useful for equalizer architectures 
exploration it cannot predict the BER of the system reliably. 

More recently, statistical link analysis has been introduced. This 
technique resorts to probabilistic techniques to derive BER estimates 
analytically (without explicit circuit simulations) by starting with 
appropriate probabilistic models of all random noise  and interference 
sources of the link, and by calculating intermediate probability 
distributions due to the various link components to the receiver output. 
However, the exact calculation of intermediate probability 
distributions is not possible for arbitrary and realistic probabilistic 
noise models, and therefore inevitably these approaches entail many 
assumptions and approximations both in the noise models and the 
calculation of intermediate distributions. A summary of previous 
methods is presented here. 

II. RELATED WORK 
Stojanovic et al. [3] proposed to compute ISI and crosstalk 

bounded distributions analytically. They converted TX and RX jitter 
noise from time domain to voltage domain (generating unbounded 
distributions) and convolved interference and noise sources to 
generate the RX sample distribution. By sweeping the sampling phase, 
a statistical eye contour can be constructed for a defined BER target.  
The shortcoming of this approach is that TX/RX jitter noise and 
interference sources are assumed to be statistically independent. In 
addition, the formulation is limited to Gaussian jitter only. 
Recognizing the strong interaction between these two signal 
impairments, Balamurugan et al. [4] proposed a segment-based 
analysis where data transitions are divided into segments centered on 
the nominal data transitions. The goal is to compute the contributions 
of individual segments and appropriately combine them. Moreover, 
they propose to use fitting methods to extract jitter information from  
few jitter values (roughly 200K) generated from accurate Spice-like 
simulations. Generally, I/O-link architects rely on the well-known 
dual Dirac jitter model proposed by Agilent [5], where binomial 
distribution is combined with two Gaussians. Although this 
approximation is far from describing the physical original of jitter, it is 
widely adopted for its tractability. 

The current paper proposes an approach of statistical nature 
towards BER estimation, which retains the benefits of simulation that 
can handle any conceivable noise model, but attempts to statistically 
estimate very low BERs from a small and tractable sample set of only 
a few thousand link simulations (either system or circuit simulations). 
The approach is based on the field of extreme value theory (EVT) [6]-
[9], which is the relevant branch of statistics for the estimation of very 
low probabilities which lie away from the center and into the tail of an 
unknown output distribution. Similar procedures based on EVT have 
been successfully applied in the VLSI realm for maximum power 
estimation [10], analog testing [11], and memory yield estimation 
[12]. 
Interestingly, the proposed BER estimation method can also be 
applied to I/O transceivers to perform BER analysis within seconds. 

 

 
Figure 1. Eye diagram showing the importance and the magnitude of worst-
case sequence computed using PDA. It could be noticed the large gap existing 
between the simulated eye opening and the worst case sequence. 
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III. THEORETICAL BACKGROUND 

A. Definition of BER 
In I/O links using a BPSK signaling format, the binary symbols 

‘0’ and ‘1’ are mapped to voltages 0V , 1V  before being transmitted 
through the channel. In differential links 1,0V  is defined as the 
difference between the two differential lines, therefore VV +=0 , 
while VV −=1 . Due to the superposition of various random noise and 
interference sources along the link, the receiver (RX) voltages of 
symbols ‘0’ and ‘1’ are regarded as random variables −X  and +X , 
with (unknown) distribution functions (df) )(xF−  and )(xF+ , and 

density functions 
dx

xdFxf )()( −
− =  and 

dx
xdFxf )()( +

+ =  

respectively (Fig. 2). The mean of −X  represents the nominal 
voltage of ‘0’ and is negative )0][( <−XE , while the mean of +X  
represents the nominal voltage of ‘1’ and is positive 

).0][( >+XE The bit error rate (BER) for symbol ‘0’ is defined as 
the probability of −X  to be positive (in which case it is erroneously 
detected as ‘1’), i.e., ).0(1]0Pr[0 −− −=>= FXB Likewise, the 
BER for ‘1’ is defined as the probability of +X  to be negative (in 
which case it is erroneously detected as ‘0’), i.e., 

).0(]0Pr[1 ++ =<= FXB For both distributions the zero voltage 
level lies far into the tail (right tail for ‘0’ and left tail for ‘1’), where 
the probability is very small for the extremely low BERs needed in 
modern links. For this region, standard methods designed to 
approximate the mean are inadequate, and techniques based on EVT 
have to be employed instead. 

 
Figure 2. Probability density functions of RX voltages, and definition of bit 
error rate (BER) for binary symbols ‘0’ and ‘1’. 

B. Approximation of the tail of a probability distribution via EVT 
We will describe a procedure for estimating a very low 

probability in the right tail of a distribution via EVT. This is the case 
for ]0Pr[0 >= −XB  in our specific application, and for this 
purpose let us denote XX ≡−  and )()( xFxF ≡−  for the remainder 
of the section. The estimation of ]0Pr[1 <= +XB  can be treated in 
a completely analogous manner by considering the distribution of 

+−X  and estimating ].0Pr[ >− +X As pointed out in the 
introduction, the objective is to estimate very low BERs on the basis 
of a relatively small sample set of simulated RX voltages. Let 

),,,( 21 nXXX K=X  be a random sample set of RX voltages 
corresponding to ‘0’ (for the estimation of 1B  from a sample set 

),,,( 21 nXXX K=X  of ‘1’ voltages, just consider the 
sample )).,,,( 21 nXXX −−−=− KX By “random” here we mean 

that the units nXXX ,,, 21 K  constitute independent and identically 
distributed (iid) random variables with df )()( xFxF ≡−  each (the 
way to form such a random sample by n simulations of the link will 
be discussed in Section III). The units nXXX ,,, 21 K  of X can be 
sorted in ascending order as ,::2:1 nnnn XXX ≤≤≤ L and the i-th 
unit niX :  of this sequence is called the i-th order statistic of X. Let 
us suppose that the k upper order statistics 

nnnknnkn XXX ::2:1 ,,, K+−+−  belong to the right tail of the distribution 
(we discuss the appropriate selection of their number k in Section II-
D). In other words, let the )( kn − -th order statistic nknX :−  
constitute a high threshold u marking the beginning of the right tail. 
The sample set ),,,( ::2:1 nnnknnknex XXX K+−+−=X  of the order 
statistics which are larger than nknXu :−≡  is called the sample of 
exceedances over threshold u. It is not difficult to infer that this 
sample set follows a distribution :)(xFu  
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Now, a fundamental result from EVT [7] states that irrespective 
of )(xF  and under conditions normally satisfied in practice, the 
exceedance df )(xFu  approaches asymptotically (i.e., for large 
enough u) a generalized Pareto (GP) distribution )(, xG γβ  with the 
following form: 
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where 0>β  and ℜ∈γ  are parameters and nknXu :−≡  is the 
chosen constant threshold. The parameter β  is a scale parameter 
that characterizes the spread of the distribution around its mean, and 
roughly corresponds to the standard deviation parameter σ  of the 
normal distribution. The parameter γ  is called shape parameter or 
tail index, and is more important since it is connected with the right 
tail of the parent distribution )(xF . If 0<γ  then )(xF  has a long 
(or heavy) right tail and the associated random variable X is 
unbounded from above (i.e., { } +∞=<1)(:sup xFx ). If 0>γ  then 

)(xF  has a short right tail and the random variable X is upper 
bounded (i.e., { }1)(:sup <xFx  is finite). The case 0=γ  is 
interpreted as 0→γ  [reducing the GP to the exponential 
distribution )]/exp(1)(0, ββ xxG −−= and indicates that )(xF  has 
a moderate right tail. 

If we can fit the GP distribution (2) to the sample of exceedances 

exX  (i.e., select appropriate values β̂  and γ̂  of the parameters β  
and )γ  so as to approximate )(xFu  by ),(ˆ,ˆ xG

γβ
and also 

approximate ]Pr[)(1)(1 :: nknnkn XXXFuF −− >=−=−  by the 
percentage nk /  of upper order statistics in total sample size, we can 
estimate the unknown )(xF  for ux ≥  (i.e., for points further into 
the tail) from (1) and (2) as: 
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and finally the desired )0(10 FB −=  as: 
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The next two sub-sections discuss the pending issues of finding 
appropriate estimates ,β̂ γ̂  of the GP parameters ,β γ  and setting an 
appropriate number k of order statistics belonging to the right tail. 

C. Estimation of parameters of generalized pareto distribution 
Maximum likelihood (ML) estimation is the standard way of 

estimating the unknown parameters of a distribution on the basis of a 
sample set. It amounts to maximizing the joint density function of the 
iid units of the sample w.r.t. the unknown parameters (i.e., the 
likelihood function), or more typically its natural logarithm (known 
as the log-likelihood function). The density function of the GP 
distribution (2) is 
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and the corresponding log-likelihood function for the sample exX  is 
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The maximization of the above bi-variate function w.r.t. ),( γβ  

to obtain the ML estimates )ˆ,ˆ( γβ  can be performed by numerical 
routines for multivariable nonlinear optimization. More effectively, 
we can perform a reparameterization ),(),( γτγβ →  
with ,/ βγτ ≡ and differentiate Eq. (6) w.r.t. τ  and .γ The estimate 
τ̂  can then be found via numerical solution of the following one-
dimensional equation in the interval ))(,( 1

:
−−−∞∈ uX nnτ  (see [13] 

for details) 
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and the estimate γ̂  (and )ˆ/ˆˆ τγβ = can be computed by 
 

(8)  ( )∑
=

−+− −−−=
k

i

nknnin XX
k

1

::1 )(ˆ1log1ˆ τγ . 

 
The ML estimation method has also the benefit of providing 

confidence intervals for the estimates )ˆ,ˆ( γβ  as well as the derived 

estimate 0B̂ . Specifically, provided that 2/1<γ  (the converse case 
2/1≥γ  is very rare and corresponds to distributions with very short 

tails and a right endpoint very close to their mean), the ML estimates 
)ˆ,ˆ( γβ  are known to be jointly normally-distributed with means 
),( γβ  and the following covariance matrix [14] (where X is any 

GP-distributed random variable with density function :))(, xg γβ  
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The estimate nk /ˆ ≡κ  of )(1 :nknXF −−  in (4) has also a 

variance that equals 2/)ˆvar( nk=κ  (provided that nk << ) [8], and 

is independent of the ML estimates )ˆ,ˆ( γβ  (since it is known that the 
number of exceedances k is independent of their numerical values 
upon which )ˆ,ˆ( γβ  are estimated [15]). If we denote 
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the variance of the BER estimate, (4) can be found by applying the 
so-called “delta” method [16] as 
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and the %100)1( ×−δ  confidence interval (corresponding to 
confidence level δ−1 ) ultimately results in  
 

(10) )ˆvar(ˆ
02/00 BzBB δ≤− , 

 
where 2/δz  is the )2/(δ -quantile of the standard normal 
distribution ).1,0(N  

However, it must be remarked that the normal approximation 
assumed by the delta method for the sampling distribution of the 
estimate of Eq. (4) can be rather poor, and as such the above 
confidence interval is not always particularly small. A better 
confidence interval can often be constructed on the basis of the 
profile likelihood ratio test statistics [17], or even sometimes by 
adopting other parameter estimation methods such as the method of 
probability-weighted moments [18] or the elemental percentile 
method [19]. 

D. Selection of tail size 
An important question in tail estimation via EVT concerns the 

appropriate number k of upper order statistics that are assumed to 
belong to the tail. In determining k we are faced with a tradeoff 
between variance and bias. ML estimation of ,β γ  on the sample 

exX  requires k to be large so that the estimates ,β̂ γ̂  (and the 
corresponding BER estimate) are accurate, i.e., they have small 
variance. A too large k, however, may incorporate units that do not 
belong to the tail, and therefore cause exX  to deviate from its 
asymptotic GP distribution, i.e., introduce bias. In practice, a rule of 
thumb that is often used is to set k at the upper 10% of the sample set 
X, i.e., fix .1.0 nk = However, this choice is totally arbitrary and a 
much better strategy is to perform ML estimation of the tail index γ  



(which ought to be independent of the selection of k) for a whole 
range of values between some mink  (or )1=k and ,maxk and seek the 
optimum *k  inside a region, where the estimated γ̂  is stable. 

A graphical procedure can be adopted for this by drawing a plot 
of γ̂  versus k. The plot is expected to exhibit a “plateau” that is 
surrounded by strong fluctuations of γ̂  on the left (due to large 
variance for smaller k) and a gradual shift from the stable γ̂  on the 
right (due to bias for larger k). The optimum *k  is the largest value 
of k within this plateau. A heuristic to find the right endpoint of a 
plateau, which works reasonably well in practice (but is still 
advisable to be accompanied by visual judgment), consists of 
choosing *k  as the value between maxmin kkk ≤≤  where the 
following function is minimized [6] 
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where the estimate iγ̂  of γ  is based on the i upper order statistics, 
and )(med ⋅  denotes the median value. 

More rigorous but more complicated procedures for automatic 
selection of k can be found in [20] – [21]. We also note that there is 
another graphical procedure for tail size selection called the mean 
excess plot [9], which, however, has a greater degree of subjectivity 
and does not lend itself to a good heuristic for automatic size 
selection. 

IV. PROPOSED METHODOLOGY 
The first stage in the proposed statistical approach for BER 

estimation is the creation of the random sample set of RX voltages 
from n simulations of the link. This entails a circuit-level simulator or 
an appropriate circuit model of the link. It also requires appropriate 
realistic probabilistic models for all random noise contributions in the 
link. If there are s random noise sources sYYY ,,, 21 K  (not 
necessarily independent), the specification of the probabilistic model 
of their combined random vector ),,,( 21 sYYY K=Y  effectively 
amounts to characterizing its joint (multivariate) distribution 
function )(),,,( 21 yHyyyH s ≡K . As already mentioned in the 
introduction, the proposed approach does not impose any restrictions, 
neither on the link circuit model nor on the probabilistic noise 
models. The only real requirement is to ensure that the sample set of 
RX voltages, upon which statistical BER estimation is to be carried 
out, comprises of independent and identically distributed (iid) units 
from the unknown target distribution. This is simply achieved by 
randomly generating n independent noise vectors nYYY ,,, 21 K  
from their joint distribution )(yH , and entering each specific vector 
into the circuit simulator with the link model (e.g., a SPICE netlist), 
in order to perform n simulations for the RX output. The result will 
be a random sample set ),,,( 21 nXXX K=X  with iid units from the 
unknown distribution of the RX output voltage.  

Regarding the sample size n, we have chosen a number of 
20000=n  units to conduct our experiments (presented in 

SectionV). Assuming that the tail comprises a portion of about 10% 
of the sample, this provides a tail size of approximately 2000≈k  
units (upper order statistics) to fit the GP parametric model, which is 
generally more than adequate for statistical estimation. Of course, if 
we have the simulation capacity, we can increase the sample size 
(along with the tail size) in order to improve the estimation accuracy. 
As also pointed out in Section II-D, it is not recommended to rely on 
a fixed tail size (like nk 1.0=  units) for tail estimation, but rather 
conduct estimation for a whole range of k values and choose the best 
among them. A search within a range of nk 005.0min =  to 

nk 15.0max =  (i.e. 100min =k  to 3000max =k  for )20000=n has 
proven to be sufficient in most practical cases. 

After the n link simulations have been executed and the random 
sample set X of RX voltages has been assembled, the second stage of 
the proposed approach is the actual BER estimation via EVT on the 
basis of the background developed in Section II. The resulting 
procedure is as follows: 

 
V. EXPERIMENTAL RESULTS 

A. Behavioural simulations 
For the purposes of this evaluation, we have developed a system-level 
time-domain simulator to generate RX samples which are later used 
for the fitting procedure. It should be noticed that in absence of 
measured data from fabricated prototypes, assumptions have been 
made for noise source distributions to generate time domain data. 
However, this has no impact on the final result. The simulation 
framework was written using MATLAB, due to the small run time 
required to generate a large number of samples, and due to the 
simplicity and ease of creating different system configurations, by 
sweeping filter taps and different data rates (it should be noted that in 
principle, a circuit simulator would be able to generate the same data 
allowing to model more accurately noise sources in the system). The 
modeled I/O link is depicted in Fig. 3. The TX features a feed forward 
equalizer (FFE) for precursor equalization, while post cursor 
components are removed on RX side using a decision feedback 
equalizer (DFE). A pseudorandom bit generator (PRBS) creates 
random data vectors for time domain simulations. The channel, whose 
frequency response is depicted in Fig. 4(a) is an 8-lanes parallel bus, 
therefore, far end crosstalk (FEXT) components are included in the 
simulation. Fig. 4(b) depicts the forward and FEXT pulse responses 
for a 166ps wide pulse. Cursor, precursor and postcursor components 
are clearly visible. Since this pulse response has been sampled at the 
RX input, precursors have been effectively removed by TX-FFE. 
Apart from interference sources, unbounded noises sources have been 
included in the simulation. TX and RX jitter samples, considered to be 
white and independent are modeled with dual Dirac distribution (5% 
UI deterministic jitter and 1% UI RMS value for random component), 
capturing both deterministic and random jitter components. 5 MHz 
sinusoidal jitter is superimposed. TX/RX jitter samples are 
transformed into equivalent noise at the slicer input using the 
methodology proposed in Stojanovic et al. [3]. Since the simulated 
link is assumed to be source synchronous, the effective jitter seen at 
RX is the difference between TX and RX jitter. 
 



 
 

Figure 3. Block diagram of the I/O link used for time domain simulation. The 
RX samples used for the fitting procedure are depicted. The probabilistic RX 
eye can be generated by sweeping the sampling phase. 

 

   (a) 

 

   (b) 
Figure 4. (a) Frequency Response (S21) of server backplane channel. The 
notches in the response are due to reflections. (b) Forward and croostalk pulse 
response for a 166 ps pulse, corresponding to 6Gb/s symbol rate. 

B. BER estimation 
We evaluated our proposed methodology on three samples of 

20,000 trials for each symbol ‘0’, ‘1’ on two different data links with 
bandwidths of 9.6 and 10.1 Gbps. The tail of the empirical distribution 
function of these samples can be approximated by a GP distribution as 
shown in Figures 5 and 6. In order to find the k* we evaluated the ML 
estimate of index γ for different tail sizes k as shown in Fig. 7(a) and 
then used the metric p(k). Finally we evaluated the BER for the k* as 
shown in Fig. 7(b). Our experimental results in Table I  show that the 
BER estimates are on the same order of magnitude as Monte Carlo 

estimates from brute-force simulations: 10−6 and 10−5  for 9.6 Gbps 
and 10.1 Gbps link, respectively. 

 
Figure 5. (a) Data plot and (b) histogram for a sample of n=2500 units 

corresponding to symbol ‘0’ in the 9.6 Gbps link. The data plot also shows the 
exceedances over the threshold u≡X0.9n:n. 

 

 
Figure 6. (a) Empirical distribution function (df) for the sample of Fig. 5, and 
(b) exceedance df over the threshold u=X0.9n:n (together with the fitted GP 
distribution, after ML estimation of parameters β, γ). The reader can notice 
how great is the fitting of a GP distribution in the tail of the empirical 
distribution function. 



    

Figure 7. Plots of the (a) estimates of the tail index γ and (b) the BER for 
symbol ‘0’ as function of the tail size k, for a sample of n=20,000 units in the 
9.6 Gbps link. The tail size chosen by the metric p(k) was k*=1954 upper 
order statistics (at the right endpoint of the perceived plateau), and the BER 
estimate for k* was 6

0 1010.2ˆ −×=B . 

TABLE I.  BER ESTIMATES FOR SYMBOLS ‘0’ AND ‘1’, ALONG WITH 90% 
CONFIDENCE INTERVALS AND SELECTION OF OPTIMUM TAIL SIZE, FOR 3 
DIFFERENT SAMPLES OF 20,000 UNITS FROM THE 9.6 GBPS AND 10.1 GBPS 
LINKS. 

VI. CONCLUSION 
In this paper we combine the advantage of probabilistic modeling 

and the accuracy of detailed time domain simulations to generate 
reliable estimates of very low BERs for a I/O link architectures. The 
proposed methodology directly estimates bit error probability from a 
small set of accurate voltage samples observed at the receiver, rather 
than attempting to model all deterministic and random noise sources 

in the system in an analytically trackable and therefore often overly 
simplistic way. As a result, given the absence of assumptions 
concerning the origins of noise, the method is applicable to any link 
architecture and to complex scenarios. 
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Link 
data 
rate 

Binary 
symbol 

Sample 
index 

Tail size 
selection 

BER 
estimate 

90% conf. 
interval 

9.6 
Gbps 

‘0’ 
#1 1244 61095.2 −×  61056.7 −×  
#2 1954 61010.2 −×  61064.5 −×  
#3 1434 61096.5 −×  6109.11 −×  

‘1’ 
#1 1496 61013.4 −×  61098.8 −×  
#2 1582 61070.3 −×  61033.8 −×  
#3 1790 61064.2 −×  61066.6 −×  

10.1 
Gbps 

‘0’ 
#1 2668 51047.4 −×  51035.4 −×  
#2 2304 51040.4 −×  51047.4 −×  
#3 2112 51009.4 −×  51026.4 −×  

‘1’ 
#1 2140 51090.4 −×  51076.4 −×  
#2 2724 51025.4 −×  51025.4 −×  
#3 2026 51071.4 −×  51075.4 −×  


