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ABSTRACT 
The silicon physical unclonable functions (PUF) utilize the 
uncontrollable variations during integrated circuit (IC) fabrication 
process to facilitate security related applications such as IC 
authentication. In this paper, we describe a new framework to 
generate secure PUF secret from ring oscillator (RO) PUF with 
improved hardware efficiency. Our work is based on the recently 
proposed group-based RO PUF with the following novel concepts: 
an entropy distiller to filter the systematic variation; a simplified 
grouping algorithm to partition the ROs into groups; a new 
syndrome coding scheme to facilitate error correction; and an 
entropy packing method to enhance coding efficiency and security. 
Using RO PUF dataset available in the public domain, we 
demonstrate these concepts can create PUF secret that can pass 
the NIST randomness and stability tests. Compared to other state-
of-the-art RO PUF design, our approach can generate an average 
of 72% more PUF secret with the same amount of hardware. 

I. INTRODUCTION 

A Motivation 
With the increasing desire for security, privacy protection, and 
trustworthy computing, it becomes vital to protect cryptographic 
keys stored on computing devices. In the design of a security 
system, it is normally assumed that cryptographic keys are stored 
in tamper-proof devices such that the price to steal or compromise 
the keys will be forbiddingly high. Recently, the concept of 
physical unclonable function (PUF) has been applied to key 
generation and storage [1-3].  

By means of storing secrets in its unique intrinsic physical 
features that are randomly determined by fabrication variations 
such as the subtle difference in the delays of two wires with equal 
length at the design phase, PUF achieves a higher level of 
protection without relying on persistent power. The validity of the 
claim rests on the insight that attempts in conducting invasive 
attacks will alter the unique intrinsic features and therefore 
destroy the secret hidden in the victim devices with a higher 
probability. Owing to its strong unforgeability, PUF has found 
applications in many security-related areas [4-9] such as circuit 
identification and authentication, hardware intellectual property 
protection, device remote activation, and trustworthy computing. 
Most of the existing works propose various PUFs and their 
potential applications with little consideration on the following 
two metrics: 

• hardware efficiency: how to generate the secret or key 
with the minimum hardware overhead.  

• security of the key/secret: how to ensure that the secret 
generated by a PUF is random and hard to break. 

 
It is hard to adopt a silicon PUF in many applications such as 
embedded trustworthy computing systems when the PUF is 
expensive, in terms of hardware, to implement. Meanwhile, the 
“uncontrollable” physical features behind PUFs do not guarantee 
the randomness of the PUF secret and “physical unclonable” is 
insufficient to address the security concerns.  

The longest increasing subsequence-based grouping algorithm 
(LISA) was proposed in [10] to enhance the hardware utilization 
of ring oscillator (RO) PUF. LISA is conceptually different from 
the conventional RO PUF that uses RO pairs to generate PUF 
secret because it generated multiple bits simultaneously based on 
a group of ROs. However, the authors in [10] failed to address the 
following problems: 

• fabrication variation has a significant impact on the 
PUF secret generated by the group-based RO PUF. This 
problem is not identified in [10].   

• the group-based RO PUF has several unique features. It 
is not appropriate and will not be efficient to use the 
design flow for pair-based RO PUF, as [10] did, without 
leveraging these features.  

• LISA requires the measurement of each RO’s delay (or 
speed) at two extreme temperature (0oC and 100oC), 
which may not be realistic. 

In this paper, we study the above challenges and propose several 
solutions to design and implement the group-based RO PUF.  
 

B Ring Oscillator PUF 
The basic RO PUF consists of two identical ring oscillators, 
which due to fabrication variation will have tiny difference in 
delay (or speed). One bit can be defined by comparing the speed 
and this bit will be equally likely to be a 0 or a 1 as long as the 
fabrication variation is random.  

However, the bit we extract (or generate) from a pair of ROs this 
way may not be reliable and unclonable. For example, operating 
environment such as temperature and voltage has significant 
impact on delay. When this impact is sufficiently large, it becomes 
possible that one RO is faster than the other at one temperature, 
but becomes slower at another temperature, causing the bit gene-
rated from this pair of ROs to flip when temperature changes [2].  

One way to solve this is to select only those pairs with frequency 
difference large enough to sustain temperature variation. For 
instance, Suh and Devadas [2] proposed to generate one reliable 
unclonable bit from 8 ROs that are hard wired as a unit as showed 
in Figure 1, where N = 8. The fastest and slowest ROs in each unit 
are picked to form a pair to generate a bit. This scheme uses two 
ROs with large speed difference and thus will be more reliable 
subject to operating environment changes. The use of N ROs, 
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multiplexers, counters, and comparators makes this approach very 
hardware expensive.  

 
Fig. 1.  1-out-of-N ring oscillator PUF architecture [2]. 

Another known weakness of RO PUF is that it is subject to the 
negative effect of correlated or systematic variation, which 
weakens the security of PUF secret. Maiti and Schaumont [12] 
proposed to avoid this by considering only ROs that are physical-
ly close. However, their PUF secret is not uniformly distributed 
and not statistically random.  

C Group-Based RO PUF and LISA 
If we restrict the use of ROs no more than once, schemes by 
pairing N ROs can extract no more than N/2 bits. Yin and Qu 
[10] proposed a group-based RO PUF to beat this N/2 upper 
bound by comparing more than two ROs at the same time.   

Suppose we order 4 ROs, {A,B,C,D}, by their speed from the 
fastest to the slowest. There will be 4! = 24 different orderings (or 
permutations), {ABCD}, {ABDC}, {ACBD}, {ACDB} … 
{DCBA}. Each ordering is unique and equally likely if the ROs’ 
speeds are distinct and random, which what it is believed due to 
fabrication variation. We can encode these permutations with five 
bits 00000, 00001, 00010, 00011 … 10111, respectively as shown 
in Figure 2 and call this Compact Syndrome Coding (CSC). This 
bit string can be considered as the random physical unclonable 
secret extracted from RO PUF in binary. For example, if the speed 
goes from high to low in the order of ADCB, then we say the 
secret information is 00101. In this way, we can have 24 pieces of 
different secret information, much more than what 4/2 = 2 bits 
can represent according to the pair-based approach. 

 
Fig. 2.  Motivation for the group-based RO PUF[10]. 

A longest increasing subsequence algorithm (LISA) is proposed 
in [10] to partition the ROs into groups, where every pair of ROs 
in each group will have a fixed relative speed under different 
operating temperature (that is, one RO is always faster than the 
other). Then multiple bits can be generated based on the speed 
orderings of the ROs in each group as shown in Figure 2. This 
guarantees that the generated PUF bits are reliable, but it is 
required to measure each RO’s speeds at the lowest and highest 
operating temperatures.  

D Standard PUF Design Flow 
PUF design includes secret enrollment and secret regeneration. 
The typical workflow of a RO PUF enrollment process has the 
following four steps:  

• Fabrication Variation Extraction: The first step in 
PUF design is to measure the unique characteristics 
endowed from the uncontrollable fabrication process. In 
the case of RO PUF, this corresponds to a full speed (or 
frequency) characterization of all ROs [14]. 

• Secret Selection: This step selects secure and reliable 
secrecy out of the variation profile measured in the 
previous step. Existing approaches include 1-out-of-8 
coding [2], the index-based syndrome (IBS) coding [11] 
and the chain-like neighbor coding [12,14,15]. 

• Error Correction: To further enhance reliability, error 
correcting code (ECC) is applied. Codes have been used 
for RO PUFs include Hamming and BCH codes [2]. 

• Tests for Security and Reliability: Randomness test 
ensures the security of the PUF secret. Reliability test 
verifies the PUF secret can be regenerated under 
environmental fluctuations such as in temperature and 
supply voltage. 

As we will see in Figure 3. certain public helper data will also be 
computed and stored in the chip to facilitate the PUF secret 
regeneration.  

II. LIMITATIONS OF THE CURRENT 

GROUP-BASED RO PUF AND LISA  
Although the group-based RO PUF makes it possible to generate 
more than N/2 bits from N ROs, it has three major deficiencies:  

First, LISA builds group-based RO PUF from the frequency 
measurements at the two operating temperature boundaries (0oC 
and 100oC). This conservative algorithm tends to partition the 
ROs into small groups, which is inefficient in generating PUF 
secret. Furthermore, this becomes impractical when we consider 
other extreme operating environments such as voltage variation.  

Second, it is well-known that the semiconductor fabrication 
process has a strong spatial correlation, referred to as systematic 
variation. This has to be considered in the design of RO PUF 
because otherwise the bits generated will have strong correlation 
with the ROs’ position on the chip and thus will be easy to break 
[13-15]. Group-based RO PUF creates multiple bits from a group 
of ROs and will have stronger spatial correlation. The authors in 
[10] fail to address this very important security concern.   

Last but not the least, the CSC scheme in group-based RO PUF 
(see Figure 2) does not work well with error correcting codes 
(ECC). For instance, the ordering of BACD is encoded as 00110. 
When RO C becomes faster than A due to certain environment 
change or circuit aging, the order becomes BCAD, which has 
code 01000 and the ECC has to be able to correct three bits in this 
case. On the other hand, for the very unusual event that BACD 
changes to DCAB, the ECC only needs to correct the first bit. 
This indicates that the CSC scheme is not suitable for ECC 
because the probability that an error occurs does not correlate well 
with the number of bits that needs to be corrected when that error 
occurs. 

To summarize, if we implement the concept of group-based RO 
PUF proposed in [10] using the standard PUF design flow, we 
find that the fabrication variation extraction phase is expensive 
and may not be practical; the secret selection algorithm LISA is 
pessimistic and may not be efficient in generating PUF secret; the 
CSC scheme is not suitable for error correction; and the nature of 
group-base PUF secret generation may have serious security flaw 
due to the spatial correlation of fabrication variation, but there is 
no report on security and stability tests.    



 
Fig. 3.  Overview of the proposed group-based RO PUF design and implementation

III. DESIGN AND IMPLEMENATION OF 

THE GROUP-BASED RO PUF  
A RO PUF typically consists of a group of ROs as well as countes 
and multiplexers to help collect the frequency readings of the RO 
array. Figure 3 depicts the overview of our proposed architecture 
to design and implement the group-based RO PUF.  

1. In the frequency characterization phase, we will adopt 
exact the same method as used in pair-based RO PUF. 
Indeed, we will use the public data set for pair-based 
RO PUF [14] to build the group-based RO PUF.  

2. We propose an entropy distillation phase where we will 
filter out the semiconductor’s spatial trend in fabrication 
variation such that our PUF secret selection will be 
based only on the random variation.  

3. We develop a low complexity algorithm to replace 
LISA for the partitioning of ROs to groups based on the 
frequency characterization in phase 1. 

4. We propose to use Kendall Syndrome Coding (KSC) 
instead of CSC to facilitate the error correction process. 

5. The error correction phase is the same and any ECC can 
be used. 

6. An entropy packing phase is introduced to enhance the 
security and efficiency of KSC.  

7. We use the public RO PUF data set [14] to test the 
stability of the generated PUF secret and use standard 
NIST test suites to test its randomness.    

In the rest of this section, we will elaborate the technical details of 
phases 2, 3, 4, and 6. The test results of phase 7 will be reported 
in Section 4. 

A Entropy Distiller   
Fabrication variation consists of a systematic component and a 
random component. The main causes of the systematic variation 
are attributed to equipment and process non-uniformity such as 
focus shift of photolithography, gradient of thermal annealing, 
dissimilar interactions between circuit layout and the chemical 
mechanical polishing process. The goal of the distiller is to model 
the systematic variation such that we can filter out most of it and 
build PUF secret from the remaining true random variation 
(Hence, it is not necessary to model the systematic variation 
accurately, which is still an open problem). For this purpose, we 
use the polynomial regression model because of its simplicity. 

A kth-order polynomial regression is a form of linear regression in 
which the relationship between independent variables and a 
dependent variable is modeled by a polynomial of order k. For a 
RO PUF with its m ROs arranged in r rows by c columns, the 
Cartesian coordinates (x, y) (or its physical coordinates (vx,hy) on 
the chip) of ROs are regarded as two independent variables and 

the oscillating frequency zx,y is a variable dependent on vx and hy. 
In such a two dimensional setting, a polynomial regression model 
of order k takes the following general form 

  
where 1≤ x ≤ c; 1 ≤ y ≤ r; zx,y ,βk,i,j,εk,x,y∈R. On the right hand side 
of the equation, the summation term models the systematic 
variation and the residual term εk,x,y models the random variation. 
In the kth-order polynomial model, there will be m = c x r 
equations in the form of Eqn. (1) with 1≤ x ≤ c and 1 ≤ y ≤ r. 
Because 0≤ j≤ i≤k, the number of unknowns βk,i,j’s will be n = 

(k+1)(k+2)/2, which is much less the number of ROs on the chip 
(normally in the order of hundreds to generate any meaningful 
PUF secret). This results in an over-determined system (i.e. m > 
n), which can be solved by standard approaches such as the least 
squares method.  

Like the frequency characterization phase, this phase can be done 
during testing for each chip. The obtained coefficients βk,i,j’s will 
be stored as the public helper data, while the random variation 
εk,x,y will be used to generate PUF data. When we need to 
regenerate the same PUF data, the frequency of each RO will be 
measured again, then the systematic variation will be filtered out 
from the measurement z’x,y by using the stored help data βk,i,j’s to 
reveal the random variation ε’k,x,y, which will be used in later 
phases to retrieve the original PUF secret, as shown in Figure 3. 

B Grouping Algorithm  
The goal of the step is to partition the m ROs G into subgroups 
G1,G2,… based on their frequency measurements ROi’s at a single 
operating environment in order to maximize ∑∑∑∑ log2(|Gi|!) under 
the constraints of 

a) Gi∩Gj =Φ  for any i≠j 

b) G1∪G2∪… = G, or |G1|+|G2|+… = m 

c) the RO frequency difference |ROi-ROj| ≥ fth for any two 
ROs in the same group.  

The optimization objective is the amount of PUF secret that can 
be generated from the given ROs using the group-base approach. 
Constraint a) ensures that no RO will be used more than once in 
order to avoid potential security concerns. Constraint b) indicates 
that all the ROs will be used once, which is necessary to maximize 
our objective function. The original LISA approach [10] measures 
each RO’s frequency at two extreme operating conditions to 
provide the robustness of the PUF secret. We use only one 
measurement and require the frequency discrepancy between any 
two ROs in the same group to be higher than a given threshold fth, 
in constraint c). This constraint combined with error correcting 
code will enable us to regenerate the PUF secret robustly. 

Figure 4 shows a constructive grouping algorithm that determines 
the group index for each RO one by one (the for loop in line 3). 

(1) 



last[] in line 2 records the slowest RO in each group. The 
while loop in lines 5-10 add ROi to the first group whose slowest 
RO is at least fth faster than ROi to meet constraint c). This 
grouping information, ROi.gid, is also kept as the public helper 
data and will be used when PUF secret needs to be regenerated 
(see Figure 3). 

Input:  

1) m ROs sorted by the frequency measurements 

RO1>RO2>...>ROm.  

2) frequency discrepancy threshold fth. 

Output: the group index for each RO, ROi.gid  

Algorithm: 

1. RO0 = ∞; 

2. for (i=1; i≤m; i++)  last[i] = 0; 

3. for (i=1; i≤m; i++) 
4.   done = 0; j = 1; 

5.   while (!done) 

6.     if (ROlast[j] – ROi > fth)   

7.       ROi.gid = j; 

8.       last[j] = i; 

9.       done = 1; 

10.     j++; 
Fig. 4.  Pseudo-code of the proposed grouping algorithm. 

C Kendall Syndrome Coding 
When we have n ROs in a group and define PUF secret based on 
the order of their frequency ROi (i=1,2,…,n), an error during PUF 
secret regeneration occurs when the measured frequencies do not 
follow the same order. For example, when four ROs {A,B,C,D} 
are enrolled in the order of BACD, from the fastest to the slowest, 
a measurement in the order of BCAD would be an error.   

As we have demonstrated in Section 2, when we use traditional 
compact syndrome coding (CSC) for group-based PUF, the cost 
for error correcting code (ECC) will be high. In the above 
example, BACD has code 00110 and BCAD’s code is 01000, 
which means that the ECC needs to be able to correct three bit 
errors in this case.  

Considering constraint c) in our proposed grouping algorithm, we 
conclude that most of the errors happen in the form of a flip 
between two ROs whose frequencies are adjacent when they are 
ordered. The change from BACD to BCAD is one example where 
RO C becomes faster than RO A. This is because when we 
construct the group, any two adjacent ROs must have their 
frequencies differ by at least fth. Therefore, a flip between non-
adjacent ROs will require a change on RO frequency to be 2fth or 
higher, which is very unlikely. Base on this observation, we 
propose the following non-minimum length encoding scheme:   

For n ROs with frequency ROi (i=1,2,…,n), we define its code as 
a k-bit string  

sgi =δ(1,2)δ(1,3)…δ(1,n)δ(2,3)…δ(2,n)…δ(n-1,n) 

where k=n(n-1)/2, δ(i,j) = 0 if ROi < ROj and δ(i,j) = 1 otherwise. 
The advantage of this coding scheme is that when a flip between 
two adjacent ROs occurs, there will be only one bit error in the 
coding. For example, BACD is coded as 100000 and BCAD’s 
code is 110000, they differ only at the second bit.   

We refer to this coding scheme as Kendall syndrome coding 
(KSC) because of its similarity to the notion of Kendall tau 

distance [16]: Given two permutations σ=(σ(1), σ(2), …, σ(n)) 
and π=(π(1), π(2), …, π(n)) on same set of n elements (such as 
integers 1, 2, …, n), the Kendall tau distance dτ(σ,π) is defined by 

 
where s(i,j) = 1 if  {σ(i)<σ(j) and π(i)>π(j)} or {σ(i)>σ(j) and 

π(i)<π(j)} and s(i,j) = 0 otherwise. For example, when σ=(1,3,2) 
and π=(1,2,3), we have s(1,2)=0, s(1,3) =0, s(2,3)=1 and thus 
dτ(σ,π) =1. The permutation σ  can also be conveniently retrieved 
from its definition of Kendall tau distance dτ(σ,π) to the identity 
permutation π=(1,2,...,n) [16]:  

 
The bit strings generated by equation (2) from each group of ROs 
will be concatenated, but it cannot be considered as the PUF 
secret because it is not robust, secure, and efficient. We now 
address these concerns. 

D ECC and Entropy Packing 
A linear block code (p, q, t) can be used to correct runtime errors, 
where p is the block size, q is the number of information bits, p-q 
is the number of parity bits that enables the correction of up to t 
errors within the block. We adopt the code-offset technique with 
syndrome bits because it can bound the min-entropy loss [2].  

When we enroll (or determine) the PUF secret, the KSC coded 
output is divided into p-bit blocks. Each block is considered as a 
linear block code (p, q, t), where the first q bits are information 
based on which we can compute p-q parity bits following certain 
ECC scheme (such as BCH or Hamming code); these parity bits 
will be exclusive-or-ed (⊕) with the last p-q bits in the block to 
produce the syndrome bits h. The syndrome bits will be saved as 
public helper data to assist secrecy regeneration (see Figure 3).  

To recover the enrolled secret from a new measurement of RO 
frequencies, we generate p-bit blocks and exclusive-or (⊕) the last 
p-q bits with the saved syndrome bits h to retrieve the p-q parity 
bits. These parity bits will replace the last p-q bits to form a new 
p-bit block with the original first q bits. As long as there are no 
more than t bits of error, ECC will enable us to regenerate the 
PUF secrecy (the first q bits in each block) correctly. 

Compared to CSC, KSC facilitates ECC because it reduces the 
number of bit flips in its code words when the RO frequency 
measurements have an order different from the one at enrollment. 
That is, an ECC will need to correct fewer errors (smaller t) in 
KSC coded words than in CSC coded words. However, KSC 
leaves many code words unused. Consider a group of three ROs, 
codes 010 and 101 are invalid according to the definition in 
equation (2). (The two 0’s in 010 indicate RO1<RO2 and 
RO2<RO3, so RO1<RO3 and the second bit cannot be 1). On one 
hand, this makes KSC inefficient. On the other hand, such logical 
dependency will make the code words non-uniform and weaken 
the security of the PUF data.  

To solve this problem, we add an entropy packing phase in the 
PUF secret regeneration process (see Figure 3). After we retrieve 
the KSC coded string with the help of ECC, we encode the 
information of each group (that is, the frequency order of all the 
ROs in the same group) in the most compact form such as the 
lexicographic order in Figure 2. Assuming that there are n ROs in 
a group, this information will be a permutation of {1,2,…,n}. Note 
that δ(i,j) defined in equation (2) equals to s(i,j) in equation (3) 
when π=(1,2,...,n) is the identity permutation. From equation (4), 
we can determine the permutation corresponding to the RO 

(3) 

(2) 

(4) 



frequency order at PUF secret regeneration time. Then we can 
apply standard procedures to convert this permutation information 
in a compact form. 

IV. RESULTS ON RANDOMNESS AND 

STABILITY TESTS 
In this section, we report the results on randomness and stability 
of the PUF secret generated by the proposed group-based 
approach from a public RO PUF dataset [14]. 

A Dataset and Test for Randomness 
We use the RO PUF dataset built by researchers in Virginia Tech 
which is publically available at [14]. This dataset comprises 
frequency characterization of 125 Xilinx Spartan-3 (90-nm) 
FPGAs at different operating environment. For each FPGA, 512 
ROs are placed in 32 rows and 16 columns. Measurements are 
collected with 1.2V supply voltage with ±10% and ±20% 
fluctuation, and temperature variation from 25oC to 65oC with a 
10oC increment. We use the measurement at 1.2V and 25oC as the 
RO frequency characterization output of phase 1 in Figure 3. 

NIST’s statistical test suite for random and pseudorandom number 
generators designed for cryptographic applications [17] is used to 
test whether the PUF secret generated above is random. 11 out of 
the 15 tests in the suite are applicable and they are shown in the 
last column of Table 1. The parameters are set as below following 
NIST recommendations: bitstring length is 400 (except 120 for 
FFT Test in order to meet with the minimum length requirement), 
32 as the block length for Frequency Test, 2 for Approximate 
Entropy Test and 5 for Serial Test.  

 

Table 1. Parameters used in cost-performance calculation. 

NIST test results are interpreted in two ways: (1) the proportion of 
total bitstrings that pass a test shall be above a minimum value; 
(2) the P-values of all bitstrings shall be uniformly distributed 
such that the P-value of the P-values is equal or greater than a 
minimum value; default settings were used in the test suite. 

The test results from the first half of the dataset are used to guide 
us for the modeling of systematic variation in the distillation 
phase and for the selection of value fth. In this case, the results 
suggest that we can select 1st-order polynomial to remove the 
systematic component of fabrication variation. When we use this 
model on the second half of the dataset, the PUF secret built 
based on the remaining true variation passes all the 11 NIST 
randomness tests for both proportion and P-value (see Table 1).   

B Test for Stability 
Stability measures PUF’s ability to regenerate the enrolled PUF 
secret. It is affected by the selection of fth and ECC. Large fth will 
reduce errors and ECC can correct errors. We consider three 
classes of BCH(n,k,t) codes with n=31, 63, and 127, where n is 

the block size, k is the information bits per block, and t is the 
maximum number of correctable bit errors in a block. For fth, we 
use values between 1 and 3 standard deviations of the 512 ROs’ 
random variations (the variation after distillation in phase 2).  

As we have discussed earlier, a group of |gi| ROs can generate 
roughly log2|gi|! bits of information. However, for each n-bit 
block, we have a min-entroy loss of n-k bits due to the public 
disclosure of the syndrome bits for ECC in phase 5 (in Figure 3). 

Therefore, we define the effective min-entropy for KSC as 

 
where |G| is the number of groups the grouping algorithm in 
Figure 4 returns, |sgi| is the length of the KSC code for group gi as 
defined in equation (2). The min-entropy for other coding 
schemes such as CSC and IBS can be defined similarly, we denote 

them by  and , respectively.   

For a given fth, if the ECC is unable to correct the errors in a block, 
we set the min-entropy value to be 0. Otherwise, the ECC will be 
able to provide stability and the min-entropy value shows the 
amount of robust bits that the PUF can generate. For the purpose 
of stability test, we enroll the data at 1.2V and 25oC from [14] as 
the PUF secret, and attempt to use data from the same source 
under the following six different environments to retrieve the PUF 
secret: (1.08V, 25oC), (1.32V, 25oC), (1.2V, 35oC), (1.2V, 45oC), 
(1.2V, 55oC), (1.2V, 65oC). Figure 5 reports the results when 
BCH(31,k,t) is used as the ECC, similar results hold for the cases 
of BCH(63,k,t) and BCH(127,k,t).   

 

Fig. 5. The average min-entropy (line segments) and the maximum 

number of errors per block (vertical bars) for KSC and CSC with 

BCH(31, k,t) as the ECC. X-axis shows fth goes from 1.0x to 3.0x, with 

a step of 0.1, standard deviation of the RO random variations.   

First we see that as fth goes from 1.0x to 3.0x standard deviation 
of the RO random variations, the maximum number of errors per 
block decreases. When fth is 2.6x and higher, there is no error. 
This verifies that large fth provides high stability. We also see that 
KSC (the dark bar) has fewer errors than CSC in general. In the 
31-bit block, CSC suffers a maximum number of 13 error bits (at 
fth = 1.1x), while KSC only has 7 error bits (at fth = 1.0x). 

Second, for the amount of PUF secret, we see that KSC reaches 
its maximum min-entropy of 184 bits at fth = 1.9, while the 
maximum min-entropy for CSC is 160 bits. KSC is 15% better. 
The trend of min-entropy curve shows that (1) when fth is small, 
the number of errors per block is too large for BCH to correct and 
the min-entropy remains 0, which means that we are unable to 
generate any robust PUF secret; (2) as fth increases, the number of 

(5) 



errors in a block decreases and the min-entropy increases; (3) 
when fth becomes very large (2.0x or higher), the min-entropy 
starts decreasing. This last observation is due to the fact that the 
size of each RO group will shrink as fth increases, resulting a 
reduction of min-entropy from the first term in equation (5).  

V. COMPARISON WITH PAIR-BASED 

RO PUF 
We have described the design and implementation of the group-
based RO PUF in section 3 and performed the randomness and 
stability tests on the PUF secret it generates in section 4. Now to 
demonstrate the performance of the proposed group-based RO 
PUF, we compare it with the best known pair-based approach, the 
index based scheme (IBS) reported in [11].   

In the IBS-based RO PUF, ROs are partitioned into blocks, each 
block will generate one bit PUF secret by comparing the fastest 
RO and the slowest RO at enrollment time. The indices of the 
selected pair of ROs are kept as public helper data to regenerate 
the PUF secret. 

We implement IBS-based RO PUF following the description in 
[11]. Because there is no distillation phase, we form IBS blocks 
by k ROs that are physically close to each other to reduce the 
systematic correlation [12]. Clearly, as k increases, the frequency 
discrepancy between the fastest and the slowest ROs in the same 
block will increase and the PUF bit becomes more stable. The 
same BCH schemes are used as ECC and we define IBS RO 
PUF’s min-entropy similarly for comparison purpose.  

Using the same public dataset [14], we observe that when k=6, 
there will not be any error as shown in Figure 6. However, similar 
to our group-based RO PUF, the maximum min-entropy is not 
achieved at the point when there is no error. In the IBS case, this 
is because smaller block size will result in more blocks (and thus 
higher min-entropy) when the total number of ROs is fixed.  

 
Fig. 6. The average min-entropy (line segments) and the maximum 

number of errors per block (vertical bars) for IBS with BCH as the 

ECC. X-axis shows the number of ROs in each block.   

Table 2 below compares the PUF secret generation ability by the 
IBS-based approach and our proposed group-based approach with 
different ECCs. The “No ECC” row represents the cases when 
there is no error and ECC is not necessary. That is, block size k=6 
in IBS and fth = 2.6x standard deviation in KSC (see Figure 5 and 
Figure 6). The last column “Gain” clearly shows that the proposed 
group-based approach outperforms the pair-based approach by a 
large margin, 72% on average. It means that based on the same 
dataset and hardware (ROs), the group-based approach can 
generate 72% more PUF secret. Or in another word, to generate 
the same amount of PUF secret, group-based approach will 
require roughly 42% less hardware. (1-1.0/1.72 ≈ 0.42). 

 

Table 2. The min-entropy achieved by pair-based RO PUF ( ) 

and the proposed group-based RO PUF ( ). 

VI. CONCLUSIONS 
In this work, we develop a method to design and implement the 
newly proposed group-based RO PUF. We introduced several 
new phases in the PUF secret enrollment process to make group-
based RO PUF more effective. We use public RO PUF dataset to 
demonstrate the randomness and stability of the generated PUF 
secret. We also demonstrate that the group-based RO PUF 
significantly improves the hardware efficiency.  
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