
Design and Implementation of a Group-based RO PUF

Chi-En Yin and Gang Qu Qiang Zhou

Electrical and Computer Engineering Department Department of Computer Science and Technology
 and Institute for Systems Research Tsinghua University, Beijing, P. R. China
University of Maryland, College Park, MD USA

ABSTRACT
The silicon physical unclonable functions (PUF) utilize the
uncontrollable variations during integrated circuit (IC) fabrication
process to facilitate security related applications such as IC
authentication. In this paper, we describe a new framework to
generate secure PUF secret from ring oscillator (RO) PUF with
improved hardware efficiency. Our work is based on the recently
proposed group-based RO PUF with the following novel concepts:
an entropy distiller to filter the systematic variation; a simplified
grouping algorithm to partition the ROs into groups; a new
syndrome coding scheme to facilitate error correction; and an
entropy packing method to enhance coding efficiency and security.
Using RO PUF dataset available in the public domain, we
demonstrate these concepts can create PUF secret that can pass
the NIST randomness and stability tests. Compared to other state-
of-the-art RO PUF design, our approach can generate an average
of 72% more PUF secret with the same amount of hardware.

I. INTRODUCTION

A Motivation
With the increasing desire for security, privacy protection, and
trustworthy computing, it becomes vital to protect cryptographic
keys stored on computing devices. In the design of a security
system, it is normally assumed that cryptographic keys are stored
in tamper-proof devices such that the price to steal or compromise
the keys will be forbiddingly high. Recently, the concept of
physical unclonable function (PUF) has been applied to key
generation and storage [1-3].

By means of storing secrets in its unique intrinsic physical
features that are randomly determined by fabrication variations
such as the subtle difference in the delays of two wires with equal
length at the design phase, PUF achieves a higher level of
protection without relying on persistent power. The validity of the
claim rests on the insight that attempts in conducting invasive
attacks will alter the unique intrinsic features and therefore
destroy the secret hidden in the victim devices with a higher
probability. Owing to its strong unforgeability, PUF has found
applications in many security-related areas [4-9] such as circuit
identification and authentication, hardware intellectual property
protection, device remote activation, and trustworthy computing.
Most of the existing works propose various PUFs and their
potential applications with little consideration on the following
two metrics:

• hardware efficiency: how to generate the secret or key
with the minimum hardware overhead.

• security of the key/secret: how to ensure that the secret
generated by a PUF is random and hard to break.

It is hard to adopt a silicon PUF in many applications such as
embedded trustworthy computing systems when the PUF is
expensive, in terms of hardware, to implement. Meanwhile, the
“uncontrollable” physical features behind PUFs do not guarantee
the randomness of the PUF secret and “physical unclonable” is
insufficient to address the security concerns.

The longest increasing subsequence-based grouping algorithm
(LISA) was proposed in [10] to enhance the hardware utilization
of ring oscillator (RO) PUF. LISA is conceptually different from
the conventional RO PUF that uses RO pairs to generate PUF
secret because it generated multiple bits simultaneously based on
a group of ROs. However, the authors in [10] failed to address the
following problems:

• fabrication variation has a significant impact on the
PUF secret generated by the group-based RO PUF. This
problem is not identified in [10].

• the group-based RO PUF has several unique features. It
is not appropriate and will not be efficient to use the
design flow for pair-based RO PUF, as [10] did, without
leveraging these features.

• LISA requires the measurement of each RO’s delay (or
speed) at two extreme temperature (0oC and 100oC),
which may not be realistic.

In this paper, we study the above challenges and propose several
solutions to design and implement the group-based RO PUF.

B Ring Oscillator PUF
The basic RO PUF consists of two identical ring oscillators,
which due to fabrication variation will have tiny difference in
delay (or speed). One bit can be defined by comparing the speed
and this bit will be equally likely to be a 0 or a 1 as long as the
fabrication variation is random.

However, the bit we extract (or generate) from a pair of ROs this
way may not be reliable and unclonable. For example, operating
environment such as temperature and voltage has significant
impact on delay. When this impact is sufficiently large, it becomes
possible that one RO is faster than the other at one temperature,
but becomes slower at another temperature, causing the bit gene-
rated from this pair of ROs to flip when temperature changes [2].

One way to solve this is to select only those pairs with frequency
difference large enough to sustain temperature variation. For
instance, Suh and Devadas [2] proposed to generate one reliable
unclonable bit from 8 ROs that are hard wired as a unit as showed
in Figure 1, where N = 8. The fastest and slowest ROs in each unit
are picked to form a pair to generate a bit. This scheme uses two
ROs with large speed difference and thus will be more reliable
subject to operating environment changes. The use of N ROs,

978-3-9815370-0-0/DATE13/©2013 EDAA

multiplexers, counters, and comparators makes this approach very
hardware expensive.

Fig. 1. 1-out-of-N ring oscillator PUF architecture [2].

Another known weakness of RO PUF is that it is subject to the
negative effect of correlated or systematic variation, which
weakens the security of PUF secret. Maiti and Schaumont [12]
proposed to avoid this by considering only ROs that are physical-
ly close. However, their PUF secret is not uniformly distributed
and not statistically random.

C Group-Based RO PUF and LISA
If we restrict the use of ROs no more than once, schemes by
pairing N ROs can extract no more than N/2 bits. Yin and Qu
[10] proposed a group-based RO PUF to beat this N/2 upper
bound by comparing more than two ROs at the same time.

Suppose we order 4 ROs, {A,B,C,D}, by their speed from the
fastest to the slowest. There will be 4! = 24 different orderings (or
permutations), {ABCD}, {ABDC}, {ACBD}, {ACDB} …
{DCBA}. Each ordering is unique and equally likely if the ROs’
speeds are distinct and random, which what it is believed due to
fabrication variation. We can encode these permutations with five
bits 00000, 00001, 00010, 00011 … 10111, respectively as shown
in Figure 2 and call this Compact Syndrome Coding (CSC). This
bit string can be considered as the random physical unclonable
secret extracted from RO PUF in binary. For example, if the speed
goes from high to low in the order of ADCB, then we say the
secret information is 00101. In this way, we can have 24 pieces of
different secret information, much more than what 4/2 = 2 bits
can represent according to the pair-based approach.

Fig. 2. Motivation for the group-based RO PUF[10].

A longest increasing subsequence algorithm (LISA) is proposed
in [10] to partition the ROs into groups, where every pair of ROs
in each group will have a fixed relative speed under different
operating temperature (that is, one RO is always faster than the
other). Then multiple bits can be generated based on the speed
orderings of the ROs in each group as shown in Figure 2. This
guarantees that the generated PUF bits are reliable, but it is
required to measure each RO’s speeds at the lowest and highest
operating temperatures.

D Standard PUF Design Flow
PUF design includes secret enrollment and secret regeneration.
The typical workflow of a RO PUF enrollment process has the
following four steps:

• Fabrication Variation Extraction: The first step in
PUF design is to measure the unique characteristics
endowed from the uncontrollable fabrication process. In
the case of RO PUF, this corresponds to a full speed (or
frequency) characterization of all ROs [14].

• Secret Selection: This step selects secure and reliable
secrecy out of the variation profile measured in the
previous step. Existing approaches include 1-out-of-8
coding [2], the index-based syndrome (IBS) coding [11]
and the chain-like neighbor coding [12,14,15].

• Error Correction: To further enhance reliability, error
correcting code (ECC) is applied. Codes have been used
for RO PUFs include Hamming and BCH codes [2].

• Tests for Security and Reliability: Randomness test
ensures the security of the PUF secret. Reliability test
verifies the PUF secret can be regenerated under
environmental fluctuations such as in temperature and
supply voltage.

As we will see in Figure 3. certain public helper data will also be
computed and stored in the chip to facilitate the PUF secret
regeneration.

II. LIMITATIONS OF THE CURRENT

GROUP-BASED RO PUF AND LISA
Although the group-based RO PUF makes it possible to generate
more than N/2 bits from N ROs, it has three major deficiencies:

First, LISA builds group-based RO PUF from the frequency
measurements at the two operating temperature boundaries (0oC
and 100oC). This conservative algorithm tends to partition the
ROs into small groups, which is inefficient in generating PUF
secret. Furthermore, this becomes impractical when we consider
other extreme operating environments such as voltage variation.

Second, it is well-known that the semiconductor fabrication
process has a strong spatial correlation, referred to as systematic
variation. This has to be considered in the design of RO PUF
because otherwise the bits generated will have strong correlation
with the ROs’ position on the chip and thus will be easy to break
[13-15]. Group-based RO PUF creates multiple bits from a group
of ROs and will have stronger spatial correlation. The authors in
[10] fail to address this very important security concern.

Last but not the least, the CSC scheme in group-based RO PUF
(see Figure 2) does not work well with error correcting codes
(ECC). For instance, the ordering of BACD is encoded as 00110.
When RO C becomes faster than A due to certain environment
change or circuit aging, the order becomes BCAD, which has
code 01000 and the ECC has to be able to correct three bits in this
case. On the other hand, for the very unusual event that BACD
changes to DCAB, the ECC only needs to correct the first bit.
This indicates that the CSC scheme is not suitable for ECC
because the probability that an error occurs does not correlate well
with the number of bits that needs to be corrected when that error
occurs.

To summarize, if we implement the concept of group-based RO
PUF proposed in [10] using the standard PUF design flow, we
find that the fabrication variation extraction phase is expensive
and may not be practical; the secret selection algorithm LISA is
pessimistic and may not be efficient in generating PUF secret; the
CSC scheme is not suitable for error correction; and the nature of
group-base PUF secret generation may have serious security flaw
due to the spatial correlation of fabrication variation, but there is
no report on security and stability tests.

Fig. 3. Overview of the proposed group-based RO PUF design and implementation

III. DESIGN AND IMPLEMENATION OF

THE GROUP-BASED RO PUF
A RO PUF typically consists of a group of ROs as well as countes
and multiplexers to help collect the frequency readings of the RO
array. Figure 3 depicts the overview of our proposed architecture
to design and implement the group-based RO PUF.

1. In the frequency characterization phase, we will adopt
exact the same method as used in pair-based RO PUF.
Indeed, we will use the public data set for pair-based
RO PUF [14] to build the group-based RO PUF.

2. We propose an entropy distillation phase where we will
filter out the semiconductor’s spatial trend in fabrication
variation such that our PUF secret selection will be
based only on the random variation.

3. We develop a low complexity algorithm to replace
LISA for the partitioning of ROs to groups based on the
frequency characterization in phase 1.

4. We propose to use Kendall Syndrome Coding (KSC)
instead of CSC to facilitate the error correction process.

5. The error correction phase is the same and any ECC can
be used.

6. An entropy packing phase is introduced to enhance the
security and efficiency of KSC.

7. We use the public RO PUF data set [14] to test the
stability of the generated PUF secret and use standard
NIST test suites to test its randomness.

In the rest of this section, we will elaborate the technical details of
phases 2, 3, 4, and 6. The test results of phase 7 will be reported
in Section 4.

A Entropy Distiller
Fabrication variation consists of a systematic component and a
random component. The main causes of the systematic variation
are attributed to equipment and process non-uniformity such as
focus shift of photolithography, gradient of thermal annealing,
dissimilar interactions between circuit layout and the chemical
mechanical polishing process. The goal of the distiller is to model
the systematic variation such that we can filter out most of it and
build PUF secret from the remaining true random variation
(Hence, it is not necessary to model the systematic variation
accurately, which is still an open problem). For this purpose, we
use the polynomial regression model because of its simplicity.

A kth-order polynomial regression is a form of linear regression in
which the relationship between independent variables and a
dependent variable is modeled by a polynomial of order k. For a
RO PUF with its m ROs arranged in r rows by c columns, the
Cartesian coordinates (x, y) (or its physical coordinates (vx,hy) on
the chip) of ROs are regarded as two independent variables and

the oscillating frequency zx,y is a variable dependent on vx and hy.
In such a two dimensional setting, a polynomial regression model
of order k takes the following general form

where 1≤ x ≤ c; 1 ≤ y ≤ r; zx,y ,βk,i,j,εk,x,y∈R. On the right hand side
of the equation, the summation term models the systematic
variation and the residual term εk,x,y models the random variation.
In the kth-order polynomial model, there will be m = c x r
equations in the form of Eqn. (1) with 1≤ x ≤ c and 1 ≤ y ≤ r.
Because 0≤ j≤ i≤k, the number of unknowns βk,i,j’s will be n =

(k+1)(k+2)/2, which is much less the number of ROs on the chip
(normally in the order of hundreds to generate any meaningful
PUF secret). This results in an over-determined system (i.e. m >
n), which can be solved by standard approaches such as the least
squares method.

Like the frequency characterization phase, this phase can be done
during testing for each chip. The obtained coefficients βk,i,j’s will
be stored as the public helper data, while the random variation
εk,x,y will be used to generate PUF data. When we need to
regenerate the same PUF data, the frequency of each RO will be
measured again, then the systematic variation will be filtered out
from the measurement z’x,y by using the stored help data βk,i,j’s to
reveal the random variation ε’k,x,y, which will be used in later
phases to retrieve the original PUF secret, as shown in Figure 3.

B Grouping Algorithm
The goal of the step is to partition the m ROs G into subgroups
G1,G2,… based on their frequency measurements ROi’s at a single
operating environment in order to maximize ∑∑∑∑ log2(|Gi|!) under
the constraints of

a) Gi∩Gj =Φ for any i≠j

b) G1∪G2∪… = G, or |G1|+|G2|+… = m

c) the RO frequency difference |ROi-ROj| ≥ fth for any two
ROs in the same group.

The optimization objective is the amount of PUF secret that can
be generated from the given ROs using the group-base approach.
Constraint a) ensures that no RO will be used more than once in
order to avoid potential security concerns. Constraint b) indicates
that all the ROs will be used once, which is necessary to maximize
our objective function. The original LISA approach [10] measures
each RO’s frequency at two extreme operating conditions to
provide the robustness of the PUF secret. We use only one
measurement and require the frequency discrepancy between any
two ROs in the same group to be higher than a given threshold fth,
in constraint c). This constraint combined with error correcting
code will enable us to regenerate the PUF secret robustly.

Figure 4 shows a constructive grouping algorithm that determines
the group index for each RO one by one (the for loop in line 3).

(1)

last[] in line 2 records the slowest RO in each group. The
while loop in lines 5-10 add ROi to the first group whose slowest
RO is at least fth faster than ROi to meet constraint c). This
grouping information, ROi.gid, is also kept as the public helper
data and will be used when PUF secret needs to be regenerated
(see Figure 3).

Input:

1) m ROs sorted by the frequency measurements

RO1>RO2>...>ROm.

2) frequency discrepancy threshold fth.

Output: the group index for each RO, ROi.gid

Algorithm:

1. RO0 = ∞;

2. for (i=1; i≤m; i++) last[i] = 0;

3. for (i=1; i≤m; i++)
4. done = 0; j = 1;

5. while (!done)

6. if (ROlast[j] – ROi > fth)

7. ROi.gid = j;

8. last[j] = i;

9. done = 1;

10. j++;
Fig. 4. Pseudo-code of the proposed grouping algorithm.

C Kendall Syndrome Coding
When we have n ROs in a group and define PUF secret based on
the order of their frequency ROi (i=1,2,…,n), an error during PUF
secret regeneration occurs when the measured frequencies do not
follow the same order. For example, when four ROs {A,B,C,D}
are enrolled in the order of BACD, from the fastest to the slowest,
a measurement in the order of BCAD would be an error.

As we have demonstrated in Section 2, when we use traditional
compact syndrome coding (CSC) for group-based PUF, the cost
for error correcting code (ECC) will be high. In the above
example, BACD has code 00110 and BCAD’s code is 01000,
which means that the ECC needs to be able to correct three bit
errors in this case.

Considering constraint c) in our proposed grouping algorithm, we
conclude that most of the errors happen in the form of a flip
between two ROs whose frequencies are adjacent when they are
ordered. The change from BACD to BCAD is one example where
RO C becomes faster than RO A. This is because when we
construct the group, any two adjacent ROs must have their
frequencies differ by at least fth. Therefore, a flip between non-
adjacent ROs will require a change on RO frequency to be 2fth or
higher, which is very unlikely. Base on this observation, we
propose the following non-minimum length encoding scheme:

For n ROs with frequency ROi (i=1,2,…,n), we define its code as
a k-bit string

sgi =δ(1,2)δ(1,3)…δ(1,n)δ(2,3)…δ(2,n)…δ(n-1,n)

where k=n(n-1)/2, δ(i,j) = 0 if ROi < ROj and δ(i,j) = 1 otherwise.
The advantage of this coding scheme is that when a flip between
two adjacent ROs occurs, there will be only one bit error in the
coding. For example, BACD is coded as 100000 and BCAD’s
code is 110000, they differ only at the second bit.

We refer to this coding scheme as Kendall syndrome coding
(KSC) because of its similarity to the notion of Kendall tau

distance [16]: Given two permutations σ=(σ(1), σ(2), …, σ(n))
and π=(π(1), π(2), …, π(n)) on same set of n elements (such as
integers 1, 2, …, n), the Kendall tau distance dτ(σ,π) is defined by

where s(i,j) = 1 if {σ(i)<σ(j) and π(i)>π(j)} or {σ(i)>σ(j) and

π(i)<π(j)} and s(i,j) = 0 otherwise. For example, when σ=(1,3,2)
and π=(1,2,3), we have s(1,2)=0, s(1,3) =0, s(2,3)=1 and thus
dτ(σ,π) =1. The permutation σ can also be conveniently retrieved
from its definition of Kendall tau distance dτ(σ,π) to the identity
permutation π=(1,2,...,n) [16]:

The bit strings generated by equation (2) from each group of ROs
will be concatenated, but it cannot be considered as the PUF
secret because it is not robust, secure, and efficient. We now
address these concerns.

D ECC and Entropy Packing
A linear block code (p, q, t) can be used to correct runtime errors,
where p is the block size, q is the number of information bits, p-q
is the number of parity bits that enables the correction of up to t
errors within the block. We adopt the code-offset technique with
syndrome bits because it can bound the min-entropy loss [2].

When we enroll (or determine) the PUF secret, the KSC coded
output is divided into p-bit blocks. Each block is considered as a
linear block code (p, q, t), where the first q bits are information
based on which we can compute p-q parity bits following certain
ECC scheme (such as BCH or Hamming code); these parity bits
will be exclusive-or-ed (⊕) with the last p-q bits in the block to
produce the syndrome bits h. The syndrome bits will be saved as
public helper data to assist secrecy regeneration (see Figure 3).

To recover the enrolled secret from a new measurement of RO
frequencies, we generate p-bit blocks and exclusive-or (⊕) the last
p-q bits with the saved syndrome bits h to retrieve the p-q parity
bits. These parity bits will replace the last p-q bits to form a new
p-bit block with the original first q bits. As long as there are no
more than t bits of error, ECC will enable us to regenerate the
PUF secrecy (the first q bits in each block) correctly.

Compared to CSC, KSC facilitates ECC because it reduces the
number of bit flips in its code words when the RO frequency
measurements have an order different from the one at enrollment.
That is, an ECC will need to correct fewer errors (smaller t) in
KSC coded words than in CSC coded words. However, KSC
leaves many code words unused. Consider a group of three ROs,
codes 010 and 101 are invalid according to the definition in
equation (2). (The two 0’s in 010 indicate RO1<RO2 and
RO2<RO3, so RO1<RO3 and the second bit cannot be 1). On one
hand, this makes KSC inefficient. On the other hand, such logical
dependency will make the code words non-uniform and weaken
the security of the PUF data.

To solve this problem, we add an entropy packing phase in the
PUF secret regeneration process (see Figure 3). After we retrieve
the KSC coded string with the help of ECC, we encode the
information of each group (that is, the frequency order of all the
ROs in the same group) in the most compact form such as the
lexicographic order in Figure 2. Assuming that there are n ROs in
a group, this information will be a permutation of {1,2,…,n}. Note
that δ(i,j) defined in equation (2) equals to s(i,j) in equation (3)
when π=(1,2,...,n) is the identity permutation. From equation (4),
we can determine the permutation corresponding to the RO

(3)

(2)

(4)

frequency order at PUF secret regeneration time. Then we can
apply standard procedures to convert this permutation information
in a compact form.

IV. RESULTS ON RANDOMNESS AND

STABILITY TESTS
In this section, we report the results on randomness and stability
of the PUF secret generated by the proposed group-based
approach from a public RO PUF dataset [14].

A Dataset and Test for Randomness
We use the RO PUF dataset built by researchers in Virginia Tech
which is publically available at [14]. This dataset comprises
frequency characterization of 125 Xilinx Spartan-3 (90-nm)
FPGAs at different operating environment. For each FPGA, 512
ROs are placed in 32 rows and 16 columns. Measurements are
collected with 1.2V supply voltage with ±10% and ±20%
fluctuation, and temperature variation from 25oC to 65oC with a
10oC increment. We use the measurement at 1.2V and 25oC as the
RO frequency characterization output of phase 1 in Figure 3.

NIST’s statistical test suite for random and pseudorandom number
generators designed for cryptographic applications [17] is used to
test whether the PUF secret generated above is random. 11 out of
the 15 tests in the suite are applicable and they are shown in the
last column of Table 1. The parameters are set as below following
NIST recommendations: bitstring length is 400 (except 120 for
FFT Test in order to meet with the minimum length requirement),
32 as the block length for Frequency Test, 2 for Approximate
Entropy Test and 5 for Serial Test.

Table 1. Parameters used in cost-performance calculation.

NIST test results are interpreted in two ways: (1) the proportion of
total bitstrings that pass a test shall be above a minimum value;
(2) the P-values of all bitstrings shall be uniformly distributed
such that the P-value of the P-values is equal or greater than a
minimum value; default settings were used in the test suite.

The test results from the first half of the dataset are used to guide
us for the modeling of systematic variation in the distillation
phase and for the selection of value fth. In this case, the results
suggest that we can select 1st-order polynomial to remove the
systematic component of fabrication variation. When we use this
model on the second half of the dataset, the PUF secret built
based on the remaining true variation passes all the 11 NIST
randomness tests for both proportion and P-value (see Table 1).

B Test for Stability
Stability measures PUF’s ability to regenerate the enrolled PUF
secret. It is affected by the selection of fth and ECC. Large fth will
reduce errors and ECC can correct errors. We consider three
classes of BCH(n,k,t) codes with n=31, 63, and 127, where n is

the block size, k is the information bits per block, and t is the
maximum number of correctable bit errors in a block. For fth, we
use values between 1 and 3 standard deviations of the 512 ROs’
random variations (the variation after distillation in phase 2).

As we have discussed earlier, a group of |gi| ROs can generate
roughly log2|gi|! bits of information. However, for each n-bit
block, we have a min-entroy loss of n-k bits due to the public
disclosure of the syndrome bits for ECC in phase 5 (in Figure 3).

Therefore, we define the effective min-entropy for KSC as

where |G| is the number of groups the grouping algorithm in
Figure 4 returns, |sgi| is the length of the KSC code for group gi as
defined in equation (2). The min-entropy for other coding
schemes such as CSC and IBS can be defined similarly, we denote

them by and , respectively.

For a given fth, if the ECC is unable to correct the errors in a block,
we set the min-entropy value to be 0. Otherwise, the ECC will be
able to provide stability and the min-entropy value shows the
amount of robust bits that the PUF can generate. For the purpose
of stability test, we enroll the data at 1.2V and 25oC from [14] as
the PUF secret, and attempt to use data from the same source
under the following six different environments to retrieve the PUF
secret: (1.08V, 25oC), (1.32V, 25oC), (1.2V, 35oC), (1.2V, 45oC),
(1.2V, 55oC), (1.2V, 65oC). Figure 5 reports the results when
BCH(31,k,t) is used as the ECC, similar results hold for the cases
of BCH(63,k,t) and BCH(127,k,t).

Fig. 5. The average min-entropy (line segments) and the maximum

number of errors per block (vertical bars) for KSC and CSC with

BCH(31, k,t) as the ECC. X-axis shows fth goes from 1.0x to 3.0x, with

a step of 0.1, standard deviation of the RO random variations.

First we see that as fth goes from 1.0x to 3.0x standard deviation
of the RO random variations, the maximum number of errors per
block decreases. When fth is 2.6x and higher, there is no error.
This verifies that large fth provides high stability. We also see that
KSC (the dark bar) has fewer errors than CSC in general. In the
31-bit block, CSC suffers a maximum number of 13 error bits (at
fth = 1.1x), while KSC only has 7 error bits (at fth = 1.0x).

Second, for the amount of PUF secret, we see that KSC reaches
its maximum min-entropy of 184 bits at fth = 1.9, while the
maximum min-entropy for CSC is 160 bits. KSC is 15% better.
The trend of min-entropy curve shows that (1) when fth is small,
the number of errors per block is too large for BCH to correct and
the min-entropy remains 0, which means that we are unable to
generate any robust PUF secret; (2) as fth increases, the number of

(5)

errors in a block decreases and the min-entropy increases; (3)
when fth becomes very large (2.0x or higher), the min-entropy
starts decreasing. This last observation is due to the fact that the
size of each RO group will shrink as fth increases, resulting a
reduction of min-entropy from the first term in equation (5).

V. COMPARISON WITH PAIR-BASED

RO PUF
We have described the design and implementation of the group-
based RO PUF in section 3 and performed the randomness and
stability tests on the PUF secret it generates in section 4. Now to
demonstrate the performance of the proposed group-based RO
PUF, we compare it with the best known pair-based approach, the
index based scheme (IBS) reported in [11].

In the IBS-based RO PUF, ROs are partitioned into blocks, each
block will generate one bit PUF secret by comparing the fastest
RO and the slowest RO at enrollment time. The indices of the
selected pair of ROs are kept as public helper data to regenerate
the PUF secret.

We implement IBS-based RO PUF following the description in
[11]. Because there is no distillation phase, we form IBS blocks
by k ROs that are physically close to each other to reduce the
systematic correlation [12]. Clearly, as k increases, the frequency
discrepancy between the fastest and the slowest ROs in the same
block will increase and the PUF bit becomes more stable. The
same BCH schemes are used as ECC and we define IBS RO
PUF’s min-entropy similarly for comparison purpose.

Using the same public dataset [14], we observe that when k=6,
there will not be any error as shown in Figure 6. However, similar
to our group-based RO PUF, the maximum min-entropy is not
achieved at the point when there is no error. In the IBS case, this
is because smaller block size will result in more blocks (and thus
higher min-entropy) when the total number of ROs is fixed.

Fig. 6. The average min-entropy (line segments) and the maximum

number of errors per block (vertical bars) for IBS with BCH as the

ECC. X-axis shows the number of ROs in each block.

Table 2 below compares the PUF secret generation ability by the
IBS-based approach and our proposed group-based approach with
different ECCs. The “No ECC” row represents the cases when
there is no error and ECC is not necessary. That is, block size k=6
in IBS and fth = 2.6x standard deviation in KSC (see Figure 5 and
Figure 6). The last column “Gain” clearly shows that the proposed
group-based approach outperforms the pair-based approach by a
large margin, 72% on average. It means that based on the same
dataset and hardware (ROs), the group-based approach can
generate 72% more PUF secret. Or in another word, to generate
the same amount of PUF secret, group-based approach will
require roughly 42% less hardware. (1-1.0/1.72 ≈ 0.42).

Table 2. The min-entropy achieved by pair-based RO PUF ()

and the proposed group-based RO PUF ().

VI. CONCLUSIONS
In this work, we develop a method to design and implement the
newly proposed group-based RO PUF. We introduced several
new phases in the PUF secret enrollment process to make group-
based RO PUF more effective. We use public RO PUF dataset to
demonstrate the randomness and stability of the generated PUF
secret. We also demonstrate that the group-based RO PUF
significantly improves the hardware efficiency.

Acknowledgement: This work is supported in part by the
National Science Foundation of China under grant 61228204.

VII. REFERENCES
[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way

functions,” Science, Sep 2002.

[2] G. E. Suh, S Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generateion,” ACM DAC 2007.

[3] D. Lim, J-W. Lee, B. Gassend, M. van Dijk, E. Suh, and S. Devadas,
“Extracting Secret Keys from Integrated Circuits,” IEEE Transactions on VLSI
Systems, Oct 2005.

[4] S. Devadas, V. Khandelwal, S. Paral, R. Sowell, E. Suh, T. Ziola, “Design and
Implementation of Unclonable RFID ICs for Anti-Counterfeiting and Security
Applications,” RFID World 2008, Mar 2008.

[5] J. Guajardo, S. Kumar, G. Jan Schrijen, P. Tuyls, “FPGA Intrinsic PUFs and
Their Use for IP Protection,” Workshop on Cryptographic Hardware and
Embedded Systems (CHES), Sep 10-13, 2007, Vienne, Austria.

[6] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, Pim Tuyls, “Physical
Unclonable Functions and Public-Key Crypto for FPGA IP Protection,”
International Conference on Field Programmable Logic and Applications (FPL),
Aug 27-29, 2007, Amsterdam, Netherland.

[7] S. Kumar, J. Guajardo, R. Maes, G.J. Schrijen qnd P. Tuyls, “The Buttefly
PUF: Protecting IP on every FPGA,” In IEEE International Workshop on
Hardware Oriented Security and Trust, Anaheim 2008.

[8] Jason H. Anderson, “A PUF design for secure FPGA-based embedded
systems,” ASP-DAC 2010

[9] U. Ruhrmair, S. Devadas, and F. Koushanfar. Security Based on Physical
Unclonability and Disorder. In: M. Tehranipoor and C. Wang (eds.)
Introduction to Hardware Security and Trust, pp. 65-102, Springer, 2011.

[10] C.-E. D. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extraction,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), June, 2010.

[11] M.-D. Yu and S. Devadas, “Secure and robust error correction for physical
unclonable functions,” IEEE Journal of Design & Test Computers, Vol. 27,
Issue 1, Jan. 2010.

[12] A. Maiti, P. Schaumont, “Improving the quality of a Physical Unclonable
Function using configurable Ring Oscillators,” FPLA 2009.

[13] B. Škorić, P. Tuyls, “An efficient fuzzy extractor for limited noise,” IACR
ePrint 2009 http://eprint.iacr.org/2009/030

[14] A. Maiti and P. Schaumont, “A large scale characterization of ro-puf,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), Jun. 2010.

[15] F. S. Dominik Merli and C. Eckert, “Improving the quality of ring oscillator
pufs on fpgas,” Proceedings of the 5th Workshop on Embedded Systems
Security, Oct. 2010.

[16] H. Chadwick and I. Reed, “The equivalence of rank permutation codes to a new
class of binary codes,” IEEE Transactions on Information Theory, Vol. 16, No.
5, pp. 640–641, 1970.

[17] A. Rukhin, J. Soto, J. Nechvatal, et al, “A statistical test suite for random and
pseudorandom number generators for cryptographic applications,” NIST
Special Publication 800-22 Revision 1a, Apr. 2010.

