
DA-RAID-5: A Disturb Aware Data Protection
Technique for NAND Flash Storage Systems

Jie Guo1, Wujie Wen1, Yaojun Zhang Li1, Sicheng Li2, Hai Li1, Yiran Chen1
1Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

2Polytechnic Institute of New York University, Brooklyn, NY 11201
{jig26, wuw2, yaz24, hal66, yic52}@pitt.edu, sli16@students.poly.edu

Abstract—Program disturb, read disturb and retention time
limit are three major reasons accounting for the bit errors in
NAND flash memory. The adoption of multi-level cell (MLC)
technology and technology scaling further aggravates this reli-
ability issue by narrowing threshold voltage noise margins and
introducing larger device variations. Besides implementing error
correction code (ECC) in NAND flash modules, RAID-5 are
often deployed at system level to protect the data integrity of
NAND flash storage systems (NFSS), however, with significant
performance degradation. In this work, we propose a technique
called “DA-RAID-5” to improve the performance of the en-
terprise NFSS under RAID-5 protection without harming its
reliability (here DA stands for “disturb aware”). Three schemes,
namely, unbound-disturb limiting (UDL), PE-aware RAID-5 and
Hybrid Caching(HC) are proposed to protect the NFSS at the
different stages of its lifetime. The experimental results show that
compared to the best prior work, DA-RAID-5 can improve the
NFSS response time by 9.7% on average.

I. INTRODUCTION

The success of NAND flash technology in consumer market
has been recently extended to the enterprise storage market,
thanks to its advantages on cost, power consumption, random
access performance, and mechanical robustness. However, the
inherent reliability issues, e.g., the component-level bit error,
emerge as the biggest concern in such applications. Previous
works [1], [2], [3] reveled that cell-level program disturb, read
disturb and retention time limit are three major contributors to
the NAND flash bit errors. The application of multi-level cell
(MLC) technology imposes NAND flash to higher reliability
risk due to the scaled threshold voltage noise margin [4].

RAID-5 scheme, combined with Error Correction Coding
(ECC) is employed in NAND flash based system (NFSS) to
protect the data integrity, i.e., implementing redundant parity
blocks to recover the ECC-uncorrectable pages. However, the
parity accesses in RAID-5 significantly degrade the system
performance,especially for the workloads with intensive ran-
dom write access. Some works [5], [6] have been proposed
to minimize the performance overheads incurred by parity
updates. However, their schemes ignore the impacts of cell-
level read disturb and retention time limit.

In this work, based on the NAND flash bit error character-
istics, we propose DA-RAID-5 technique to improve RAID-5
performance in enterprise NFSS. We first quantitatively study
the NAND flash cell reliability degradation trend over its

whole lifetime, by considering program disturb, read disturb,
retention time limit and their dependency on P/E cycles. Based
on the analysis, the lifetime of the NFSS is then divided
into three stages. Different schemes are applied to tackle with
the bit errors of the NAND flash cells at each stage: At the
1st stage, we apply UDL (unbound-disturb limiting) scheme
instead of RAID-5 to handle the data corruptions incurred
by read disturb and retention-time-limit beside general ECC
protection; At the 2nd stage, PE-aware RAID-5 is introduced
to protect the unreliable blocks with high P/E cycles; At
the 3rd stage, RAID-5 is applied to all physical blocks
and HC (hybrid caching) is adopted to enhance the system
response time. By minimize parity access, our techniques can
effectively improve performance and extend NFSS lifetime.
Our experimental results show that compared to the best prior
work [7], DA-RAID-5 technique can improve the average
NFSS response time by 9.7%, with very marginal increase
of access overhead for very few workloads.

II. PRELIMINARY

A. NAND Flash Bit Error Basics

Program disturb, read disturb and retention time limit are
three major factors affecting the bit error rate of NAND flash
cells. Program disturb is mainly generated from the cell-to-
cell interference and random telegraph noise (RTN) [8]. The
disturb magnitude heavily depends on the P/E cycle of the
NAND flash cells and the program disturb induced bit error
rate rises as the P/E cycle increases [9].

Besides program disturb, read disturb is another major factor
responsible for the threshold voltage distortion of the NAND
flash cells. Read accesses to a NAND flash cell generate stress-
induced leakage current (SILC), incurring threshold voltage
gain [3]. Read disturb usually leads to larger threshold voltage
shift on the unread pages in the same block than the page
being read [10]. Both read count and P/E cycling determine
the effect of read disturb. Research in [9], [11] shows that
the increases in read count and P/E cycling cause higher read
disturb induced bit error rate.

Retention time limit also leads to the threshold voltage
distortion of the NAND flash cells. Following the gradual
charge loss induced by the interface trap recovery and electron
detrapping effect [12], the threshold voltage of the NAND flash
cell decreases over time. Besides P/E cycle, data retention time978-3-9815370-0-0/DATE13/ c©2013 EDAA



(a)

(b)
Fig. 1. (a) N+1 RAID-5 architecture; (b) Partial parity generation in PPC.

limit is also affected by read count because threshold voltage
increase incurred by read operation can offset the charge loss
induced by detrapping effect.

B. FTL and RAID-5 for NFSS

Flash Translation Layer is an essential part of NFSS. It
translates the logic page number (LPN) issued by the host to
the physical page number (PPN) in NAND flash chips. It is
also responsible for garbage collection and wear-leveling due
the out-of-place update and limited endurance characteristics
of NAND flash [13], [14]. Conventional RAID-5 is based
on the logic pages. The NFSS are grouped by stripes. Each
stripe includes N sequential logic pages and a parity, which
are sequentially stored in N+1 flash chips. A RAID-5 NFSS
with 4+1 devices is shown in Fig. 1(a). Updating a logic page
requires recalculating its parity page. We assume N is 4 and
use D0 ∼ D3 to denote the 4 sequential logic pages in a stripe.
Dp is the parity page. When updating page D0, the new parity
page D′p can be calculated by

D′p = Dp

⊕
D0

⊕
D′0. (1)

Here, D′0 is the newly updated page of D0.
⊕

represents XOR
operation. However, if more than half of the pages in a stripe
are updated together, the parity page is calculated differently:
for example, assume the pages D0 ∼ D2 are respectively
updated to D′0 ∼ D′2, new parity page D′p is generated as:

D′p = D′0
⊕

D′1
⊕

D′2
⊕

D3. (2)

As shown in Eq. (1), updating a logic page involves up
to two read and two write operations, which degrades the
performance of NFSS and accelerates the wear-out of NAND
flash cells. In [5], Y. Lee et al. proposed a parity commit
delay approach which reschedules the updated parity commits
to the NFSS idle time. However, this scheme may fail to
recover the corrupted data when its parity is not committed

in time. In [6], Lee et al. dynamically adjust the stripe size
as the P/E cycle increases to minimize the parity update cost.
However, the impacts of read disturb and retention time limit
are neglected in this work. In [7], S. Im et al. proposed partial
parity cache technique (PPC) to reduce parity update overhead.
Parity is generated incrementally and buffered in a cache.
When the cache is full or the logic pages of the parity are
garbage-recycled, the full parity page is generated from the
least-recently-updated (LRU) partial parities and flushed to the
NAND flash. An example of partial parity update is shown in
Fig. 1(b). Partial parity is generated by using the page being
updated and its old version instead of all the pages in the
same stripe. By reducing the read accesses to the old pages
in the same stripe, PPC can significantly improve the NFSS
response time. However, when more than half of the pages in
a stripe are being updated together (updating D1′, D2′ and
D3′ in Fig. 1(b)), PPC technique generates unnecessary read
operations to the old version of the updated pages. Similarly,
if a page is updated frequently, its old version will be read
repeatedly, causing a longer NFSS response time.

In this work, DA-RAID-5 technique is introduced to im-
prove the performance of the NFSS under RAID-5 protection,
with the consideration of all three physical limiting factors of
NAND flash cells errors and their P/E cycles.

III. DA-RAID-5 TECHNIQUE

In this section, we first introduce the reliability analysis on
NAND flash cells. We then present an overview of DA-RAID-
5, followed by the three schemes to provide the data integrity
protection at the different lifetime stages of NFSS.

A. Reliability Analysis

n-bit BCH ECC (m,l,c) is often used in NAND flash module
design. The yield of each 512 bytes data with n-bit BCH ECC
Yber(n) can be expressed as:

Yber(n) =

n∑
k=0

Ck
mpkepc(1− pepc)

(m−k). (3)

Here, pepc is the error rate of single NAND flash cell. As
mentioned in Section II-A, Yber(n) and pepc are affected by
program disturb, read disturb and retention time, as well as the
P/E cycle. Fig. 2(a) and 2(b) depict our simulated maximum
tolerable read count Tread and retention time Tretention when
the P/E cycles Np/e varies, by using the reliability model
in [8], [3]. Here we assume 8-bit ECC (4200, 4096,104) is
applied to a 512 byte data and the target Yber(x) is 99.9%. We
also exclude the impacts of other factors during the simulation
of each factor, e..g, setting read count to 0 in Fig. 2(b).
Our simulation results clearly show the degraded tolerance
on Tread and Tretention follows the increase in P/E cycles.

B. Overview of DA-RAID-5

Based on our reliability analysis, we proposed to use
different schemes to protect the data integrity of NFSS at its
different lifetime stages, as illustrated in Fig. 3:



(a)

(b)
Fig. 2. (a) relationship between Np/e and Tread; (b) relationship between
Np/e and Tretention.

Stage 1: Unbound-disturb limiting (UDL) scheme is de-
signed for the 1st lifetime stage of NFSS. The controller
monitors the period for which the data stored in the NAND
flash block periodically. If the period is close to or longer than
Tretention, the NAND flash block will be recycled. Similarly,
we use a read counter to record the number of the NAND flash
block being read. If the read count is greater than a certain
threshold Tread, the block will be also recycled. Obviously,
the runtime cost of UDL is significantly lower than that of
RAID-5.

Stage 2: The increase of P/E cycle shortens the Tretention

and Tread of NAND flash blocks, causing more frequent block
recycling under UDL. If there are any blocks whose P/E cycle
exceed a certain number Tp, the whole NFSS enters its 2nd
lifetime stage. We start to apply RAID-5 to the stripes whose
pages have the P/E cycle higher than Tp while maintain the
other stripes still under the protection of UDL. We call this
scheme as PE-aware RAID-5. A PAE counter is assigned to
each stripe to record the number of the pages with the P/E
cycle higher than Tp. Parity calculation is performed to only
the stripe with no-zero PAE counter.

Stage 3: When the number of the stripes applied with
RAID-5 exceeds some threshold L, keeping the rest of the
stripes under UDL protection only gives us very marginal
benefit. The NFSS enters its 3rd lifetime stage and the RAID-5
is applied to all the stripes. We propose Hybrid Caching (HC)
scheme to reduce the parity update cost in this stage. Two
caches – data cache and partial parity cache, are constructed.
By buffering the temporary data and parity at the caches, the
accesses to the NAND flash blocks are significantly reduced.
More details on HC scheme will be given in Section III-E.

C. UDL Scheme

BCH ECC is sufficient to correct the bit errors of the NAND
flash block within the retention time of Tretention or under
the read count of Tread. However, when the retention time

exceeds Tretention or more than Tread read operations are
performed to a block, UDL scheme is started. To monitor
the impact of retention time limit on the NFSS reliability, we
introduce a parameter “timestamp” to record the programming
time of each NAND flash block’s first page and store it in the
OOB (out of band) area [15]. The timestamp of each NAND
flash book is checked periodically during the 1st stage of the
NFSS lifetime. If the difference between the current operation
time and the timestamp is longer than Tretention, the NAND
flash block is recycled and its valid data is moved to other
blocks. Note that the timestamp checking and block recycling
operations can be performed during the system idle time to
minimize the performance degradation.

The controller can monitor retention time only at time of
power-on. Power-off may lead to uncorrectable bit error rate
if the power-down time period exceeds Tretention. However,
as we shall show in Section IV-A, the typical Tretention is 381
days, which is much longer than the normal power-down time
period in enterprise NFSS applications.

To monitor the impact of read disturb, a read counter is used
to record the number of read accesses to each NAND flash
block. If the block is accessed for more than Tread times, the
block will be erased and the valid data will be moved to other
blocks. The electron accumulation on the NAND flash cells
is removed by the erase operation and the read counter of the
block can be safely reset. The read counters are stored in the
DRAM buffer of the NFSS to enable the fast real-time access.
As we shall show later, the DRAM capacity occupied by read
counters is very small, e.g., 1MB for a 256GB NFSS. Again,
we perform the block recycling only during the system idle
time.

D. PE-aware RAID-5

At the 2nd stage of NFSS lifetime, the P/E cycles of
some NAND flash blocks have exceeded the threshold Tp.
Excessively short Tread and Tretention leads to frequent block
cycling. PE-aware RAID-5 technique is applied to protect the
NFSS at this stage.

Similar to conventional RAID-5, all the logic pages are still
grouped into stripes. For every stripe, if there is at least one
logic page is written into a physical pages with the P/E cycle

Fig. 3. DA-RAID-5 overall architecture



greater than Tp, we generate the stripe parity and put the whole
stripe under the protection of RAID-5. We introduce PEA
counter to record how many physical pages in a stripe have
the P/E cycle greater than Tp. Obviously, RAID-5 is applied to
the stripe only when the PEA counter is larger than zero. The
details of PE-ware RAID-5 is shown in Algorithm 1. Here we
assume a stripe includes N logic pages, i.e., Di0 ∼ Din.

Algorithm 1 Basic PE-aware RAID-5
Input: Receive a write request of logic number Dij ∈ Si

Output: Generate and update parity pages
Write D′ij to PPN Mppn

if P/E cycle of Mppn > Tp then
if PEA counter == 0 then

read other logic pages out of NAND flash
P ′Si = Di0 ⊕ ...Di(j−1) ⊕D′ij ⊕Di(j+1)...⊕D′in
write P ′Si into NAND flash

end if
if PEA counter != 0 then

P ′Si = Dij ⊕D′ij ⊕ PSi

write P ′Si into NAND flash
end if
PEA counter = PEA counter + 1

end if
if P/E cycle of Mppn ≤ Tp then

if PEA counter != 0 then
PEA counter = PEA counter - 1
if PEA counter == 0 then

Invalidate PSi

end if
if PEA counter != 0 then
P ′Si = Dij ⊕D′ij ⊕ PSi

write P ′Si into NAND flash
end if

end if
end if

In the above algorithm, N-1 read operations and 1 write
operation are required to generate the initial parity during the
stripe forming. After that, 2 read and 2 write operations are
required per update of the parity. We proposed a so called
“stripe grouping” scheme to reduce the corresponding parity
generation cost: A small buffer is used to group the write
requests to the logic pages in the same stripe. The parity is
calculated only when the logic pages are evicted from the
buffer. Since multiple logic pages in the same stripe may
be evicted simultaneously from the buffer, the parity can be
updated based on Eq. (2) instead of Eq. (1). The overall parity
generation cost is reduced. Here the buffer eviction follows
LRU policy.

E. HC Scheme

Following the increase of NFSS operation time, the number
of NAND flash blocks that need to be protected under RAID-5
gradually rises. When the number of such blocks exceeds L,
we will directly apply RAID-5 across all blocks. However, we
propose a Hybrid Caching (HC) scheme to minimize the read

operations induced by the parity generation during this NFSS
lifetime stage: The logic pages being written are buffered in
a write cache where the logic pages from the same stripe are
always evicted together. When the logic pages are evicted, the
parity is calculated and buffered in the partial parity cache.
Different from partial parity generation rule in [7], we adopt
two ways to generate the partial parity depending on the up-
dated logic pages: We define a updating threshold Nupdate. If
the updated page number in the same stripe exceeds Nupdate,
we generate a new partial parity only based on the current
updated pages instead of the old logic pages. The algorithm
is shown in Algorithm 2. By merging the frequently updated
logic pages and eliminating the unnecessary read operations,
the overall parity generation cost is reduced. Again, LRU
policy is applied to this write cache at stripe level and to the
parity cache at page level.

Algorithm 2 parity generation algorithm
Input: number of updated pages n, updated pages D′ij ,
D′i(j+1),...,D

′
i(j+n) and the existing parity number PPS

Output: partial parity PP ′S
if no PPS in parity cache then
PP ′S = D′ij ⊕D′i(j+1)⊕, ...,⊕D

′
i(j+n)

end if
if PPS has existed in parity cache then

if n > Nupdate then
PP ′S = D′ij ⊕D′i(j+1)⊕, ...,⊕D

′
i(j+n)

end if
if n ≤ Nupdate then
PP ′S is generated by the rule in [7]

end if
end if

An example of HC scheme is depicted in Fig. 4. The stripe
size and Nupdate are set to 4 and 2 respectively. The write
cache can constrain up to 8 pages. PPi denotes partial parity.
The write request sequence “D4, D1, D3, D2, D22,...” is also
shown in Fig. 4. After logic page D23 is written into the write
cache, the logic pages in the least frequently updated stripe
S0 – D1, D2, and D3, are evicted from the write cache and
written into NAND flash. A partial parity PP0 is generated
by D1, D2, and D3 and stored in the partial parity cache.
Similar process is conducted in the parity calculation of stripe
S2. When a new D2 is written to the write buffer, a new partial
parity PP0′ is calculated by only D1′, D2′ and D3′ without
incurring any read and write operations to the NAND flash.

The sequential write accesses, e.g., a write request with
long length, will degrade the hit rate of the write cache. In
our design, we only buffer the write request within a certain
length, e.g, 8 pages. For the write requests with longer length,
we generate the corresponding full parity immediately and
write the logic pages and the parity into NAND flash directly.
We also enhanced the stripe group reliability model proposed
in [6] by considering data retention time, read count and P/E
cycling together. The derived bit error rate of single NAND
flash cell can be used to obtain the optimized stripe size N,
based on the estimation method in [6]. Our experiments show



that the optimal values of the cut-off write request length
and stripe size N are 8 and 8, respectively, for the simulated
workloads.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We selected Disksim-based Flashsim [17] as our simulation
platform. We modified the simulator by adding multi-channel
NAND flash array and RAID-5 controller. Five disk traces
representing different NFSS applications are adopted in the
evaluation, as shown in Table I. The specification of MLC
NAND flash module from manufacturer M is summarized in
Table II. For a MLC page, we assume the program latency of
the 1st page is the typical value (1.6ms) while the one of the
2nd page is the maximum value (5ms). We also assume the
erase times of the blocks with the P/E cycles less and greater
than Tp are typical and maximum values, respectively. The
strip size N is set 8 and the PE-ware threshold L is set to 214.
The capacity of parity cache is set to 512KB for both PPC and
HC schmes. A 8-bit BCH ECC (4200,4096,104) is applied to
every 512-byte data. Tp is set to 15,000. The corresponding
Tretention and Tread are 381 days and 4,6000, respectively,
according to Fig. 2(a) and 2(b).

B. Simulation Results

We simulated the average response time, write count and
read count of RAID-5 and PPC, as shown in Fig. 5(a)-5(c),
respectively. Note that the performance of the NFSS with these
two techniques does not change at the different stage of NFSS
lifetime. Fig. 5(a)-5(c) also show the evaluations of UDL,
PE-aware RAID-5 and HC at their applicable NFSS lifetime
stages. At the initialization of UDL simulation, the timestamps
of all logic pages are set to zero. The P/E cycle of each
physical page gradually raises as the operation time increases.
Compared to RAID-5, the average response time of UDL
improves by 23.3% across all 5 workloads. The corresponding
write count and read count respectively decrease by 20.3% and
65.3%, on average. Even compared to the best prior-work PPC,
the improvements of average response time, write count and
read count are still 13.2%, 12.1% and 42.1%, respectively. The
only exception is the workload web search, which is a read-
intensive workload and shows significant write count increase.

Fig. 4. Stripe formation under PE-aware RAID-5.

This increase is triggered by a large number of read-disturb-
induced block recycling in UDL. The maximum performance
improvement happens for TPC-C, which involves intensive
write accesses. The majority of intermediate parity updates
is eliminated. The average response time improves by 18.8%.

During PE-aware simulation, we assume the NAND flash
blocks that have the P/E cycle greater than Tp randomly
show up across the whole NFSS. The number of the NAND
flash blocks that need to be protected by RAID-5 keeps
increasing during the operation of NFSS. Again, the maximum
performance improvement (14.7%) is achieved at TPC-C.

In the simulation of HC, Nupdate is set to 6. Compared
to RAID-5, HC achieves 20.1% average response time im-
provement for the 5 workloads, followed by 19.7% and 37.3%
reduction on the average write count and read count, respec-
tively. Even compared to the latest PPC technique, HC can still
improve the average response time, write count and read count
by 9.7%, 9.3% and 6.1%, respectively. Similar to UDL and
PE-aware RAID-5, the maximum performance improvement is
achieved at TPC-C. By merging the frequently-updated write
requests in the write cache, the write accesses to the NAND
flash and parity calculations are successfully reduced, leading
to 11.6% response time improvement. In web search, however,
the response time is almost unchanged due to the dominant
random read access – the write accesses only occupy 0.02%
of the accesses to the NAND flash.

The performance improvements of HC under different
Nupdate (4, 6, 8) are also evaluated, as shown in Fig. 6(a)-
Fig. 6(c). The selection of Nupdate shows phenomenal impact
on the workload WIN 7: Increasing Nupdate from 4 to 6
reduces the average response time and read count by 7.5%
and 8.5%, respectively, while the total write count remains
the same. However, further increasing Nupdate to 8 raises the
average response time again. Nupdate increase incurs almost
invisible performance variations for the other workloads. This
is because a large number of overlapped logic pages rarely
happens during the normal HC operations.

We also evaluate the impact of write cache size on the
effectiveness of DA-RAID-5, as shown in Fig. 7. We set
Nupdate to 6 and sweep the write cache size from 128KB to

TABLE I
WORKLOAD CHARACTERISTICS

Disk trace write ratio seq.wr. application

Win 7 42% 15.2% p2p, office and web serfing

RHEL 93% 2.3% server access

Financial [16] 76% 1.9% OLTP application

TPC-C 99% 0.9% OLTP application

web search [16] 0.02% 0 access to search engines

TABLE II
MLC NAND FLASH PARAMETERS

Capacity Block Size Block Number Page Size
1 MB 8192 8KB

Timing
Program Latency Read Latency Erase Latency

Max. 5 ms Max. 400µs Max. 10ms
Typ. 1.6 ms – Type. 1.5ms



(a) (b) (c)

Fig. 5. (a) Average response time under five workloads; (b) Write count under five workloads; (c) Read count under five workloads.

(a) (b) (c)
Fig. 6. (a) Average Response Time under various Nupdate; (b) Write count under various Nupdate; (c) Read count under various Nupdate.

2MB. The increase of write cache size results in the response
time improvement in all the workloads except for web search.
The maximum performance improvement is achieved at TPC-
C again, with an average response time reduction of 12.0%
when the write cache size changing from 128KB to 2MB.

V. CONCLUSION

In this work, we propose Disturb-Aware RAID-5 (DA-
RAID-5) scheme to improve the performance of the Enterprise
NFSS under RAID-5 data protection. We first quantitatively
analyze the impacts of program disturb, read disturb and
retention time limit on the reliability of NAND flash cells
with different P/E cycles. Based on the analysis, we divide the
lifetime of NFSS into three stages with different distributions
of P/E cycles across all NAND flash blocks. Three schemes,
namely, disturb limiting (UDL), PE-aware RAID-5 and Hybrid
Caching (HC), are proposed to protect the data integrity of the
NFSS at these three stages, respectively. Our experimental re-
sults show that DA-RAID-5 effectively improves the response
time of NFSS by 9.7% on average, compared with the best
prior work. Only very marginal increases of write and read
access are introduced at one simulated workload.

VI. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion under grants CNS-1116171 and CCF-1217947.

Fig. 7. Average response time under different data cache size

REFERENCES

[1] T. Jung, Y. Choi, K. Suh, B. Suh, J. Kim, Y. Lim, Y. Koh, J. Park,
K. Lee, J. Park et al., “A 3.3 v 128 mb multi-level nand flash memory
for mass storage applications,” in 42nd ISSCC. IEEE, 1996, pp. 32–33.

[2] A. Brand, K. Wu, S. Pan, and D. Chin, “Novel read disturb failure
mechanism induced by flash cycling,” in 31st IRPS, 1993, pp. 127–132.

[3] T. Wang, W. Tsai, S. Gu, C. Chan, C. Yeh, N. Zous, T. Lu, S. Pan, and
C. Lu, “Reliability models of data retention and read-disturb in 2-bit
nitride storage flash memory cells,” in IEDM. IEEE, 2003, pp. 7–4.

[4] C. Xue, Y. Zhang, Y. Chen, G. Sun, J. Yang, and H. Li, “Emerging non-
volatile memories: Opportunities and challenges,” in 7th CODES+ISSS.
ACM, 2011, pp. 325–334.

[5] Y. Lee, S. Jung, and Y. Song, “Fra: a flash-aware redundancy array of
flash storage devices,” in 7th CODES+ISSS, 2009, pp. 163–172.

[6] S. Lee, B. Lee, K. Koh, and H. Bahn, “A lifespan-aware reliability
scheme for raid-based flash storage,” in SAC, 2011, pp. 374–379.

[7] S. Im and D. Shin, “Flash-aware raid techniques for dependable and
high-performance flash memory ssd,” IEEE Transactions on Computers,
vol. 60, no. 1, pp. 80–92, 2011.

[8] Y. Pan, G. Dong, and T. Zhang, “Exploiting memory device wear-out
dynamics to improve nand flash memory system performance,” in 9th
FAST, 2011.

[9] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. Siegel,
and J. Wolf, “Characterizing flash memory: anomalies, observations, and
applications,” in 42nd MICRO, 2009, pp. 24–33.

[10] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit error rate in nand flash
memories,” in 46th IRPS. IEEE, 2008, pp. 9–19.

[11] M. Kang, K. Park, Y. Song, Y. Lim, K. Suh, and H. Shin, “Improving
read disturb characteristics by using double common source line and
dummy switch architecture in multi level cell nand flash memory with
low power consumption,” Japanese JAP, vol. 50, no. 4, 2011.

[12] J. Lee, J. Choi, D. Park, and K. Kim, “Data retention characteristics
of sub-100 nm nand flash memory cells,” EDL, vol. 24, no. 12, pp.
748–750, 2003.

[13] L. Shi, C. Xue, and X. Zhou, “Cooperating write buffer cache and virtual
memory management for flash memory based systems,” in RTAS. IEEE,
2011, pp. 147–156.

[14] L. Shi, C. Xue, J. Hu, W. Tseng, X. Zhou, and E. Sha, “Write activity
reduction on flash main memory via smart victim cache,” in 20th
GLSVLSI. ACM, 2010, pp. 91–94.

[15] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao, “Pcm-ftl: A write-
activity-aware nand flash memory management scheme for pcm-based
embedded systems,” in 32nd RTSS, 2011, pp. 357–366.

[16] “Oltp application i/o and search engine i/o,”
http://traces.cs.umass.edu/index.php/storage/storage.

[17] “A simulator for various ftl scheme,” http://csl.cse.psu.edu/?q=node/322.


