
TreeFTL: Efficient RAM Management for High
Performance of NAND Flash-based Storage Systems

Chundong Wang and Weng-Fai Wong
School of Computing, National University of Singapore, Singapore

Email: {wangc, wongwf}@comp.nus.edu.sg

Abstract—NAND flash memory is widely used for secondary
storage today. The flash translation layer (FTL) is the embedded
software that is responsible for managing and operating in flash
storage system. One important module of the FTL performs
RAM management. It is well-known to have a significant impact
on flash storage system’s performance. This paper proposes an
efficient RAM management scheme called TreeFTL. As the name
suggests, TreeFTL organizes address translation pages and data
pages in RAM in a tree structure, through which it dynamically
adapts to workloads by adjusting the partitions for address
mapping and data buffering. TreeFTL also employs a lightweight
mechanism to implement the least recently used (LRU) algorithm
for RAM cache evictions. Experiments show that compared to
the two latest schemes for RAM management in flash storage
system, TreeFTL can reduce service time by 46.6% and 49.0%
on average, respectively, with a 64MB RAM cache.

I. INTRODUCTION

NAND flash memory is the ubiquitous non-volatile memory

today. It is widely utilized for secondary storage of embedded

systems. It is also starting to replace magnetic hard disks of

general-purpose computing systems in the form of solid state

drives (SSDs). The management of flash memory is performed

by a firmware called the flash translation layer (FTL). The

FTL provides the traditional block-device interfaces to file sys-

tems, and is responsible for all functions of flash management.

The performance of flash is most influenced by two char-

acteristics of NAND flash: its units of access and out-of-
place updating. Read and write operations of NAND flash are

conducted in the unit of a page, which is 2KB or more [6].

However, a page cannot be rewritten unless the block it is in

is erased first. A block consists of multiple pages, and is the

unit for erase operations. Hence, to update the data in a page

has to be done in an out-of-place way: invalidate the current

page and put the updated copy in an erased one.

Upon a read or write request, logical addresses from the file

system must be translated to the physical addresses of the flash

substrate. Based on the concepts of page and block, there are

two basic ways to perform this translation, namely, page-level
mapping and block-level mapping. Read and write requests

are serviced with the aid of an internal SRAM [4] [14],

DRAM [15], or non-volatile RAM [7] [10] cache that is

equipped in flash devices. The byte-addressable RAM cache

plays an important role in flash storage system. NAND flash

can take advantage of RAM’s access flexibility by maintaining

entries of the address mapping table. All the mapping entries

may be grouped and stored in the translation pages [4] [14] of

flash memory (as opposed to data pages that store real data).

On the other hand, the access latency of RAM is much shorter

than NAND flash. So caching mapping information or data

in RAM can significantly improve the overall performance.

Many schemes have been proposed on how to utilize the RAM

cache. The emphasis has either been on keeping information

for address mapping [4] [14], or on buffering recently accessed

data pages [8] [3].

Recently, there are proposals on how to jointly use the RAM

space for both mapping caching and data buffering. JTL [5]

proposed a fixed partitioning of the RAM cache for mapping

and data. It aims to put the most recently used data pages in

RAM. However, JTL’s static partitioning makes it inflexible to

changing workloads. Shim et al. [15] proposed the Adaptive
Partitioning Scheme (APS) [15] that dynamically partitions the

RAM space. It collects statistical data periodically, and calcu-

lates the potential benefits of adjusting either partition. Yet this

makes APS less responsive to online workload changes.

In this paper, we propose a novel RAM management scheme

that is simple but efficient. We call it TreeFTL. The main ideas

of TreeFTL are as follows:

• TreeFTL does not cache single mapping entries like

previous schemes. It maintains translation pages and data

pages in RAM through a tree-like structure.

• A lightweight strategy is devised for LRU eviction. It se-

lects victims at a coarse granularity, and our experiments

show that the gain it brings in is significant.

TreeFTL achieves the dynamic partitioning for address

mapping and data buffering inherently using the tree structure.

We conducted experiments to evaluate the effectiveness of

TreeFTL with FlashSim [4], and found that with a 64MB

RAM cache, compared to APS and JTL, TreeFTL spends, on

average, 46.6% and 49.0% less on service time, respectively.

The rest of this paper is organized as follows. Section 2

shows background and classic algorithms on RAM manage-

ment. Section 3 details our TreeFTL, including the man-

agement algorithm, lightweight victim selection strategy and

relevant issues. Section 4 describes evaluations to verify the

effectiveness of TreeFTL. Section 5 will conclude the paper.

II. BACKGROUND

A. Address Translation

Almost all FTLs use one or a variant of two basic mapping

schemes, namely page mapping [1] and block mapping [2].

978-3-9815370-0-0/DATE13/ c©2013 EDAA

The former is more flexible but requires a large RAM space for

its mapping table. DFTL [4] and CDFTL [14] were proposed

to load page-level mapping entries into RAM on demand.

Block mapping suffers from its coarse granularity since out-of-

place updating prevents data from being put into other pages

freely in a block. With the increase of flash capacity, the table

for block-level mapping also goes bigger, and demand-based

mechanisms are needed to lower RAM requirement [13].

Hybrid mapping [9] mixes the two schemes. A logical block

is block-level mapped to a data block. Some physical blocks

construct a log space that uses page mapping. Updated data

of a logical address are first put into a free page of log space

if the page in the data block it is mapped to is used. When

there is no free log page left, a victim log block is selected,

and valid data from its pages will be merged with relevant

data blocks. Hence, merging can be a costly procedure.

B. RAM management

To manage RAM is important for FTLs. FTLs use RAM

space to hold mapping entries. DFTL loads entries from

translation pages on demand. Besides single entries, CDFTL

selectively caches translation pages in a two-level structure.

Mapping entries form the first level, the cached mapping table
(CMT). Evicted entries from the CMT are first absorbed by

cached translation pages in the second level. The second-level

exploits the spatial locality in workloads since neighbouring

logical addresses in a same translation page are likely to be

accessed. DAC [13] is similar to CDFTL but works at block-

level for large-scale flash storage systems.

Data buffering, especially for write requests, is another use

of RAM space. A flash page is the buffering unit due to NAND

flash’s access constraints. BPLRU [8] utilizes a padding strat-

egy in hybrid mapping. Unlike RAM management that only

writes data to flash upon evictions to free up space, BPLRU

may read data from flash to pad a log block and flush it

back. Padding can avoid arduous merge procedures. However,

reading also costs time. A design named l-buffer [3] was

proposed to trade off padding for merging, and vice versa.

APS [15] and JTL [5] are two recent proposals that use the

RAM cache for mapping and buffering jointly. APS reserves

two small areas of RAM as “ghost caches”. One is used to

keep metadata of evicted mapping entries, while the other

maintains the metadata of evicted data pages. They are used

to compute the cost caused by not enlarging the cache for

mapping and buffering, respectively. Write or read misses in

actual cache may hit in ghost cache. A cost-benefit model is

built on these hit statistics to estimate the benefits of enlarging

either partition. Because APS’s estimation is based on values

of the past interval, there are delays in adjusting to runtime

workload. Moreover, APS uses the least recently used (LRU)

algorithm at page-level or entry-level to find a victim for

evictions in respective parititon. The overhead of frequent LRU

selections can be significant since tens of thousands of data

pages and mapping entries exist in the RAM.

JTL statically partitions the RAM space into two halves, one

for mapping, and the other for buffering. JTL uses a multi-

GTD

CTPs

CDPs

RAM

DP0 DPx+2 TP1 DPy+3 DPz+3

Flash Memory

DPx+1 DPx+3

…

TP0 TP2 TP3

DPy+2 DPz

… …

Fig. 1. A Conceptual Structure of TreeFTL

level structure to manage mapping entries. The level n (n ≥ 0)

has 2n entries. The number of levels is determined by the

size of the RAM partition dedicated to mapping, and the size

of a single entry. All levels are divided into two groups. As

RAM cache is halved for buffering data pages, their mapping

entries form Group 0 and take up level 0 to m. Remaining

levels fall into Group 1, and their entries correspond to data

pages in flash. The entry in the top level corresponds to the

most recently used data page. It will move down to level 1 to

vacate for the newly accessed entry. An entry at level 1 may

need to move to level 2 if no vacancy exists. More moves may

follow in next levels. The victim to be moved in each level

is randomly selected as entries in the same level is deemed

to have similar access recency. When an entry reaches level

m+ 1, its cached data page in RAM will be flushed to flash.

By doing so, JTL can keep the recently used mapping entries

and data pages cached in RAM.

III. TREEFTL

TreeFTL maintains a three-level tree structure in RAM. The

first level and second level are used for mapping, while the

third level is for caching data pages. TreeFTL dynamically

adapts to the runtime workload by adjusting the tree structure.

One of TreeFTL’s key features is its lightweight LRU victim

selection which can significantly reduce spatial and temporal

overheads. In following, we shall describe TreeFTL based

on page-level address mapping. However, the basic idea of

TreeFTL can be easily adopted to a block-level mapping

scheme like DAC [13].

A. The Tree in RAM

1) The Three Levels: As is mentioned, all mapping entries

of demand-based page-level address translation are stored in

the translation pages of flash memory. A structure named

global translation directory (GTD) is used to record the

physical addresses of these pages. The GTD must be resident

in RAM as it is the root directory for address translation.

Hence, TreeFTL makes GTD the root of its tree structure.

Fig. 1 shows the conceptual tree structure of TreeFTL. In

level 1 is the GTD. Level 2 consists of the cached translation
pages (CTPs), while level 3 holds the cached data pages
(CDPs). The three levels are connected by unidirectional links.

TABLE I
LATENCIES OF SLC NAND FLASH MEMORY [6]

Read Operation Write Operation Erase Operation

25 μs (2KB) 200 μs (2KB) 700 μs (128KB)

TreeFTL treats the RAM cache as a part of storage medium.

When a translation page is loaded into RAM, its address

in the GTD will be updated to point to a RAM location

accordingly. For a mapping entry in a CTP, if the data page

is cached in RAM, the record will be the RAM address

instead of a physical address in flash memory. CDPs are

the leaves of the tree. They are cached upon write requests.

TreeFTL emphasizes on write buffer similarly as BPLRU [3],

l-buffer [3] and APS [15] do, because write latency is much

longer than read latency (Table I). Furthermore, writes may

trigger expensive erase operations [8] [15].

Ignoring data buffering, TreeFTL differs from DFTL and

CDFTL in that TreeFTL does not cache single entries in a

CMT. There are two reasons. First, to load or evict a single

entry entails a read or write for a translation page, respectively.

Although batch update [4] can group evicted entries from a

same translation page, it complicates the design, in addition

to the space overhead involved. Second, a translation page

covers a wider range of consecutive logical addresses, so

caching a translation page can benefit from the spatial access

locality [14]. CDFTL keeps both single entries and translation

pages in its cache. A translation page will be loaded also when

one of its entries is fetched into the RAM cache by CDFTL.

Thus, eliminating the CMT can avoid duplications, and hence

save space. The process of address translation, which will be

described below, is also simplified because in CDFTL a miss

of the CMT requires consulting the CTPs first.

2) Address Translation With The Tree: Address translation

in TreeFTL begins by finding the translation page to locate the

desired mapping entry. This can be done by using the logical

address as a hash key to look for the RAM location of the

relevant translation page, which results in either a hit or a miss.

However, in order to show the growing of the tree, we will

describe the process in another way. The address translation

process in TreeFTL can be viewed as a traversal from the root

to some leaf of the tree. There are three scenarios for a random

write request, as shown in Fig. 2. The first case is when both

translation page and data page are cached. In three steps (A-1,

A-2 and A-3 in Fig. 2) the data are written to the target CDP.

No operation is performed on the flash. The second case is

when translation page is cached but data page is in flash. The

data page has to be loaded into RAM first. So a read operation

(B-3 in Fig. 2) is needed. The third case is neither of the two

is in RAM. In such a scenario, two reads have to be conducted

(C-2 and C-4 in Fig. 2). So this case is the most costly.

Any CDP or CTP that has been selected as the eviction

victim will be flushed back to flash memory. More details

will be given in next subsection.

TreeFTL services read requests in a slightly different way.

When a read request comes, the translation page will be loaded

if it is not already cached. For the target data page, however, it

RAM

Fl
as

h

Host Requests

Logical Address A

Logical Address B

Logical Address C

GTD

A-1: Lookup GTD for A

B-1: Lookup GTD for B

C-1: Lookup GTD for C

A-2: Lookup CTPa

A-
3:

 U
pd

at
e

CD
Px

B-
2:

 L
oo

ku
p

CT
Pb B-

3:
 L

oa
d

D
Py

CTPa

CTPb

CTPc

CDPx

CDPy

CDPz

DPy

TPc

DPz

B-
4:

 U
pd

at
e

CD
Py

Miss

Miss

Miss

C-2: Load TPc

C-3: Lookup CTPc

C-
4:

 L
oa

d
D

Pz

C-
5:

 U
pd

at
e

D
Pz

gg

g

g

Miss

Miss

Fig. 2. Address Translation Process in TreeFTL

will not be loaded into RAM if not cached. Instead, the flash

page is read directly from flash and the data are returned to

the file system then.

Note that the write or read request mentioned above is

random access request. TreeFTL deals with sequential requests

in a “write-through” manner. Data are written to or read from

flash memory in a bulk, and RAM cache is bypassed. This is

similar to what JTL does [5]. It is based on the assumption

that data which are sequentially requested are likely to be

infrequently accessed. There are many methods to identify a

request to be random or sequential. For example, deciding

based on the access size is a simple but effective approach.

TreeFTL deems a request to be sequential if it tends to access

more than half a block, i.e., 32 pages of 64KB data as in [6].

B. Lightweight Pruning

When RAM space is exhausted, a victim has to be selected

and evicted. The victim ought to be the one that is the least

recently used (LRU). APS performs LRU selection at the level

of entries and pages among cached mapping entries and data

pages, respectively. JTL’s multi-level structure helps it to find

the LRU mapping entry or data page easily as less frequently

accessed ones are moved down from RAM to flash memory.

However, both APS and JTL suffer from LRU selection.

Assuming that all 64MB of a RAM cache is used for APS’s

data buffering, there would be 64MB/2KB = 32768 data pages

in total. It is not trivial to find the LRU page each time in such

a large number of pages. For JTL, its multi-level structure may

have to be adjusted on each arriving request.

TreeFTL exploits its tree structure and utilizes a lightweight

victim selection policy. Since TreeFTL uniformly caches pages

which are just nodes in the tree, the eviction process is like

pruning the tree. To do so, TreeFTL introduces the concept

of a caching group (CG). A CG is a group which includes a

CTP and its relevant CDPs. A CG is just a branch (sub-tree)

of the tree. There are three CGs in Fig. 3.

(Time, Page)

(t0, 1)
(t0 + 3, 1)GTD

CGa

CGb

CGc

(t0 + 10, 2)

LATTE
(at t0+100)

CDPa0

CDPa1

CDPa3

1

2

3
4

CTPa

CTPb

CTPc

CDPb1

CDPc1

CDPc2

5

a

b

c (Time, Page)

(t0 +102, 1)
(t0 + 10, 2)

LATTE
(at t0+500)

Fig. 3. The Sketch of TreeFTL’s Victim Selection

TreeFTL maintains a hash table called Last Access Time
Table for Eviction (LATTE) that records the last access time

for each CG. Note that while we use timestamp as a metric to

implement LRU, other implementations of LRU can also be

used. The hashing key of LATTE is the number that identifies

each CTP. This number subsequently identifies a CG. Each

entry in LATTE is a two-tuple. The first element is the time

when any CDP of that CG is last accessed. The second element

is the page number of the last accessed CDP, which ranges

from 0 to 511 (2KB a translation page and 4B for a mapping

entry [4]). Hashing enables LATTE to be swiftly updated after

access requests. A sketch of the LATTE is shown in Fig. 3.

Victim selection is performed upon an eviction request. It

first finds the victim CG that has the smallest timestamp. In

Fig. 3, at time t0 + 100 the victim CG is CGa. Then the

selection inside a CG starts. The CDP that has the smallest

offset in a CG will be the victim page. If it is the one recorded

in the LATTE entry, however, it will be skipped unless there is

no other CDP left. In Fig. 3, a circled number is the eviction

sequence of a CDP. CDPa0 is firstly evicted and CDPa3

will follow. On the next eviction request, CDPa1 will not

be skipped again since it is the last CDP of CGa. This way

all the CDPs of CGa would be pruned. If no new data page

joins CGa (otherwise the LATTE will be updated) before next

eviction request, CTPa will be flushed back to flash as a

victim page, and CGa’s entry in the LATTE will be removed.

TreeFTL’s pruning policies can be summarized as follows:

• With the LATTE, the LRU selection is conducted at the

level of a CG, not page.

• CDPs are preferred for eviction. The one that is the most

recently accessed in a CG, i.e., the recorded one in the

LATTE, would be the last to be picked.

• If a CG has no CDP left, and it has the eldest timestamp

in the LATTE, the CTP will be evicted.

The first rule makes TreeFTL “lightweight” as the granu-

larity of CGs is much coarser than that of CDPs, since a CTP

can point to hundreds of CDPs. Spatial locality dictates that

consecutive logical pages are likely to be accessed in a short

interval of time. Hence, the timestamp of the last accessed

CDP can be used to approximate a group’s recency. This

approximation saves RAM space and reduces processing time.

It certainly suffers from the lack of detailed information about

each CDP. However, our experiments (in Section 4) show that

such trade-off is worthwhile to make.

The second rule states to evict CDPs is preferred. It is

because a CDP is a leaf of the tree, and a CTP yet connects

to tens or even hundreds of CDPs. Moreover a miss of a

translation page needs two read operations, while a miss of

a data page requires only one read. In addition, the CDPs

recorded in LATTE should be the last one to be evicted. Based

on temporal locality, this CDP is the one that is the most

likely to be accessed again. Other CDPs will be selected in

the sequence of their offsets in their CTP.

The third rule dictates when a CTP is to be flushed back to

flash. When all CDPs are removed from a CG, the CTP can

be evicted. However, TreeFTL’s eviction is based on demand.

Only when a request is raised for free space, will TreeFTL act.

This also gives a CTP a second chance to stay for a while.

In the worst case, each CG just has a CTP and a CDP. The

temporal overhead of the lightweight selection would be half

that of a page-level selection, since a timestamp is used for

two pages (a CDP and a CTP). The spatial overhead of LATTE

is the maximum in this case too. It is less than that of a page-

level strategy. The second element of a two-tuple in LATTE

needs less space than a timestamp, and a two-tuple stands for

two pages while two pages of a page-level strategy need two

timestamps. Such extreme case is rare. Since a CG may have

many CDPs, at most 512, it can be expected that the overhead

of maintaining and searching at CG-level is significantly less

than that of a page-level policy.

C. Partitioning and RAM Space Utilization

Adaptive partitioning is inherently achieved by TreeFTL.

The tree naturally grows or is pruned on access requests. The

partitions for mapping and buffering are accordingly adjusted.

A possible issue of TreeFTL is the utilization of RAM

space. A CTP has many entries, and usually not all of them

are connected to CDPs. So unused “holes” scatter across

CTPs. The benefits of caching a translation page on spatial

locality have been addressed in Section 3.2. In terms of RAM

utilization, caching a page for a requested entry risks taking up

more space, but the potential use of other entries in this page

can save valuable time. The lower utilization of RAM cache is

more likely to be caused by outdated mapping information and

data pages. A RAM management module ought to efficiently

identify and move them out.

D. Reliability and Garbage Collection

Reliability is an important issue of data storage, especially

when RAM is used as a storage medium. DRAM or SRAM

is volatile memory, and would lose data if power supply

is unexpectedly off. This problem has been addressed by

using non-volatile memory [4] [7] [10]. A backup battery can

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e
N

or
m

al
iz

ed
 S

er
vi

ce
 T

im
e (a) RAM Size: 8MB

(b) RAM Size: 16MB

Trace

Trace

Fig. 4. Normalized Service Time for Traces (1)

otherwise be equipped. Moreover, CTPs and CDPs can be

copied to flash memory when the storage system is idle.

Garbage collection is another important area in NAND

flash management due to out-of-place updating, and the time-

consuming write and erase operations. If data cached in RAM

can be frequently updated, it will alleviate the pressure on the

garbage collection module since less data will be sent to flash.

This is an area we plan to work on.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We evaluated TreeFTL using FlashSim [4] simulator run-

ning on a Linux 64-bit system to simulate a 32GB NAND

flash storage system. The compiler was GCC 4.6. The traces

we used are from three public sources. SPC1 is from Stor-

age Performance Council (SPC) [12]. TPC-C was collected

within TPC-C database benchmark [16]. MSR traces are from

Microsoft data centers [11]. We believe that they represent

various workloads in the real world. The parameters of the

flash memory used for the evaluation, as shown in Table I,

were obtained from a recent datasheet [6]. In previous works,

RAM access time was either ignored [3] or unclear [5] [15].

We assumed one RAM operation over a 2KB page costs 2μs,

which is the same as in [14]. The RAM capacity were multiply

configured, and will be shown below.

We implemented APS and JTL as comparisons to TreeFTL.

Their implementations are referred to as APS, JTL and Tree,

respectively. APS’s interval length was 1000 requests which is

the same as in [15], and the two partitions had equal capacity

in the beginning. The metric to measure access performance is

the service time needed to process a trace using a management

scheme. For a scheme, the shorter the service time is, the

higher its performance.

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree

0

0.2

0.4

0.6

0.8

1

1.2
APS Tree

(c) RAM Size: 32MB

(d) RAM Size: 64MB

N
or

m
al

iz
ed

 S
er

vi
ce

 T
im

e
N

or
m

al
iz

ed
 S

er
vi

ce
 T

im
e

Trace

Trace

Fig. 5. Normalized Service Time for Traces (2)

B. Experimental Results

Fig. 4 and 5 present the results for each trace with the

RAM cache configured as 8MB, 16MB, 32MB and 64MB.

The rightmost bar in each diagram is the sum of the results

of all ten traces. Because service time of ten traces varies

over a wide range, we normalized values of Tree and APS
to that of JTL. From Fig. 4 and 5 we can see Tree always

has the least service time under all four configurations, which

means it consistently achieves the highest performance. Take

the 64MB RAM cache for example. Tree’s average time over

all traces is less than that of APS and JTL by 46.7% and

49.0%, respectively. The service time of Tree is at best 73.9%

and 72.3% less than that of APS and JTL on MSR-prxy 0.

From Fig. 4 and 5 we can see the gap between results of

JTL (normalized as 1) and those of Tree is significant. It

is because JTL statically partitions for mapping and buffering

into two halves. Evidently, the buffering partition needs to

take up more RAM space. One entity in a translation page

is only 4 bytes but an entity in the buffering partition is a

2KB data page. This means that the total number of distinct

entities held in JTL’s mapping partition far exceeds that in

its buffering partition. Misses for data pages cause frequent

loading and eviction between RAM and flash, while most of

the space dedicated to mapping entries is infrequently used.

From the two figures we can also find that with a small

RAM capacity, Tree outperforms APS marginally. They both

can adaptively adjust partitioning. A small capacity cannot

effectively cache mapping information or data pages, and

evictions and loading dominate the performance. However,

owing to the delayed estimation of APS, Tree is still a little

faster. With the increasing of RAM cache, the overhead of

LRU selection becomes significant for APS.

Table II shows the hit ratios of three schemes for mapping

TABLE II
HIT RATIOS (%) OF THREE SCHEMES

Trace
Address Mapping Data Buffering

APS JTL Tree APS JTL Tree

SPC1 97.5 97.5 99.8 65.3 24.9 70.5
TPC-C 99.5 97.5 100.0 99.5 99.1 99.5
MSR-hm 0 92.4 94.2 99.4 45.8 18.1 64.1
MSR-mds 0 95.6 98.1 99.7 64.5 31.7 70.3
MSR-prn 0 70.1 96.1 99.6 48.0 26.3 77.9
MSR-prxy 0 98.9 98.6 99.9 53.2 33.9 92.6
MSR-rsrch 0 97.4 98.2 99.5 59.0 34.0 63.3
MSR-stg 0 97.4 98.2 99.6 61.5 23.1 64.8
MSR-ts 0 95.4 97.1 99.6 59.4 21.6 68.2
MSR-web 0 95.1 98.0 99.6 64.6 20.1 75.3

and buffering with the 64MB RAM cache, respectively. Tree
hardly has any miss for mapping. We ascribe this to the spatial

locality of a real workload. APS’s and JTL’s ratios are a little

lower because of their policy of caching single entries. In

Table II generally the hit ratios of buffering are much lower,

which is due to the mentioned asymmetry between mapping

information and data pages. Yet JTL suffers more than APS
and Tree due to its fixed partitioning.

We experimented with the RAM size as 128MB and 256MB

also. They are not presented here due to space limitation. We

did not evaluate with an even bigger RAM cache, as excessive

RAM space makes it possible to accommodate everything

needed in RAM [5]. This will not correctly highlight the

effectiveness of the RAM management schemes.

The effect of TreeFTL’s lightweight victim selection was

also measured. We implemented Tree-PL, which is the

same as Tree except that LRU victims are selected at the

page-level. Without loss of generality, MSR-hm 0 and MSR-

prxy 0 were picked as examples. Fig. 6 are their results in

six cases of “RAM Configuration+Scheme”, respectively. It

clearly shows the contributions of RAM operations (“RAM”),

flash operations (“Flash”) and LRU overheads (“LRU”) to

the overall service time with the RAM cache configured

to be 32MB and 64MB using APS, Tree-PL and Tree,

respectively. JTL differs from APS and Tree in LRU victim

selection, so it was excluded. The results in Fig. 6 support our

claim that as the capacity of the RAM cache increases, LRU

selection overhead will be an issue. We can see for APS and

Tree-PL, the overhead of the page-level selection contributes

significantly to the worsening of performance as RAM cache

scales up. The CG-level LRU selection also suffers from a

larger RAM size, but the overhead increases more gradually

due to its coarser granularity.

V. CONCLUSION

The RAM cache is an important resource of a NAND flash

storage system. Managing it efficiently will yield significant

performance improvements. TreeFTL proposed in this paper

is capable of utilizing the RAM space jointly for caching

information of address translation and buffering data pages.

Cached translation pages and data pages are organized in a

tree-like structure that can be adapted by TreeFTL for chang-

ing workload. To minimize the overhead of cache evictions,

0 500 1000 1500 2000 2500

APS
Tree-PL

Tree
APS

Tree-PL
Tree RAM

LRU
Flash

32
M

B
64

M
B

32
M

B
64

M
B

Config+Scheme

Config+Scheme (a) MSR-hm_0

(b) MSR-prxy_0
0 1000 2000 3000 4000 5000 6000

APS
Tree-PL

Tree
APS

Tree-PL
Tree RAM

LRU
Flash

Service Time
(Second)

Service Time
(Second)

Fig. 6. Effect of Lightweight Victim Selection

TreeFTL uses a lightweight LRU selection algorithm. The

victim selection is done at a coarse level, but this trade-off

in precision results in the significant reduction in processing

time. Experimental results show that TreeFTL can outperform

previous schemes on various workloads. As for the future

work, we plan to integrate TreeFTL with the garbage collection

module of flash management for higher performance.

ACKNOWLEDGEMENT

This paper is supported by the Ministry of Education of

Singapore under the grant MOE2010-T2-1-075.

REFERENCES

[1] A. Ban. Flash file system, 1995.
[2] A. Ban. Flash file system optimized for page-mode flash technologies,

August 1999.
[3] L.-P. Chang and Y.-C. Su. Plugging versus logging: a new approach to

write buffer management for solid-state disks. In DAC ’11, 2011.
[4] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation

layer employing demand-based selective caching of page-level address
mappings. In ASPLOS ’09, 2009.

[5] P.-C. Huang, Y.-H. Chang, and T.-W. Kuo. Joint management of RAM
and flash memory with access pattern considerations. In DAC ’12, 2012.

[6] Micron Technology, Inc. NAND flash memory datasheet
(MT29F16G08AJADAWP), Feburary 2012.

[7] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha. Performance trade-offs
in using NVRAM write buffer for flash memory-based storage devices.
IEEE Trans. Comput., 58(6):744–758, June 2009.

[8] H. Kim and S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In FAST ’08, 2008.

[9] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A space-
efficient flash translation layer for CompactFlash systems. IEEE Trans.
on Consumer Electronics, 48, 2002.

[10] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao. A block-level flash
memory management scheme for reducing write activities in PCM-based
embedded systems. In DATE ’12, 2012.

[11] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage, 4,
November 2008.

[12] Storage Performance Council. SPC traces. http://traces.cs.umass.edu/,
December 2009.

[13] Z. Qin, Y. Wang, D. Liu, and Z. Shao. Demand-based block-level address
mapping in large-scale nand flash storage systems. In CODES/ISSS ’10,
2010.

[14] Z. Qin, Y. Wang, D. Liu, and Z. Shao. A two-level caching mechanism
for demand-based page-level address mapping in NAND flash memory
storage systems. In RTAS ’11, 2011.

[15] H. Shim, B.-K. Seo, J.-S. Kim, and S. Maeng. An adaptive partitioning
scheme for DRAM-based cache in solid state drives. In MSST ’10, 2010.

[16] BYU trace distribution center. TPC-C database benchmark traces.
http://tds.cs.byu.edu/tds/, 2001.

