
SMART: A Single-Cycle Reconfigurable NoC for

SoC Applications

Chia-Hsin Owen Chen†, Sunghyun Park‡, Tushar Krishna†, Suvinay Subramanian†,

Anantha P. Chandrakasan$, Li-Shiuan Peh†

Dept. of Electrical Engineering and Computer Science, Massachusettes Institute of Technology, Cambridge, MA 02139
†{owenhsin, tushar, suvinay, peh}@csail.mit.edu, ‡{pshking}@mit.edu, ${anantha}@mtl.mit.edu

Abstract—As technology scales, SoCs are increasing in core
counts, leading to the need for scalable NoCs to interconnect the
multiple cores on the chip. Given aggressive SoC design targets,
NoCs have to deliver low latency, high bandwidth, at low power
and area overheads. In this paper, we propose Single-cycle Multi-
hop Asynchronous Repeated Traversal (SMART) NoC, a NoC
that reconfigures and tailors a generic mesh topology for SoC
applications at runtime. The heart of our SMART NoC is a
novel low-swing clockless repeated link circuit embedded within
the router crossbars, that allows packets to potentially bypass all
the way from source to destination core within a single clock cycle,
without being latched at any intermediate router. Our clockless
repeater link has been proven in silicon in 45nm SOI. Results
show that at 2GHz, we can traverse 8mm within a single cycle,
i.e. 8 hops with 1mm cores. We implement the SMART NoC to
layout and show that SMART NoC gives 60% latency savings,
and 2.2X power savings compared to a baseline mesh NoC.

I. INTRODUCTION

Systems-on-Chip (SoCs) have started adding more and

more general-purpose/application-specific IP cores with the

emergence of diverse compute intensive applications over the

past few years [1], [2], and this has intensified with the

proliferation of smart phones [3]. Networks-on-chip (NoCs)

are used to connect these cores together, and routers are used at

crosspoints of shared links to perform multiplexing of different

messages flows on the links.

To reduce on-chip latency, one approach has been to tai-

lor the NoC topology to match application communication

patterns at design time. Examples include Fat Tree [4], Star-

Ring [5], Octegon [2], high-radix crossbar [6], and so on. If

coupled with sophisticated link designs such as [7]–[10], these

NoCs can realize a single cycle transmission between distant

cores. However, this requires knowledge of all applications

and their communication graphs at design time to be able to

pin these dedicated express links to specific pairs of dedicated

cores, and assumes sufficient wiring density to support dedi-

cated links between all communicating cores.

The alternate approach has been to use a scalable topology

at design time, such as a 2D Mesh connecting a collection

of generic IPs (such as ARM processors), then reconfigure

it at run time to match application traffic. Since router de-

lays can vary depending on congestion [1], [11], some prior

research [12]–[16] has proposed pre-reservation of (parts of)

the route to provide predictable and bounded delays. These

works perform an offline computation of contention free routes,

allowing flits1 to bypass queues and arbiters at routers where

there is no conflict between the routes of different flows. This

paper pushes this idea to the extreme: we enable flits to

potentially incur a single-cycle delay all the way from the

source to the destination, thus providing a virtually tailored

topology within a shared mesh. We call this approach SMART,

Single-cycle Multi-hop2 Asynchronous Repeated Traversal.

We present a novel low-swing link circuit that uses clockless

repeaters to allow propogation of signals across multiple-mm

within a cycle, at low energy. We replace conventional links

in the network by these SMART links at design time. We

also present a tool flow to perform online reconfiguration of

network routers at runtime, to enable different applications

to run on tailored topologies. Figure 1 shows an overview

of our design, where a network reconfigures into 3 different

topologies for 3 different applications.

In this work, we make the following contributions:

• First, we present a chip to show the benefit of a novel

low-swing clockless repeated link design for fast multi-

mm propagation. Simulation results show that 8mm can

be traversed in a cycle at 2GHz.

• Second, we present a reconfigurable NoC architecture,

SMART, integrated with the proposed link design that

allows single-cycle traversal between distant cores.

• Lastly, we implement a 4x4 SMART mesh and evaluate

the impact on multiple SoC applications and show that we

are only 1.5 cycles off in performance from a dedicated

topology for that application. Compared to a state-of-the-

art 3-cycle mesh router, we observe 60% saving in packet

latency and 2.2X reduction in power consumption.

The paper is organized as follows: we first describe the

related work in Section II. Then we explain the proposed link

design in Section III, and present the architecture of SMART

NoC in Section IV. Section V shows the implementation

details. Section VI demonstrates some case studies on a 4x4

SMART NoC, and Section VII concludes.

II. RELATED WORK

Reconfigurable topologies. Prior works on reconfigurable

NoCs motivated the need for application-specific topology

1A flit is a sub-unit of a packet, and is sized to be equal to the link width.
2We define hop to be the distance between two IP blocks in the physical

layout. We assume 1-hop = 1mm in this paper from place-and-route of a
Freescale PowerPC e200z7 core in 45nm.

978-3-9815370-0-0/DATE13/ c©2013 EDAA

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Reconfigure

WLAN H264 VOPD

Reconfigure

Fig. 1: Mesh reconfiguration for three applications. All links in bold take one-cycle.

reconfiguration and proposed various NoC architectures that

support reconfiguration. Application-Aware Reconfigurable

NoC [12] adds extra switches next to each router (a second

crossbar in principle), and presets static routes based on

application traffic. VIP [13] supports reconfiguration virtually,

by prioritizing a virtual channel (VC) in the network to always

get access to the crossbars, enabling single-cycle-per-hop for

flits on this VC. ReNoC [14], [15] adds an extra topology

switch (a set of muxes) at the output ports for each router and

presets them to enable static routes in the network before the

application is run. Skip-links [16] dynamically reconfigures the

topology based on the traffic at each router when application is

run, and sets up the crossbars to allow flits to bypass buffering

and arbitration stages at intermediate routers.

All these prior works reconfigure the topology by enabling

some way of bypassing buffering and arbitration at routers.

ReNoC is the closest to our work in that it also avoids latching

flits at each router. However, none focused on pushing latency

down further to traversing multiple hops in a cycle at high

frequency. As high-performance SoCs emerge, we believe that

applications will be increasingly sensitive to communication

latency. SMART is the first work to demonstrate a novel

clockless repeater circuit that enables single-cycle traversal

over multiple hops at GHz frequencies, leverage these for

reconfiguring a NoC to support single-cycle communications

for applications, and implement the NoC to layout.

Low-swing signaling. Signaling at low voltage swing is

a well-known design technique to efficiently drive a highly-

capacitive load in both off-chip and on-chip interface circuits.

In general, the low-swing technique can lower energy con-

sumption and propagation delay at the cost of a reduced

noise margin [17]. Most existing low-swing on-chip inter-

connects (lower supply voltage drivers [17], [18], cut-off

drivers [18]–[20] and charge sharing techniques [21]–[23]),

however, are optimized for low-power signaling to maximize

energy efficiency at the link level, leading to propagation delay

slacks caused by reduced driving current. While pre-emphasis

techniques such as equalization [7]–[9] can generate energy-

efficient low-swing signaling along with the inherent channel

loss of global links without the delay slack, their application

to a mesh NoC that offers path diversity only through short

router-to-router links is limited due to huge area overheads of

the equalized drivers, poor bandwidth density of differential

wiring and lack of point-to-point global wiring space.

To the best of our knowledge, there have been no previous

works on low-swing link circuit design optimized for our

SMART NoC design goal at the system level: fast propagation

delay through multiple routers in a mesh NoC with reconfigura-

bility. This design goal prompted our voltage-locked repeater

circuit that allows signals to be asynchronously repeated at

every router with reduced delay.

III. SMART LINK

As discussed in Section II, most prior works explore single-

cycle-per-hop, which is essentially a link connecting the source

and destination router with several clocked repeaters inserted

in the middle. However, wire delay is much shorter than a

typical router cycle time (500 ps for a 2GHz clock frequency),

which means that it is possible to traverse multiple hops in a

single cycle. For example, a full-swing repeated wire delay is

only around 100 ps/mm3.

We present a novel asynchronous low-swing repeater circuit,

voltage lock repeater (VLR), for single-cycle multi-hop link

traversal which forms the basis of our SMART NoC. Our

proposed low-swing link stretches the maximum distance that

a full-swing repeated link can span in a cycle at lower energy.

Figure 2 shows the schematic of VLR. We choose a single-

ended design over double-ended design because of lower wire

capacitance per bit and higher data density. The circuit locks

the node X voltage to swing near the threshold voltage of

INV1x without the decrease in driving current, enabling lower

delay of the next symbol propagation delay. The delay cell in

the feedback path generates transient overshoots at node X,

resulting in lower repeater propagation delay and larger noise

margin without significant energy overhead. The low-swing

voltage level is determined by transistor sizes and link wire

impedance4. Careful transistor sizing and extracted simulations

are required to prevent oscillation and static current through

the RxP-RxN path in all possible process corners.

While the proposed low-swing repeater does not require

clocking power and differential signaling, it has static current

paths between two consecutive repeaters, TxP-wire-RxN for

logic High and TxN-wire-RxP for logic Low. It should be

3Based on the measurements of our chip with min DRC pitch assumed.
4
Vhigh is given by link wire resistance, TxP’s on-state resistance and RxN’s

on-state resistance while Vlow is determined by link wire resistance, TxN’s
on-state resistance and RxP’s on-state resistance.

Fig. 2: Proposed clockless low-swing voltage-locked repeater (VLR) for single-

cycle multi-hop link traversal.

Fig. 3: Simulated waveforms at 6.8Gb/s:

(a) full-swing and (b) low-swing.

Fig. 4: Test chip die photograph in 45nm SOI CMOS.

TABLE I: Simulation results of max number of hops per cycle

Data Rate 1Gb/s 2Gb/s 3Gb/s

Full-swing∗ 13 (103 fJ/b/mm) 6 (95 fJ/b/mm) 4 (84 fJ/b/mm)

Low-swing∗ 16 (128 fJ/b/mm) 8 (104 fJ/b/mm) 6 (87 fJ/b/mm)

Data Rate 4Gb/s 5Gb/s 5.5Gb/s

Full-swing∗∗ 4 (98 fJ/b/mm) 3 (89 fJ/b/mm) 3 (85 fJ/b/mm)

Low-swing∗∗ 7 (132 fJ/b/mm) 6 (107 fJ/b/mm) 5 (96 fJ/b/mm)

∗is resized and optimized for low-frequency (2GHz) and wider wire spacing.
∗∗is the same circuit as in the fabricated chip with wider wire spacing.

noted, however, that the static energy is much less than a con-

ventional continuous-time comparator since the static current

paths include a highly-resistive link wire. Also, switching off

the enable signal (EN) when the link is not used help eliminate

unnecessary static power.

To explore the high-frequency performance and energy

efficiency of the proposed low-swing repeater, a test chip in

45nm SOI CMOS was fabricated and measured. A VLR was

embedded at every mm along a 10mm interconnect. Figure 4

shows a die photo of our chip that also includes equivalent

full-swing repeaters and an on-chip test circuit.

In terms of bandwidth, the proposed VLR repeaters achieve

the maximum data rate of 6.8Gb/s with 4.14mW power con-

sumption (i.e. 608 fJ/b energy efficiency) for 10-hop (10mm)

link traversal, maintaining bit error rate (BER) below 10
−9. On

the other hand, the equivalent full-swing repeaters can transmit

5.5Gb/s data at most, with BER which is less that 10
−9,

consuming 4.21mW (i.e. 765 fJ/b), whereas VLR consumes

3.78mW (i.e. 687 fJ/b) at the same data rate. Latency wise,

experiment results show that the delay of a link with VLRs is

around 60 ps/mm, whereas the delay of a link with full-swing

repeaters is around 100 ps/mm.

In a SoC, the maximum clock frequency is usually limited

by the core and router critical path rather than the link. We thus

re-optimize the transistor sizes and wire spacing of our circuits

for a lower clock frequency of 2GHz to meet our system-level

design goal of single-cycle multiple-hop link traversal without

unnecessary energy consumption and the simulation results

are shown in Table I5. At 2GHz, 8-hop (8mm) link can be

traversed in a cycle at 104 fJ/b/mm.

IV. ARCHITECTURE OF THE SMART NOC

Here, we present the architecture of the SMART NoC that

can be tailored at runtime to enable single-cycle communica-

tion between any pair of cores for different applications.

SMART Crossbar. The SMART crossbar is the primary

building block in a SMART NoC that enables straight and

turning paths within the network. Figure 5 shows the architec-

ture of such a crossbar integrated with the voltage lock repeater

describe in Section III. The idea is to insert a crossbar between

the Rx and Tx components of each repeater. The data sent on

the link will first be converted to full-swing (Rx), traverse the

full-swing crossbar, then converted back to low-swing again

(Tx) and forwarded to the next hop.

Router Microarchitecture. We integrate the SMART cross-

bar with a conventional router (which comprises of buffers

and arbiters). As shown in Figure 6, in addition to the input

buffers of the router, the crossbar is also fed by the incoming

links to support single-cycle bypass paths. For each direction,

an extra multiplexer is added to multiplex the crossbar input

port between the input buffer and the incoming link. If the

multiplexer is preset to connect the incoming link to the

crossbar6, a bypass path is enabled: incoming flits move

directly to the crossbar, traverse it to the outgoing link, and

do not get buffered/latched in the router. On the other hand,

if the multiplexer is set to connect the input port buffer, the

bypass path is disabled, which happens when the output link is

shared across communication flows from different input ports.

In this case, an incoming flit enters the router, places requests

for the output port determined by its preset route, and moves

to the crossbar upon successful arbitration.

We design a 3-stage router. In stage 1, the incoming flit gets

buffered and generates an output port request based on the

preset route in its header. In stage 2, all buffered flits arbitrate

for access to the crossbar. In stage 3, flits traverse the crossbar

and output link upon successful arbitration.

Routing. Given an application communication graph, one

can use NoC synthesis algorithms like NMAP [24] (see

Section VI) to map tasks to physical cores and communication

flows to static routes on a mesh. Figure 7 shows an example

5Smaller transistor sizes and 2X wider wire spacing than fabricated design.
6The crossbar signals also need to be preset to connect this input port to

another output port

E-Out

Crossbar

S-Out W-Out N-Out C-Out

E-In

S-In

W-In

N-In

C-In

Rx

Tx

Full-swingLow-swing

Fig. 5: One-bit SMART Crossbar.

Input buffer

SMART Crossbar

5x5 xbar

E-OutE-In

S-In

W-In

N-In

C-In

S-Out

W-Out

N-Out

C-Out

Arbiters

SMART Router

Pipeline Buffer Write
Switch

Allocation

SMART

Crossbar + Link

Bypass path

Fig. 6: SMART Router Microar-

chitecture and Pipeline.

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

1

1

1

1

1

1

1

1

1

1 1

1

1 4 7

7

7

7

1
1

4

7

7

Fig. 7: SMART NoC in action with four flows.

(The number next to each arrow indicates the

traversal time of that flow.)

SMART NoC with preset routes for four arbitrary flows. In

this example, the green and purple flows do not overlap with

any other flow, and thus traverse through a series of SMART

crossbars and links, incurring just a single-cycle delay from

the source NIC to the destination NIC, without entering any

of the intermediate routers. The red and blue flows, on the

other hand, overlap over the link between routers 9 and 10,

and thus need to be stopped at the routers before and after

this link to arbitrate for the shared crossbar ports7. The rest

of the traversal takes a single-cycle. It should be noted that

before the application is run, all the crossbar select lines are

preset such that they either always receive a flit from one of

the incoming links, or from a router buffer.

Since the routes are static, we adopt source routing and

encode the route in 2 bits for each router. At the source

router, the 2-bit corresponds to East, South, West and North

output ports, while at all other routers, the bits correspond to

Left, Right, Straight and Core. The direction Left, Right and

Straight are relative to the input port of the flit. In this work,

we avoid network deadlocks by enforcing a deadlock-free turn

model across the routes for all flows.8

Flow Control. In a conventional hop-by-hop traversal

model, a flit gets buffered at each hop. Thus, a router only

needs to keep track of the free VCs/buffers at its neighbors

before sending a flit out. Without loss of generality, we adopt

the virtual cut-through flow control to simplify the design. A

queue is maintained at each output port to track the available

free VCs at the downstream router connected to that output

port. A free VC is dequeued from this queue before a head

flit is sent out of the corresponding output port. Once a

VC becomes free at the downstream router, the router sends

a credit signal (VCid) back to the upstream router which

enqueues this VCid into the queue.

In the SMART NoC, a flit could traverse multiple hops

and get buffered, bringing up challenging flow control issues.

A router needs to keep track of free VCs at the endpoint

of an arbitrary SMART route, though it does not know the

SMART route till runtime. We solve this problem by using

7If flits from the red and blue flow arrive at router 9 at exactly the same
time, they will be sent out serially from the crossbar’s East output port.

8Deadlock can also be avoided by marking one of the VCs as an escape
VC [11] and enforcing a deadlock-free route within that. The exact deadlock-
avoidance mechanism is orthogonal to this work.

a reverse credit mesh network, similar to the forward data

mesh network that delivers flits. The only overhead of the

credit mesh network is a [log(# VCs) + 1 (valid)]-bit SMART

crossbar added at each router. For example, if the number of

VCs is 2, the overhead of the credit network is 2-bit wide

crossbars. If a forward route is preset, the reverse credit route

is preset as well. A credit that traverses multiple hops does not

enter the intermediate routers and goes directly to the SMART

crossbar which redirects it along the correct direction.

For example, in Figure 7, for the blue flow, credits from

NIC3 are fowarded by preset credit crossbars at routers 3, 7

and 11 to router 10’s East output port in a single-cycle without

going into intermediate routers; credits from router 10’s West

input port are sent to router 9’s East output port and credits

from router 9’s West input port are sent to NIC8.

The beauty of this design is that the router does not need

to be aware of the reconfiguration and compute whether to

buffer/forward credits. Since the credits crossbars act as a

wrapper around the router, and are preset before the applica-

tion starts, the credits automatically get sent to the correct

routers/NICs. Thus, if a router receives a credit, it simply

enqueues the VCid into its free VC queue. This free VC queue

might actually be tracking the VCs at an input port of a router

multiple hops away, and not the neighbor, as explained above.

V. IMPLEMENTATION TOOL FLOW

To demonstrate the feasibility of the SMART NoC architec-

ture, we present a tool to build SMART NoCs. The tool takes

network configurations as input (e.g., the dimension of the

mesh, flit width, number of VCs and buffers), and generates

the RTL description as well as the layout of the SMART NoC

integrated with the proposed SMART link. We next describe

how each component is generated.

Voltage Lock Repeater. To integrate the VLRs into the de-

sign, we implement a SKILL script to take 1-bit Tx/Rx layout

and data width as input and place-and-route them regularly to

multi-bit Tx/Rx blocks. Figure 8 shows an example of a 32-bit

Tx block. We do not embed the VLRs in the crossbar as in [25]

because that leads to high area overhead. Also, we do not

use existing commercial place-and-route tools because these

tools are often designed for general circuit blocks and cannot

leverage the regularity property, adding unnecessary overhead.

In addition, the script also generates the timing liberty format

Fig. 8: 32-bit Tx block Layout Fig. 9: Generated 4x4 NoC Layout

TABLE II: 4x4 NoC Configuration

Technology 45nm

Vdd, Freq 0.9V, 2GHz

Topology 4x4 mesh

Channel width 32 bits

Credit width 2 bits

Router ports 5

VCs per port 2, 10-flit deep

Packet size 256 bits

Flit size 32 bits

Header width 20 bits (Head), 4 bits (Body, Tail)

(.lib) and the library exchange format (.lef) files to allow the

generated layout to be place-and-routed with the router.

SMART Router and NoC. Given router parameters, the

tool generates the RTL description of the router in Verilog

using an in-house parameterized library of various router

components. The input/output ports are clock-gated to reduce

unnecessary dynamic power consumption based on the pre-

set signals, which are set before each application runs. We

synthesize the router and place-and-route it along with VLRs.

Next, we tile the routers and connect them as a mesh. Due

to the limitation of the general routing tool that introduces

unnecessary wiring overhead, we use custom TCL scripts to

control the tool to generate links between the routers.

Reconfiguration Registers. To support SMART path re-

configuration for different applications, we encode the preset

signals for crossbars and input/output ports into a double-

word configuration register for each router. These registers are

memory mapped such that these can be set by performing a

few memory store operations. Before each application runs,

these registers need to be set properly to suit the application’s

traffic characteristic. The network needs to be emptied while

setting the registers. The values of the registers are deter-

mined based on the mapped flows on the mesh. Application

developers need to prepend the application with memory store

instructions to set the registers properly and the reconfiguration

cost at runtime is just the amount of time to execute these

instructions. For example, for a 16-node SMART NoC, there

are 16 registers to be set which correspond to 16 instructions.

If there is only 1 core that can perform the reconfiguration, a

separate network (e.g. ring) is required to set these registers.

VI. CASE STUDY

Configurations. We implemented a 4x4 SMART NoC and

evaluated it with a suite of SoC applications. The configuration

of the network is shown in Table II and the final layout is

shown in Figure 9. It should be noted that the routers are

assumed to be 1mm spaced and the black regions shown are

reserved for the cores. We refer to this design as SMART.

We evaluate SMART against two baselines: Mesh and

Dedicated. Mesh is a state-of-the-art NoC with no reconfig-

uration [11], where each hop takes 3 cycles in router and 1

cycle in link. Dedicated is a NoC with 1-cycle dedicated links

between all communicating cores tailored to each application.

While this has area overheads, we use this design as an ideal

yardstick for SMART. All designs use the SMART links.

We generate synthetic traffic from 8 SoC task graphs,

modeling a uniform random injection rate to meet the specified

bandwidth for each flow9. We feed this traffic through post-

layout simulation of the SMART NoC to get average network

latency. We also use the VCD files from these simulations to

estimate power using Synopsys Prime Power.

To determine the preset signals for each application, we take

a task graph and adopt a modified NMAP [13] algorithm to

map the tasks to phyical cores in the mesh. We first map the

task with highest communication demand to the core with the

most number of neighbors (i.e. middle of the mesh). Then,

we pick a task that communicates the most with the mapped

tasks and find an unmapped core that minimizes the chance of

getting buffered at intermediate cores. This process is iterated

to map all tasks to physical cores. As the tasks are mapped to

the physical cores, the flows between tasks are also mapped to

routes with minimum number of hops between cores. Note that

since the reconfiguration process only involves a few memory

stores, the overhead of the reconfiguration can be omitted.

Performance Evaluation. Figure 10a shows the average

network latency across the applications for the baseline and

SMART NoCs. Compared to the Mesh, SMART reduces

network latency by 60.1% on average due to the bypassing of

the complete router pipelines10. On average, SMART reduces

the network latency to 3.8 cycles, which is only 1.5 cycles

higher than that of the Dedicated 1-cycle topology. For PIP,

VOPD and WLAN, the latencies achieved by SMART and

Dedicated are almost identical. If there are multiple traffic

flows to the same destination, they need to stop at a router

at the destination to go up serially into the NIC, both in

SMART and Dedicated. However, SMART is limited by the

available link bandwidth in a mesh to multiplex all flows, while

Dedicated has no bandwidth limitation. This allows Dedicated

to have 2-4 cycles lower latency than SMART in H264 and

MMS MP3 where one core acts as a sink for most flows,

while another acts as the source for most flows, thus resulting

in heavy contention and multiplexing. This can be ameliorated

by splitting the 32-bit wide SMART channels into two 16-bit

narrower channels (or more)11, then clocking them at twice or

9The bandwidth requirements of the three MMS benchmarks are scaled
up 100x to allow reasonable on-chip traffic in our 2GHz design. All other
benchmarks’ bandwidth remain unchanged.

10In the worst case, if all flows contend, SMART and Mesh will have the
same network latency.

11Essentially, this increases the radix of the router and the path diversity.

!"
#"
$"
%"
&"
'"
("
)"
*"
+"

#!"
##"
#$"

,
$(
&"

-
-
./
0
12
"

-
-
./
13
2"

-
-
./
-
4%
"

-
5
0
"

46
4"

78
40
"

5
9:
3
"

!
"
#
$%
&
'(

)
*+
$,
-
'&
.
/0
$1
/0
/2
&
34
$ -;<=" .-:>?" 0;@ABCD;@"

(a) Performance

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

M
e

sh

S
M

A
R

T

D
e

d
ic

a
te

d

H264 MMS_DEC MMS_ENC MMS_MP3 MWD VOPD WLAN PIP

P
o

w
e

r
(W

)

Buffer Allocator Xbar (flit + credit) + Pipeline register Link

(b) Power Breakdown

Fig. 10: Evaluation of SMART NoC across SoC Applications.

thrice the rate, leveraging the high frequency of SMART links

to mitigate conflicts. SMART can also enable non-minimal

routes for higher path diversity without any delay penalty. We

leave these as future work.

In an actual SoC, the task to core mapping may not be able

to change drastically across applications as cores are often

heterogenous, and certain tasks are tied to specific cores. This

will result in longer paths, magnifying the benefits of SMART.

Power Analysis. Figure 10b shows the post-layout dynamic

power breakdown across the applications for all three designs.

All designs send the same traffic through the network, and

hence have similar link power. Compared with Mesh, where

flits need to stop at every router, SMART reduces power by

2.2X on average both due to bypassing of buffers, and due

to clock gating at routers where there is no traffic. The total

power for Dedicated is much lower than SMART because only

link power is plotted, which is negligible due to low network

activity. A Dedicated topology also has high-radix routers at

destinations (if it acts as a sink for multiple flows), pipeline

registers and muxes at the source (if multiple flows originate

from it), which we ignored in the power estimates, though

these will not be negligible.

VII. CONCLUSION

In this paper, we proposed SMART NoCs and demonstrated

how scalable NoCs such as meshes can realize single-cycle,

cross-chip communication while delivering high bandwidth by

dynamically reconfiguring its switches to match application

traffic. In the past, SoC architectures, compilers and applica-

tions have been aggressively optimizing for locality. As we

drive towards more and more sophisticated SMART NoCs, we

hope that will pave the way towards locality-oblivious SoC

design, easing the move towards many-core SoCs.

ACKNOWLEDGEMENT

The authers acknowledge the support of DARPA under the

Ubiquitous High-Performance Computing (UHPC) program,

and Michel Kinsy from MIT for providing H264 task graph.

REFERENCES

[1] K. Goossens et al., “Aethereal network on chip: Concepts, architectures,
and implementations,” IEEE Des. Test, vol. 22, no. 5, pp. 414–421, 2005.

[2] F. Karim et al., “An interconnect architecture for networking systems
on chips,” IEEE Micro, vol. 22, no. 5, pp. 36–45, Sep 2002.

[3] N.-S. Woo, “High performance SOC for mobile applications,” in ASSCC,
2010.

[4] A. Adriahantenaina et al., “SPIN: A scalable, packet switched, on-chip
micro-network,” in DATE, 2003.

[5] J.-Y. Kim et al., “A 118.4 gb/s multi-casting network-on-chip with hi-
erarchical star-ring combined topology for real-time object recognition,”
JSSC, vol. 45, no. 7, pp. 1399–1409, 2010.

[6] G. Passas et al., “A 128 x 128 x 24gb/s crossbar interconnecting 128
tiles in a single hop and occupying 6% of their area,” in NOCS, 2010.

[7] R. Ho et al., “High-speed and low-energy capacitive-driven on-chip
wires,” ISSCC, 2007.

[8] E. Mensink et al., “A 0.28pj/b 2gb/s/ch transceiver in 90nm cmos for
10mm on-chip interconnects,” ISSCC, 2000.

[9] B. Kim and V. Stojanovic, “A 4gb/s/ch 356fj/b 10mm equalized on-
chip interconnect with nonlinear charge-injecting transmit filter and
transimpedance receiver in 90nm cmos,” ISSCC, 2009.

[10] T. Krishna et al., “NoC with near-ideal express virtual channels using
global-line communication,” HOTI, 2008.

[11] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, 2004.
[12] M. Modarressi et al., “Application-aware topology reconfiguration for

on-chip networks,” TVLSI, 2011.
[13] ——, “Virtual point-to-point connections for nocs,” TCAD, 2010.
[14] M. B. Stensgaard and J. Sparso, “Renoc: A network-on-chip architecture

with reconfigurable topology,” in NOCS, 2008.
[15] M. B. Stuart et al., “Synthesis of topology configurations and dead-

lock free routing algorithms for renoc-based systems-on-chip,” in
CODES+ISSS, 2009.

[16] C. Jackson and S. J. Hollis, “Skip-links: A dynamically reconfiguring
topology for energy-efficient nocs,” in ISSOC, 2010.

[17] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits: A Design Perspective, second edition. Prentice Hall, 2003.
[18] H. Zhang et al., “Low-swing on-chip signaling techniques: Effectiveness

and robustness,” VLSI, vol. 8, pp. 264–272, 2010.
[19] R. Golshan et al., “A novel reduced swing cmos bus interface circuit

for high speed low power vlsi systems,” in ISCAS, 1994.
[20] B.-D. Yang et al., “High-Speed and Low-Swing On-Chip Bus Interface

Using Threshold Voltage Swing Driver and Dual Sense Amplifier
Receiver,” ESSCIRC, pp. 144–147, September 2000.

[21] E. Kyriakis-Bitzaros, “Design of low power cmos drivers based on
charge recycling,” in ISCAS, 1997.

[22] M. Hiraki et al., “Data-dependent logic swing internal bus architecture
for ultralow-power lsis,” JSSC, pp. 397–402, April 1995.

[23] H. Yamauchi et al., “An asymptotically zero power charge-recycling
bus architecture for battery-operated ultrahigh data rate ulsis,” JSSC, pp.
423–431, April 1995.

[24] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in DATE, 2004.

[25] C.-H. O. Chen et al., “A low-swing crossbar and link generator for
low-power networks-on-chip,” in ICCAD, 2011.

