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Abstract— Asynchronous networks-on-chip (NoCs) are an
appealing solution to tackle the synchronization challenge in mod-
ern multicore systems through the implementation of a GALS
paradigm. However, they have found only limited applicability so
far due to two main reasons: the lack of proper design tool flows
as well as their significant area footprint over their synchronous
counterparts. This paper proposes a largely unexplored design
point for asynchronous NoCs, relying on transition-signaling
bundled data, which contributes to break the above barriers.
Compared to an existing lightweight synchronous switch archi-
tecture, xpipesLite, the post-layout asynchronous switch achieved
a 71% reduction in area, up to 85% reduction in overall power
consumption, and a 44% average reduction in energy-per-flit,
while mastering the more stringent timing assumptions of this
solution with a semi-automated synthesis flow.

I. INTRODUCTION
There is today little doubt on the fact that a high-

performance and cost-effective network-on-chip (NoC) can
only be designed in nanoscale technologies under relaxed syn-
chronization assumptions. On the other hand, such relaxation
is even desirable for the upper design layers, since modern
systems are typically structured into multiple, highly power-
manageable voltage and frequency domains. The Globally
Asynchronous Locally Synchronous (GALS) design paradigm
can effectively support this architectural trend [1], [2]. Absorb-
ing the heterogeneity of timing assumptions in such systems is
ultimately a burden of the system interconnect, which serves
as the global integration framework.

Asynchronous NoCs are the best candidates to take on
this role, since they rely on clockless handshaking for inter-
domain communication. These designs come with a number
of potential advantages: average-case instead of worst-case
performance, no switching power of a clock tree, easier
convergence of hierarchical design flows, robustness to pro-
cess/voltage/temperature variations, and efficient delivery of
differentiated per-link performance. However, asynchronous
NoCs are not yet at the stage of a mature interconnect tech-
nology for widespread industrial uptake, and their exploitation
in real systems turns out to be slower than expected.

There are two fundamental barriers that prevent asyn-
chronous NoCs from becoming a mainstream technology.
First, they suffer from poor CAD tool support, in that design
methods and tools for synchronous design cannot be directly
applied. Many rely on a full-custom approach for the design of
such circuits [3]. Some recent work holds the promise of bridg-
ing this gap to some extent [4], [5]. However, asynchronous
NoC components are still typically delivered as rigid hard
macrocells [6]. Second, the vast majority of previous work
makes use of four-phase return-to-zero (RZ) protocols, in-
volving two complete round-trip channel communications per
transaction, as well as delay-insensitive (DI) data encodings
(namely dual-rail, 1-of-4 or m-of-n) [7]. These design choices
have typically resulted in an overly large area and energy-per-
bit overhead with respect to their synchronous counterparts [8].

More recently, the above considerations have raised the
interest in single-rail bundled data asynchronous protocols [7],
which in principle provide designs with a lower timing
robustness while significantly reducing area, wire-per-link
and energy-per-bit overhead. In practice, with a bundled
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data approach, circuit timing must be carefully specified
and controlled to ensure correct operation. At the same
time, transition-signaling (i.e., two-phase communication pro-
tocol) is gaining momentum as a preferred match for high-
performance asynchronous systems [9], especially for signal-
ing across inter-router links [10]. Inside routers, four-phase
protocols are still generally preferred since most existing two-
phase asynchronous pipeline components are complex, with
large latency, area and power overheads.

The objective of this paper is to materialize a new design
point for NoC switch architectures, bringing the benefits of
asynchronous communication within reach of cost-constrained
multicore systems. To the best of our knowledge, this is the
first time a full 5-ported asynchronous switch is designed with
a transition-signaling bundled data protocol. Our main target
is twofold. On the one hand, we aim at a switch architecture
that largely outperforms its synchronous counterpart with re-
spect to area footprint, energy-per-bit and power consumption,
while maintaining roughly comparable performance. In many
previous quasi delay-insensitive (QDI) implementations, with
delay-insensitive channels, while lower overall power is deliv-
ered, there are significant overheads in area and energy-per-bit.
To validate our claim, we compare with one of the most cost-
effective synchronous switch architectures for the multicore
domain, called xpipesLite [11]. On the other hand, we aim to
be fully compatible with a standard cell design methodology
and with a mainstream CAD tool flow for synchronous design.
More specific contributions of this work are the following:

• we take on the challenge of using two-phase bundled data
not only on inter-switch links but also inside the switch
microarchitecture, to obtain high performance while not
missing the low-complexity target;

• while a promising trade-off between cost and perfor-
mance with transition-signaling bundled data has been
previously been obtained with simple routing and arbi-
tration primitives, this work is practically extended to a
more intricate full 5-ported switch architecture;

• we aim at design convergence and high performance –
above 900 Mflit/sec – in low-power standard-Vth 40nm
technology;

• we introduce two novel, highly-concurrent and efficient
asynchronous components, a transition-signaling circular
FIFO and a 4-way arbiter, each of which can be useful
in other domains;

• we present a semi-automated design flow specific for
transition-signaling bundled data design, which exploits
commercial synchronous tools, and allows the creation of
partially-reconfigurable macros;

• we compare quality metrics of a post-layout design of
the new asynchronous switch with a lightweight syn-
chronous switch architecture (xpipesLite [11]), in order
to prove that through the selected asynchronous design
style it is possible to provide an even more competi-
tive design point, thus aiming to bring the benefits of
asynchronous interconnect technology within reach of
resource-constrained multicore systems;

• in the comparison framework with the synchronous
switch, we consider link parasitic effects, which are of
key importance in nanoscale technologies and whose
implications on asynchronous switch performance are
typically overlooked.978-3-9815370-0-0/DATE13/ c©2013 EDAA



II. PREVIOUS WORK
There has been a surge of interest in recent years in

GALS and asynchronous design [1], [2]. Several GALS NoC
solutions have been proposed to enable structured system
design. Several of these approaches have been highly effec-
tive, especially for low- and moderate-performance distributed
multicore systems [6], [12], thus targeting a different point
in the design space than the proposed work. Some have low
throughput (e.g., 200-250 MHz) [13], while those with moder-
ate throughput (e.g., near 500 MHz [6], [14], [15], [16]) often
have significant overheads in router node latency/area/energy-
per-bit. Almost all use four-phase return-to-zero protocols,
involving two complete roundtrip channel communications per
transaction (rather than the single roundtrip communication
targeted in our work), and delay-insensitive data encoding,
resulting in lower coding efficiency than the single-rail bundled
encoding used in this paper [14], [15], [12], [13], [17].

Closer to our work is a promising recent approach targeting
a two-phase protocol using a commercial computer-aided
design (CAD) flow [18]. However, it has overheads due to
a delay-insensitive (LEDR) data encoding and flipflop-based
registers, and is not currently even suitable as a NoC. The
GALS neural network system of [13] also includes two-phase
channels between chips, with four-phase channels on chip, but
uses delay-insensitive encoding.

The proposed NoC is based on MOUSETRAP pipelines
[7], [19], which use a low-overhead single-latch-based archi-
tecture. This paper delivers a previously unexplored design
point for asynchronous NoC architectures, relying on two-
phase bundled data encoding. We propose a more aggressive
approach than [10], who limits the two-phase protocol to
inter-switch links. The proposed solution builds on the work
of [9] and [20], which demonstrate that transition-signaling
single-rail bundled data can be efficiently employed in basic
routing and arbitration functions. However, [9] and [20] target
only simple tree-based switch architectures, while this work
addresses the intricacy of a full 5-ported switch design.

III. SWITCH ARCHITECTURE
The proposed switch architecture is highly modular and

can support the connection of an arbitrary number of input
ports (Input Port Modules, IPMs) with output ports (Output
Port Modules, OPMs). While the design space is potentially
quite large, this paper analyzes and characterizes a specific
design point with the following features: 5 input and 5 output
ports, 32-bit flit width, wormhole switching and algorithmic
dimension-order routing. The ultimate goal is in fact to assess
the quality metrics that transition-signaling bundled data can
achieve on a specific design point of practical interest.

The switch architecture is inspired by the xpipesLite archi-
tecture [11], which represents an ultra-low complexity design
point in the space of fully-synchronous NoCs. Given this,
coming up with an asynchronous switch consisting of the same
building blocks while further cutting down on area and power
is the challenge that this paper takes on. xpipesLite will be
retained as reference design point to prove the claim of low
implementation overhead and competitive design point.
A. Mousetrap Pipelines

The new asynchronous switch introduced in the following
sections, is based on an existing asynchronous pipeline called
MOUSETRAP [7], [19], which provides high-throughput op-
eration with low hardware overhead. Each MOUSETRAP
stage uses a single register based on level-sensitive latches
(rather than edge-triggered flipflops) to store data, and simple
stage control (replacing the clock) consisting of only a single
combinational gate. These designs use single-rail bundled
data encoding, where a synchronous-style data channel is
augmented with an extra req wire, and a single transition on
the req accompanying the data bundle indicates the data is
valid. The req wire has a simple one-sided timing constraint
that its delay is always slightly greater than the data channel.
For further details, see [7], [19].

Fig. 1. Input Port Module

B. Input Port Module Architecture
Input Port Modules route the packet to the correct Output

Port Module, comparing the internal switch address with the
destination address contained in the header flit. The microar-
chitecture of an IPM is presented in Fig. 1.

The single-latch input register is normally transparent, as
in MOUSETRAP pipelines, and the four Request Generator
blocks are initially inactive. The basic operation of the module
begins with a head flit arriving from the input channel,
signalled by REQIN (soon after DATAIN arrives). The flit
passes directly though the the input register, which then makes
itself opaque, safely storing the data. It also sends the request
(REQx) to all four Request Generator blocks, and an ac-
knowledge (ACKIN ) on the input channel. The head flit also
indicates to the Packet Route Selector to compute the single
target output port, and to assert the corresponding one of four
RouteSelected signals high. This signal sets the corresponding
Request Generator to packet processing mode, which asserts
its PacketPathEnabledi output high and sends it to the
target Output Port Module. In tandem, the Reqx signal is
broadcast to all four Request Generator modules, which result
in transitions on all four output requests (REQ0 to REQ3,
one to each of the four Output Port Modules); however, only
the one targeted Output Port Module will be activated, and the
other requests are ignored (see details below).1

The target Output Port Module, after receiving both
PacketPathEnabledi and Reqi, sends acknowledgment
ACKi to the Input Port Module. The Ack Generator then
makes a transition on output ACKx, causing the input register
to become transparent again. It is also sent to the Packet Route
Selector, which deasserts the Route Selected output.

As long as the Request Generator Block is still in packet
processing mode, its PacketPathEnabledi output remains
high, and all the flits of the packet are directly transferred to
the corresponding Output Port Module. Finally, when a tail
flit is received, TailPassedi is asserted by the Output Port
Module, which resets the Request Generator to inactive mode
and deasserts the PacketPathEnabledi signal.

Details of the Packet Route Selector are shown in Fig. 2.
The XOR2 converts the two-phase signals Req and Ack to a
level signal, and a matching delay line enforces hazard-free
operation of the combinational routing logic.

The implementation of the Request Generator associated
with Output Port 0 is shown in Fig. 3. The Route Selected0,
TailPassed0 and PacketPathEnabled0 signals are all four-
phase (i.e. level) and active-high; when the block is inactive,
these signals are deasserted low. In contrast, the Req and Ack

1Note that, since a two-phase signaling protocol is used, a REQi signal
may at times have the opposite polarity of the incoming request REQx,
depending on the number of flits that have been transmitted in previous
transfers, and to which of the four Output Port Modules.



2+8

Fig. 2. Packet Route Selector

Fig. 3. Request Generator for Output Port Module 0
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Fig. 4. Output Port Module
signals are two-phase. Whenever a request transition arrives
on Reqx, it causes a transition on Req0.

There are two cases of operation. If this is the Re-
quest Generator for the target output port, the unit re-
ceives RouteSelected0 asserted high. It then enters packet
processing mode, and asserts PacketPathEnabled0 high.
The XOR2 is used as a programmable inverter, where the
correct polarity of the Req0 output is selected by the XOR3
gate (i.e. phase converter logic). Eventually, when the tail
flit arrives, the Output Port Module asserts TailPassed0
high, which resets the Request Generator to an inactive state
while deasserting PacketPathEnabled0 low. Finally, the
TailPassed0 signal is deasserted low.

Alternatively, if this is not the Request Generator for the
target output port, i.e. RouteSelected0 is not asserted, the unit
is not activated and PacketPathEnabled0 remains low. As
each flit arrives, the Reqx transition causes a Req0 transition,
which is ignored by the corresponding Output Port Module.
In fact, in this case, Req0 makes two transitions for each
flit: the XOR3 observes the flit acknowledgment from every
other Output Port Module (i.e. ACK1, ACK2 or ACK3),
thus always returning Req0 to its original value.
C. Output Port Module Architecture

Output Port Modules arbitrate between multiple incoming
requests trying to access the associated output channel. The
microarchitecture of an OPM is presented in Fig. 4.

Initially, all PacketPathEnabledi and TailPassedi sig-
nals are low, and the wires of each transition-signaling REQi
and ACKi pair have the same values. Latches L1 to L4
are opaque, blocking new requests until they are arbitrated.
Latch L5 and the Data Register are normally transparent,

C C CC

Req0

Req1

Req2

Req3

Grant0Grant1 Grant2 Grant3

Mutex Mutex Mutex

Fig. 5. Microarchitecture of new 4-input arbiter
assuming no congestion, similar to a basic MOUSETRAP
pipeline register.

A new transfer begins when a header flit arrives
from one of the IPMs, concurrently with the associated
PacketPathEnabledi signal asserted high. The 4-way mutex
arbitrates requests from multiple IPM’s trying to access to
the same output channel, granting access to exactly one of
them. Once the mutex is resolved, it performs two concurrent
actions: it (i) selects the correct data input of the multiplexer,
and (ii) forwards the winning request to the output register by
making the corresponding latch (L1 to L4) transparent. The
4-input XOR gate functions as a merge element, joining four
mutually-exclusive two-phase signals into a single request.
This latch and the multiplexer are programmed once at the
start of a packet transmission, and remain unchanged until
after the tail flit arrives.

After the output channel request, REQOut, makes a transi-
tion, the data register and latch L5 are made opaque. They be-
come transparent again when the acknowledge, ACKOUT , is
received, indicating that the flit has been received downstream.
When data and request are safely stored (ReqEnable goes
low), the unit sends an acknowledge, ACKi, to the appropriate
IPM, completing the left handshaking communication. As each
subsequent body flit of the packet arrives, as long an acknowl-
edgment ACKOUT has been received for the previous flit, its
data DATAi propagates directly through the multiplexer and
data register, and its request REQi propagates directly through
the corresponding latch (L1 to L4), to the output channel.

Packet transmission ends after the tail flit arrives. When
the flit is sent on the output channel, the TailPassedi
signal (asserted high) is sent to the source IPM, along with
the transition-signaling acknowledge, ACKi. Once asserted,
TailPassedi will also cause the corresponding request latch
(L1 to L4) to become opaque. In turn, the corresponding
IPM will deassert PacketPathEnabledi, thereby releasing
the mutex, and the Tail Detector then deasserts TailPassedi.
D. 4-Input Mutex Design

The microarchitecture of the new 4-input mutex is presented
in Fig. 5. While a previous widely-used 4-input mutex design
[16], [21] uses 6 two-input mutex elements and has a serial
critical path through 3 mutex elements, the proposed solution
uses 3 two-input mutex elements and has a critical path
through only 1 mutex element.

In this design, the left mutex element arbitrates between
requests 0 and 1, the right mutex element arbitrates between
requests 2 and 3, and the center mutex element arbitrates
between requests from the right and left pairs. C-elements
are used to synchronize the operation of the middle mutex
with the side ones, both during the acquire and release phases.
Whenever a grant is given, any other request coming from the
channel on the same side of the winning one will be killed. The
rationale is that, when the winning request will be deasserted,
the middle mutex has to be released, so no other requests
must be coming from the same side. This behavior provides
fair arbitration between incoming requests: in fact, requests
from the other side will now have an advantage in acquiring
the middle mutex. In other words, the policy implemented is
a round robin between left and right side, and round robin
between requests within the same side.
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E. Transition-Signaling Circular FIFO
FIFOs can be useful to provide additional storage capacity,

so to improve system-level performance. Multiple MOUSE-
TRAP registers can be placed one after the other, so to build
a serial FIFO, but this introduces severe latency penalty. To
overcome this issue, a new circular FIFO is here proposed.
Unlike [22], which uses a bus-based interface, the proposed
design can provide much lower latency and cycle time.

The microarchitecture of the transition-signaling circular
FIFO is shown in Fig. 6. The FIFO uses a two-phase protocol
with single-rail bundled data. Write and Read Pointers are 1-
hot level signals, selecting the active Write or Read Control
Blocks. A new transfer begins when new Data arrives, stabi-
lizes and is then followed by ReqIN signal assertion (high in
the case under analysis). A new data can be stored in a buffer
slot only if: (a) the write pointer selects that slot, and (b) that
slot is empty (Fulli is at the same logic level of Emptyi). This
condition is detected in the Write Control Block by an AND
gate merging the two conditions, as can be seen in Fig. 7(a).
The 2-input XOR in the Write Control block implements a
phase conversion, to provide the correct polarity of the Request
signal at the input of the Request Latch, similar to the strategy
used in the PacketRouteSelector in the Input Port Module.
The new request causes the active Write Control block to assert
Full0, close the corresponding register to store the coming
Data (by deasserting En0), and assert the acknowledge to the
input. This acknowledge will be merged by the N-input XOR
to generate the AckOUT signal upstream. Finally, when ReqIN
and AckOUT are at the same logical value, the Write Counter
selects the following buffer position for the next operation.
This concludes data storage.

When Full0 and Empty0 are at different logic levels, it
means that new data is available in the corresponding buffer
position. If this is the case and the read pointer selects that
position, the Read Control Block (see Fig. 7(b)) will assert
a Request, which will be merged with all the other signals
outgoing from the other Read Blocks to generate the output
Request ReqOUT , together with data from the selected posi-
tion. After this event (now ReqOUT and AckIN are at different
logic values), the ReadPointer0 is immediately deasserted, to
safely freeze the current value of the output request. In more
detail, request latches inside the Read Control Blocks are now
closed, while the active Read Control Block makes its internal
acknowledge latch transparent, to route the incoming signal to
the correct buffer position. Next, an acknowledge signal comes
from the downstream environment, causing Empty0 to make
a transition and ReadPointer1 to be asserted high, thereby
concluding data transmission.

This FIFO is an important element, not yet exploited in
this paper, but necessary when considering complete NoC
topologies where larger queues might be required.
F. Timing Constraints

To work properly, the proposed architecture requires some
one-sided timing constraints to be enforced.
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Fig. 7. Schematic of Write and Read Control Blocks

One is the matching delay inside the PacketRouteSelector
block, in order to provide glitch-free operation.

A second constraint is in the Output Port Module: data
must be stable long enough before latches are closed inside
the output register, i.e. to meet the latches’ setup time. This
constraint applies to both head flit path setup and body flit
propagation, and requires constraining the control path (latches
L1-4 and XOR gates) over the multiplexer delay.

Finally, a subtle failure condition can occur during mutex
release after a tail flit has passed. The first path starts in the
Output Port Module, when acknowledge is generated. This
path goes to the Input Port Module, through the acknowledge
merge block, through the input register control gate, making
the register transparent and allowing a request eventually
pushing at its input to enter the module, to propagate through
the RequestControl Block, and to reach the Output Port
Module. The AND gates above latches L1-4 ensures that once
TailPassed signal is asserted, these are closed when the new
request comes, reducing the otherwise longer path through
PacketPathEnabled deassertion and mutex release.

Other relative timing constraints exist inside the 4-input
mutex, the Request Control Block and the circular FIFO, but
they are typically satisfied in normal operation of the switch.

IV. SEMI-AUTOMATED DESIGN FLOW
All the previously mentioned constraints, plus other delay

requirements needed to increase performance, have been en-
forced across all the steps from logical synthesis to layout de-
sign by means of mainstream CAD tools in a semi-automated
design methodology. We use a Low-Power Standard-Vt 40nm
Industrial Technology library, Normal Process, 1.2V Supply
Voltage and 300K Nominal Temperature.

Entry level - The various blocks have been described with
low-level RTL models: their functionality has been specified
using logical operators, with only few exceptions when imple-
menting specific asynchronous cells. Our technology library
does not include C-elements nor mutexes, therefore we use
their standard-cell equivalent implementations [23], [24].

Logic Synthesis - The design is synthesized and mapped to
the target library using the Synopsys Design Compiler. When
using asynchronous design style, not only functionality, but
also dynamic behavior is important. In order to ensure glitch-
free operation, the tool must be prevented from applying logic
optimizations to the design. On the other hand, automatic
buffer insertion is a useful optimization option that we would
like to exploit. This behavior can be achieved by using the
set compile directives and set structure directives of the tool.
While Design Compiler does not understand relative timing
constraints, they can be enforced through multiple iterations:
in a first run, only max delays are enforced, in order to
meet a generic target (max performance, minimum area);
then, in a second run, the delay of the paths that have to be
matched can be extracted from the netlist (get timing path,
get attribute timing path arrival) and assigned to the required
path (set min delay). The same procedure can be used to
check whether the given constraints have been fulfilled, and
iterate again if necessary.

Physical Switch Design - For this purpose we used Synop-
sys IC Compiler. As in the technology mapping procedure, it is
possible to enforce, extract and compare the delays between
different paths, and automatically verify if constraints have



been fulfilled. If not, it is possible to update constraints and
iterate place and route again.

Top-Level Implementation - Again, the Synopsys IC Com-
piler functionality is leveraged. The placed and routed switch
netlist is saved as a hard macro and then instantiated in the top
level description of the system. This is a typical hierarchical
design methodology, which achieves reduced runtimes and
faster convergence. Since this hard macro is generated with the
standard methodology described above, it still presents some
degrees of freedom: data width is parameterizable, as well
as its floorplan aspect ratio and the position of input-output
ports. For this reason, this is different from a fixed hard macro
designed with a full custom approach.

In order to route interconnection wires between any two
switches, we choose to give maximum delay constraints over
the link, while keeping the same max capacitance and max
transition time constraints given inside the switch. After a first
routing and buffer insertion, we freeze placement and driving
strength of data wires along them (so that their delay will no
longer change), and give minimum delay constraints over the
request signal to satisfy the bundled data protocol requirement
(i.e. a request must arrive always after the corresponding data
has stabilized). Then, incremental physical optimization and
routing are performed. A different approach has been adopted
when implementing links with pipeline stages. A pipeline stage
can help reduce cycle time over the link, at the cost of some
additional forward latency. As before, switches were imple-
mented as hard macros and placed a few millimeters apart.
Architectural repeaters (i.e. MOUSETRAP FIFO stages) are
described as soft macros, inferring their placement boundaries
in order to have a regular floorplan and guide tool decisions.
The tool is then allowed to size pipeline cells and insert buffers
to reduce propagation delay.

Even though the previously described methodology could
produce a valid outcome, the performance results were not
satisfactory. This is because simply setting of max delays on
wires does not take into account the internal timing arcs of
the latches. This issue prevents the tool to correctly estimate
the time spent on link traversal. In order to optimize our
procedure, we exploited a similar method to [6], adapting it
for the single-rail bundled data case. Through IC Compiler
commands, we disabled the path through the feedback loop
of register control logic, from input to output pin of latches
inside repeaters, and defined the reset signal as a dummy
clock. This approach makes latches similar to flip flops, and
the clock period gives a constraint on the maximum forward
delay. This leaves the acknowledge signal propagating back
from each pipeline stage to the previous one unbounded (we
disabled the timing path through register control logic), so a
maximum delay constraint has been enforced on it in order
to speed the path through it. Again, multiple iterations are
required to enforce bundling constraint on a request signal.
We found that this approach is more suitable when dealing
with pipelined links, since it reduces tool run times and the
number of iterations required to satisfy matching constraints
with respect to the previous methodology.

V. EXPERIMENTAL RESULTS
In order to evaluate our implementation choice, we com-

pared the proposed 5x5 asynchronous switch with the baseline
fully synchronous xpipesLite switch.

1) Experimental Setup: While constraints required for cor-
rect functionality can be checked and fixed during synthesis
and place and route procedures, performance evaluation must
be assessed through simulation. In order to assess performance
of the asynchronous switch, the following experimental setup
has been exploited. The switch under test receives packets
from injector modules and forwards them to absorber modules;
injector and absorber are simply other instances of the same
switch, with fast loops at their boundaries (i.e., maximum
injection rate). This environment permits to assess the real-
istic handshaking mechanism between neighboring switches,
thereby avoiding overly-optimistic results.

Asynchronous Synchronous
Area 4691 µm2 16035 µm2

Latency (Head Flit) 1195 ps 1960 ps
Cycle Time (Avg.) 903 ps 980 ps
Area Efficiency 236 Mfps/mm2 63.63 Mfps/mm2

TABLE I
ASYNCHRONOUS VS. SYNCHRONOUS SWITCH

Latency metric is evaluated as the time interval from a
request being asserted at the input port to a request asserted
at the output port, assuming the switch is initially empty and
there is no congestion. Latency varies depending on the flit
position inside the packet. Head flits experience the highest
latency since they have to set up the path from input to
output port. Latency will be evaluated focusing on head flits,
since they are responsible of packet propagation through the
network. Cycle time is the interval between two successive
acknowledgments received at the switch output port.

As far as the synchronous switch is concerned, the imple-
mentation allocates one clock cycle to traverse the switch and
one clock cycle to traverse the link connecting two switches.
For this reason, cycle time is one clock period, while latency
amounts to two clock periods.

Area efficiency is a metric that evaluates how much area
is necessary to provide a defined performance. It is calculated
as:

AreaEfficiency =
DeliveredThroughput

AreaOccupancy

[
Mfps

mm2

]
2) Comparative Analysis: Table I presents the measured

metrics. The asynchronous switch requires 71% less area, and
delivers 39% lower latency and comparable throughput. For
this reason, the Area Efficiency metric is 3.7x higher for the
asynchronous implementation. It should be observed that part
of the area savings come from the different minimum buffering
requirements of the two switches. Both of them are latched at
inputs and outputs. However, the synchronous switch needs
two slot buffers to properly support the stall/go flow control
protocol (i.e., not to lose data upon stall assertion). Vice versa,
flow control is inherently implemented in the asynchronous
clockless handshaking, therefore only a single slot latching
stage is sufficient for the asynchronous switch.

3) NoC Link Effect: A typically overlooked issue is the
effect of the inter-switch links on performance, which are
assumed ideal in Table I. In order to account for this aspect,
we implement a complete layout of two switches, placed a few
millimeters apart, and route interconnections between them.

Fig. 8 shows how head latency and cycle time degrade
for synchronous and asynchronous switches when varying the
inter-switch distance. Having an entire clock cycle reserved
for link traversal, the synchronous switch maintains a stable
performance up to 4 mm link length. From there on, the critical
path moves from inside the switch into the link, thus reducing
the maximum clock frequency. On the other hand, performance
of asynchronous switch gracefully degrades when increasing
link length. Latency is always lower when compared with
the synchronous counterpart, while cycle time has a steeper
degradation, due to the signal roundtrip over the interconnect.

It is well-known that link pipelining is the way to reduce
cycle time at the expense of additional latency. This holds
for both synchronous and asynchronous design styles, but the
implications are completely different. Adding a pipeline stage
in synchronous logic always implies one additional clock cycle
latency and full retiming and flow control stages, while in
asynchronous logic the latency is affected by only a few gates
delay since pipeline stages consist of simple latching stages.

Exploiting the procedure described in section IV, effects of
link pipelining are analyzed. The number of pipeline stages is
selected in order to obtain the same cycle time as the one mea-
sured for ideal link. As shown in Fig. 9, the additional pipeline
stages negatively affect asynchronous latency, although for link
lengths below 2.5 mm performance is always better or equal
to that of the synchronous switch. For longer link lengths, the
asynchronous solution suffers the most from link parasitics
due to the roundtrip delay of its handshaking protocol.



Fig. 8. Performance results with unpipelined links

Fig. 9. Performance results with link pipelining

4) Power Analysis: Power consumption of the switches
is analyzed under different conditions, using Prime Time
on post-layout implementations. For these experiments, the
synchronous switch has been implemented in two versions,
one without and one with clock gating.

Four different case analysis are presented in Fig. 10.
Leakage power is smaller in asynchronous design, given the
reduced area occupancy. Idle power is analyzed considering
clock tree power consumption: even if clock gating technique
can provide evident benefits with almost no performance
penalty with respect to baseline synchronous switch, the asyn-
chronous switch, being completely clockless, requires 90%
and 97% less power than clock gated switch and baseline
switch, respectively. The remaining two cases use two different
traffic benchmarks, with packets composed by 3 and 8 flits. For
hotspot (a single output channel is accessed by packets coming
from every other input channel), the asynchronous switch has
an average of 85% less power requirement than synchronous
and and 73% less than synchronous with clock gating. For the
parallel benchmark (all input ports competing for 5 different
output ports, no contention), power consumption is reduced on
average by 60% with respect to synchronous and 45% with
respect to synchronous with clock gating. Overall the small
difference between 3 and 8 flits packets is due to the extra
power required during arbitration process. Power savings not
only come from the clockless architecture of the asynchronous
switch but also from its lower complexity and footprint. In fact,
observing the energy-per-flit in Fig.11, there is a 44% average
reduction with respect to the two synchronous switches.

VI. CONCLUSIONS
This paper delivers a largely unexplored design point in

asynchronous NoC switch architectures. It relies on transition-
signaling bundled data to produce a low overhead design,
which at the same time meets the performance of synchronous
counterparts. Post-layout results indicate that area is reduced
by 71%, idle power by 90%, and energy-per-flit by 45%.
Throughput is roughly comparable with the synchronous
switch, while latency is actually better up to link lengths
of 2.5mm in 40nm technology. Overall area efficiency is
superior (3.7x). Finally, the switch is delivered as a partially-
reconfigurable hard macro for hierarchical design flows. Tim-
ing constraints are tightly controlled through a semi-automatic
design flow relying on mainstream synchronous CAD tools.

Asynch 3 flits
Asynch 8 flits
Synch 3 flits
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Fig. 10. Power consumption of the different switch architectures, varying
the traffic injected Energy per Flit
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Fig. 11. Average energy required to propagate a Flit form input to output
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