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Abstract—Many real-time embedded systems execute multi-
mode applications, i.e. applications that can change their func-
tionality over time. With the advent of multi-core embedded
architectures, the system design process requires appropriate
support for accommodating multi-mode applications on multiple
cores which share common resources. Various mode change and
resource arbitration protocols, and corresponding timing analysis
solutions were proposed for either multi-mode or multi-core real-
time applications. However, no attention was given to multi-mode
applications that share resources when executing on multi-core
systems. In this paper, we address this subject in the context of
automotive multi-core processors using AUTOSAR. We present
an approach for safely handling shared resources across mode
changes and provide a corresponding timing analysis method.

I. INTRODUCTION

Modern hard-real time systems (e.g. multimedia smart de-
vices, safety-critical avionic or automotive control systems)
often run multi-mode applications, i.e. applications that have
to change their functionality over time and execute in dif-
ferent operational modes. Driven by power constraints, cost-
efficiency and performance requirements, multi-core architec-
tures emerge as the prevalent platform in embedded real-time
applications. This trend is most obvious in the automotive
domain where multi-core solutions are provided by the semi-
conductor industry [1] and the AUTOSAR standard introduced
support for partitioned multi-core OS [2].

In this context, the design process of embedded real-
time systems faces new challenges generated by the need to
accommodate multi-mode applications on multi-core archi-
tectures. Appropriate mechanisms that jointly handle the (i)
mode management, (ii) multi-core scheduling and (iii) shared
resource arbitration have to be defined in order to ensure
a correct system functionality. Consequently, proper timing
analysis methods for the prediction of timing behaviour of
multi-mode multi-core applications are required.

Mode change protocols and timing analysis approaches ded-
icated to multi-mode single-processor [3]–[9] and multipro-
cessor real-time systems [10]–[12] were proposed. However,
most related work assumes only independent tasks or neglects
communication precedence relations between them.

Mode changes in distributed systems were addressed in [5],
[7], [13]. Whereas [5] neglects communication precedence
relations between tasks when reasoning about the tasks’ timing
during transition phases, in [7] the recurrent effect of a mode
change was identified as significantly challenging the timing
behaviour of distributed applications. The solution proposed

in [13] captures the mode change recurrent effect and allows
deriving mode change transition latencies.

The problem of sharing resources by multi-mode applica-
tions was studied in [3], [4], [6] but only for single-processor
systems. For asynchronous mode change protocols [6], where
new mode tasks may interfere with old mode tasks, it was
shown that classic shared resource arbitration policies (e.g. the
Priority Ceiling Protocol (PCP)), which are based on static task
priorities and shared resource priority ceilings, are not valid
anymore [4], [6] and counter the safe system functionality.

Several arbitration protocols for inter-core shared resources
were proposed, e.g. the suspension-based Multiprocessor Pri-
ority Ceiling Protocol (MPCP) in [14] or its spin-based variant
in [15]. Various timing analysis solutions for multiprocessor
systems with shared resources were proposed e.g. in [15]–
[18]. Note that we focus on partitioned multi-core setups, as
global multiprocessor scheduling in safety-critical automotive
applications has not (yet) found its way into practice.

The AUTOSAR standard introduced independent guidelines
for either mode management [19], [20] or sharing resources in
multi-core setups [2]. However, the complex setup consisting
of multi-mode applications that share resources when execut-
ing on multi-core systems has not been considered so far.

In this paper, we fill this gap by providing (1) an approach
for safely handling inter-core and intra-core shared resources
across asynchronous mode changes and (2) a corresponding
blocking- and response-time analysis approach. The contri-
bution of this paper suits the next generation of automotive
multi-core processors using AUTOSAR where applications
will be scheduled using a partitioned fixed-priority preemptive
scheduling, will share resources according to the AUTOSAR
spinlock-based mechanism [2] and will be subject to mode
management [19], [20].

Paper organization. After presenting the context of this
work, in Sec. II we introduce a comprehensive system model
that covers multi-mode and multi-core elements. In Sec. III
we present our approach for handling shared resources across
mode changes in multi-core systems. The corresponding tim-
ing analysis method is introduced in Sec. IV. We demonstrate
the applicability of the proposed approach in Sec. V and draw
conclusions in Sec. VI.

II. SYSTEM MODEL

In this paper, we focus on multi-core architectures which
consist of: (i) a set of m processor cores (m≥2), each being
individually scheduled by a static priority preemptive (SPP)
scheduler; (ii) local shared resources (LR), i.e. restricted to978-3-9815370-0-0/DATE13/ c©2013 EDAA



individual cores, and global shared resources (GR), which
can be accessed from each of the m cores. Shared resources
are assumed to be objects that require serialized access. For
the arbitration we consider: for LRs the Priority Ceiling
Protocol (PCP) [14] and for GRs the AUTOSAR spinlock-
based mechanism [2]; (iii) a static set of arbitrarily activated
real-time tasks T={τ1, . . . τn}, where exclusive subsets of T
are statically mapped to individual cores.

This system may execute in different operational modes
specified by a finite set M={M1,M2, . . .Mz} (z∈N). Each
mode Mi∈M is characterized by a different behaviour and
is associated with a specific set of tasks (a subset of T ) that
are active in that mode. The possible transitions between two
modes in M are specified by a finite set Φ={ΦM2

M1, . . . ,Φ
Mz

My
}.

A transition between two modes is initiated by a mode
change request (MCR) triggered by the environment or by
system internal requirements. The MCR is assumed as an
global atomic event which may be triggered at any moment
tMCR during runtime. The possible overhead involved with
the execution of the mode change protocols is not subject of
this work. In order to exclude interference of multiple mode
changes, a new MCR can be served only if the system is not
executing a transition between two modes as a result of a
previous MCR.

In this paper we address asynchronous mode change pro-
tocols with periodicity [6], [20]. This means, during a mode
change we consider: finished tasks τiF , whose instances acti-
vated before tMCR are allowed to finish after the MCR; added
tasks τiA, which are activated with an offset φ any time later
than the MCR (i.e. at tMCR+φ) and thus execute only in the
new mode; and unchanged tasks τiU , which execute in both
modes without any change in parameters.

Each instance of a task τi, called a job and denoted Ji,
is activated by an event, which may be the result of a timer
expiration, an external or internal interrupt, or of another task
or bus communication being finished. We assume that the task
graph which describes the functional and timing dependencies
between tasks does not contain cyclic dependencies.

The activating events are modeled as arbitrary event
streams [21], [22] using upper and lower event arrival func-
tions η+(Δt) and η−(Δt). These specify the maximum and
the minimum number of events that occur in the event stream
during any time interval of length Δt. Inversely, event streams
can be specified using the functions δ+i (n) and δ−i (n) that
represent the largest and smallest time window in which n
(n≥2) events can be observed in the stream.

Each job Ji of a task τi is further characterized by its static
and unique priority given by the task numerical index (lower
index means higher priority), a worst-case execution time Ci

and a (relative) deadline Di, which may be smaller, equal, or
larger than the distance to the successive activation of the task.
Jobs are executed in order, i.e. a new activated job will not
execute before the previous job finishes.

During execution, each job can perform multiple non-nested
accesses to LRs and GRs. Each of these accesses is considered
a critical section guarded by a semaphore and protecting a LR
or a GR. We differentiate between local critical sections (lcs)
and global critical sections (gcs). The size of a lcs or of a gcs
when it is accessed by jobs of a task τi are denoted ωLR

i or
ωGR
i . With η̃GRx

i or η̃LRx
i we denote the load imposed by a
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Fig. 1. Multi-mode multi-core system during a transition phase.

job Ji on a global resource GRx or a local resource LRx.
An example of a multi-mode multi-core system during a

transition phase between two modes is illustrated in Fig. 1.
We assume that a MCR imposes a mode change that consists
in removing task τ1F from Core1 and adding tasks τ3A, τ5A on
Core1, and τ6A on Core2. The unchanged tasks τ2U and τ4U
execute independent of the mode change. I1 to I5 represent the
event sources (given by the functions η+ and δ−) at the tasks
input. The local and the global resources (i.e. LR1, LR2 and
GR1, GR2) are accessed as indicated with the dashed lines.

III. HANDLING SHARED RESOURCES IN MULTI-MODE

MULTI-CORE SYSTEMS USING AUTOSAR 4.0

In order to handle the multi-mode behaviour of partitioned
multi-core systems under AUTOSAR 4.0 the execution of the
different types of tasks (τF , τA, and τU ) has to be considered
for the arbitration of both, LRs and GRs.

Regarding shared resources, the AUTOSAR 4.0 standard
specifies a spinlock-based arbitration mechanism [2]. For the
arbitration of LRs the AUTOSAR OS uses on the individual
cores the classical PCP [14]. According to the PCP, each LR is
allocated offline a static priority ceiling which is equal to the
highest priority of any task which access that LR. At runtime,
when a task locks a LR it inherits its associated priority ceiling.

Consequently, the obvious procedure for handling LRs
in multi-mode systems is to allocate LRs multiple priority
ceilings, one for each mode. Whereas this procedure is valid
for individual modes, it can’t be used during the transition
phases controlled by asynchronous mode change protocols
because [4], [6]: (i) if priority ceilings have to be raised but are
adjusted too late, then an added task, released after the MCR,
may inherit an old mode priority ceiling which is lower than
its current priority. This violates the PCP, as priority ceilings
must never be lower than the priority of any task using the
resource; (ii) if priority ceilings have to be lowered but are
adjusted too early then a finished task may inherit a new mode
lower priority ceiling. Thus, activations of the finished tasks,
executed after the MCR, could experience increased blocking
in comparison to the activations executed before the MCR.

Both situations invalidate the existing blocking time analysis
methods and counter the systems’ timing behaviour.

In order to safely handle LRs, for each LRk (k∈N) a unique
ceiling priority CP (LRk) has to be assigned such that it is
valid for all operating modes in the set M .

For each local resource LRk, the only priority ceiling that
is valid for all the operating modes is the so-called “ceiling
of ceilings” [4], [6], that corresponds to the highest priority
of any task τi accessing it in any mode Mz∈M :

∀LRk (k∈N), ∀Mz∈M (z∈N), ∀τi∈T and τi uses LRk :

CP (LRk)=max(i) (1)
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Fig. 2. Scheduling example for the system in Fig. 1.

For the arbitration of GRs the AUTOSAR 4.0 specifies the
following: during execution, a task τi will actively wait (spin)
if a requested GR is occupied by a remote task; during active
waiting a task may be preempted by higher priority local tasks,
but lower priority local tasks cannot start executing; if a task
locks a GR it suspends all interrupts on his host core and thus
it becomes non-preemptable; nested accesses to GRs are not
allowed; if nesting is required, an explicit partial ordering of
calls for GRs has to be predefined offline in order to avoid
deadlocks and potential starvation situations.

As in AUTOSAR 4.0 conform multi-mode multi-core
systems the arbitration of GRs is performed without using
priority ceilings, there is no need of dynamically adjusting
priorities across asynchronous mode changes. Therefore,
there is no danger of violating the resource arbitration policy
in systems with static tasks’ priorities and implicitly blocking-
and response-time analysis methods can be safely applied.

In Sec. IV we will introduce a timing analysis method
for multi-mode applications scheduled on AUTOSAR 4.0
conform multi-core systems. Demonstrating that the blocking-
and the response-times are bounded under all circumstances,
we implicitly show that the procedure above for handling LRs
and GRs across asynchronous mode changes is safe.

Before that, consider the scheduling example in Fig. 2 for
the system in Fig. 1. During the transition phase initiated at
tMCR, the tasks τ3A and τ5A cannot start executing before
task τ1F finishes all activations corresponding to the old mode,
i.e. initiated not later than tMCR. According to the AUTOSAR
specification, as τ1F has higher priority than τ3A and τ5A even
if τ1F is blocked by the remote task τ4U , the tasks τ3A and
τ5A will not execute. Thus, lower priority new mode tasks
cannot influence the execution of old mode higher priority
tasks. Furthermore, as long as task τ1F executes during the
transition phase, none of the tasks τ2U and τ4U will experience
blocking from τ3A. If τ3A would have higher priority than τ1F
then τ3A’s execution would not wrongly be delayed by lower
priority tasks. In other words, the AUTOSAR spinlock-based
arbitration strategy inherently avoids the problems identified
in case of using priority ceilings for LRs [4], [6].

IV. TIMING ANALYSIS FOR MULTI-MODE MULTI-CORE

SYSTEMS WITH SHARED RESOURCES

In order to derive the blocking- and the response-time anal-
ysis for multi-mode multi-core systems with shared resources,
we rely on concepts from the real-time multiprocessor and
multi-mode scheduling theory. More exactly, we rely on the
classic busy window technique in [23] which was later used
and extended in order to handle (i) multi-mode systems [6],
[7], [13] or (ii) multi-core systems with shared resources [18].

The busy window of a task τi is generally defined as the time
interval for which a resource executes only tasks of priority
greater than or equal to the priority of task τi and during which
the resource is never idle [23]. The maximum busy window
of a task τi under SPP scheduling in partitioned multi-core
systems with shared resources can be obtained by iteratively
solving (2) [18].

wi(q)=q · Ci +Bi(wi(q)) +
∑

∀τj∈hp(i)

η+j (wi(q)) · Cj (2)

where wi(q) is the maximum busy window of q activations of
task τi where q=1, . . . Qi and Qi=min{q≥1|wi(q)<δ−i (q+
1)}, i.e. the iteration has to be continued as long as new
activations of τi arrive before the previous finish; Bi(wi(q))
is the maximum blocking time of τi in wi(q); η

+
j (wi(q)) ·Cj

is the interference τi suffers due to the maximum workload of
a higher priority job τj in wi(q).

The WCRT of a task τi is given by the largest response time
of any of the q (q=1, . . . Qi) task activations that lie within the
busy window. The response time of the q-th activation of task
τi is given by the difference between the window length wi(q)
and the moment when this activation was initiated relative to
the beginning of the busy interval. This is given by δ−i (q).
The WCRT of any task τi is obtained with

Ri= max
q=1..Qi

(wi(q)− δ−i (q)) (3)

and the schedulability test consists in checking whether the
condition Ri≤Di holds for every task τi in the system.

However, when analyzing the schedulability of multi-mode
systems under asynchronous mode change protocols one has
to verify if tasks’ deadlines are met in each individual mode
and during every possible transition between two modes [6]–
[8]. For each individual mode the classic analysis using eq.
(2) and (3) above can be applied. But, in order to compute the
WCRTs during each transition phase the maximum transition
busy window (i.e. the maximum busy window during which
a MCR occurs) has to be computed [6], [7]. Next, we extend
the equations in [13] to calculate the transition busy windows
and the WCRTs in multi-mode multi-core systems with shared
resources.

A. Maximum Transition Busy Window in Multi-Core Systems
Our goal is to safely bound the timing behaviour of tasks in

multi-mode multi-core systems with shared resources. There-
fore, we compute the maximum transition busy window (abbr.
MTBW) for each task by: (I) determining the worst-case
scenario when the MCR shall occur such that it certainly leads
to the worst-case execution during the transition phase and (II)
by determining the maximum workload (denoted MW ) of the
different types of tasks (τF , τA, and τU ) and their maximum
blocking time in case of sharing resources.

(I) According to [6], [7] the worst-case mode change
scenario for a task τi is obtained when: (1) tMCR coincides
with the activation instant of a finished higher priority task
in hpF (i); (2) added tasks (hpA(i)) are released with an
offset φ after the initiation of the MCR and (3) unchanged
higher priority local tasks in hpU (i) are assumed released
simultaneously with τi, i.e in the classical critical instant.

These arguments, valid for uni-processor systems without
shared resources, have to be investigated for multi-core setups.



For explanations we refer to the scheduling example in Fig. 3.
Relying on the AUTOSAR arbitration policy introduced in
Sec. III a task which has an outstanding request for a shared
resource will actively wait for that resource without suspend-
ing. As illustrated in Fig. 3 each request of the tasks τhpF (i)
and τhpA(i) on Core 2 for a GR is blocked by the remote
task τjU on Core1. However, the lower priority tasks, e.g. τi,
cannot start executing. This means that the blocking times due
to the waiting for shared resources represent an extension of
the tasks’ core execution times. Therefore, the three arguments
above (i.e. (1),(2) and (3)) for constructing the worst-case
mode change scenario also hold in case of multi-core systems
using the AUTOSAR synchronization mechanism.

Regarding the identification of the worst-case mode change
scenario, in case of arbitrary activated tasks there may be
multiple higher priority finished tasks (tasks in hpF (i)) and for
each of these tasks there may be several possible activations
(i.e. jobs) released at different moments in time, e.g. t1 and
t2 in Fig. 3. Thus, in order to find the worst-case transition
scenario one must identify all the time instances where the
occurrence of the MCR should be assumed. The moments
in time corresponding to the activations of the hpF tasks
are relative to the occurrence of the MCR at tMCR. Let Xi

be the set of all possible time intervals xi (computed with
the Algorithm 1 in [7]) relative to tMCR which have to be
investigated. The largest busy window obtained for any of the
values xi represents the maximum busy window of a task τi
during which a MCR occurs.

(II) In order to compute the MTBW, we extend the busy
window equation for multi-core systems (i.e. eq. (2)) to con-
sider the maximum workload MW generated by the execution
of unchanged, finished and added tasks and the maximum
blocking time all these tasks can experience when waiting for
the requested shared resources.

The maximum transition busy window in case of par-
titioned SPP scheduling of multi-mode multi-core systems
with shared resources is obtained by iteratively solving (4).

wi(q)=MW i +Bi(wi(q)) +
∑

∀τF∈hpF (i)

η+τF (xi) · CτF +

∑
∀τU∈hpU (i)

η+τU (wi(q)) · CτU +

∑
∀τA∈hpA(i)

η+τA(wi(q)− xi − φτA)0 · CτA (4)

with the maximum workload MW i of the analyzed task τi:

MW i=

{
q · Ci; if(i==U)||(i==F )

min(q, η+i (wi(q)− xi − φi)0) · Ci; if(i==A)
(5)

The three sum terms in eq. (4) consider the MW due to
the execution of higher priority finished, unchanged and added
tasks. Activated but unfinished jobs of the finished tasks are
assumed occurring in a time interval xi starting before the
initiation of the MCR at tMCR. Added tasks are considered
released with an offset φτA after tMCR.

The clauses of (5) gives the MW of the analyzed task τi
depending on its type. The second clause, i.e. if τi is an added
tasks, indicates that, for large values of the offset φi, task τi
does not contribute to the busy window wi(q). The function
η+τA(wi(q)− xi − φτA)0 represents a modified version of the

t2 = tMCR
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Fig. 3. Scheduling example for a task τi during a mode change where MCR
coincides with the 2nd activation of the higher priority finished task.

original upper event arrival function η+(Δt) and returns 0 if
wi(q)− xi − φi<0.

Regarding the tasks’ blocking times these also depend
on the system’s multi-mode behaviour. Therefore, the factor
Bi(wi(q)) in eq. (4) has to be derived by considering the
execution of the different types of tasks on all the system’s
cores. As can be seen in Fig. 3 when analysing a task τi its
execution is delayed not only by its direct blocking times but
also by the blocking times of the higher priority local tasks.
For any analysed task τi all these blocking times are captured
by the analysis presented in Sec. IV-B and are part of the
factor Bi(wi(q)). Furthermore, note that Algorithm 1 in [7],
used for computing all possible values xi, essentially requires
the computation of the maximum busy window with a MW
of finished and unchanged tasks, i.e. the longest busy window
within the old mode. Thus, for the analysis of multi-mode
multi-core systems the equations for computing the values xi

have to be extended with the blocking time factor Bi(wi(q)).

B. Blocking Time Analysis in Multi-Mode Multi-Core Systems
In this section, we introduce a blocking time analysis for

arbitrarily activated tasks that share resources, arbitrated by
the AUTOSAR mechanisms, in multi-mode multi-core setups.
The following terms are used later in the blocking time factors:

• nG
i is the maximum number of global critical sections that

each job Ji of a task τi executes before its completion.
• η̃+i (wi(q)) is the Shared Resource Request Bound1 which

represents the maximum number of requests that may
be issued by a task τi to a shared resource within the
investigated time interval wi(q).

• ωLR
i and ωGR

i represent the maximum duration of a lcs
and of a gcs when it is accessed by jobs of a task τi.

• lpl(i) and hpl(i) are the sets of tasks mapped on the same
core as τi and have lower and higher priority than τi.

• lpr(i) and hpr(i) are the sets of tasks mapped on remote
cores and have lower and higher priority than τi.

• GSi,j represents the set of global semaphores that will
be locked by jobs of both tasks τi and τj .

• The set of tasks which are elements of lpr(i) and access
elements of GSi,j is denoted with θi,j .

• Similar the set of tasks which are elements of hpr(i) and
access elements of GSi,j is denoted with Θi,j .

• Jobs of the tasks in θi,j and Θi,j are jobs which directly
block jobs of task τi.

1The derivation of η̃+i (Δt) can be made by investigating the tasks internal
control flow [24] or by relying on the event model concept used to model
task activations to also capture the resource traffic [18].



Remember that the SharedResourceRequestBound function
and the sets of considered tasks have to capture the specific
type (τU ,τF ,τA) of tasks that are subject of blocking. Based on
the AUTOSAR specification [2] and on the terms introduced
above the blocking time of a job Ji in a partitioned multi-mode
multi-core system consists of the following factors:

1. Local blocking time. A job Ji of a task τi may be blocked
only once by a job Jj of a lower priority local task τj∈lpl(i).
As nesting is not allowed, Jj can either execute a lcs or a
gcs. Thus, the local blocking time of a job Ji is bounded by:

Bi1(wi(q))=max(ωLR
j , ωGR

j ) (6)

with

{
τj∈lplU (i)

⋃
lplF (i); if(i==F )

τj∈lpl(i); if(i==U)||(i==A)

The first clause above captures the case where τi is a finished
task. In this case lplA tasks cannot start and queue up for any
shared resource and thus these cannot block τi. The second
clause captures the case where τi is an unchanged or an added
task, that can be blocked by one previously released task τj
of any type, i.e. τj∈lpl(i)=lplU (i)

⋃
lplF (i)

⋃
lplA(i).

2. Direct blocking time. Each time a job Ji tries to access
a gcs, this can be currently locked by a lower priority remote
job of a task τj∈lpr(i). Thus, the blocking time due to lpr
tasks which share the same GR with Ji is given by the longest
gcs of tasks in the set θi,j :

Bi2(wi(q))=q · nG
i · max

∀τj∈θi,j
(ωGR

j ) (7)

Each job Ji can also be blocked by hpr jobs that request
the same GR as Ji (i.e. by jobs of tasks in the set Θi,j). As
on the remote cores there can be tasks of different types, the
load η̃+j imposed by them on the GRs accessed by τi during
the transition busy window wi(q) has to consider their types:

∀τj∈Θi,j :

η̃+j =

⎧⎪⎨
⎪⎩
η̃+j (xj); ifτj∈hprF (i)

⋂
Θi,j

η̃+j (wi(q)); ifτj∈hprU (i)
⋂
Θi,j

η̃+j (wi(q)− xj − φj); ifτj∈hprA(i)
⋂
Θi,j

(8)

As opposed to lpr jobs, hpr jobs may be served multiple
times before the Ji will be able to lock the GR. Thus, the
direct blocking time due to hpr tasks is given by:

∀τj∈Θi,j and η̃+j given by (8):

Bi3(wi(q))=
∑

η̃+j · ωGR
j (9)

As can be observed in eq. (8) and (9) the blocking time of a
task τi, investigated for one time interval xi relative to tMCR,
depends on the time intervals xj relative to tMCR that have
to be investigated for other finished or added tasks τj on
other cores. This dependency can be handled by integrating
the blocking-time analysis into a compositional system-level
analysis procedure [21], [22] (see Sec. IV-C).

3. Busy-waiting of higher priority local tasks. A job Ji
cannot start executing on its host core as long as hpl tasks
are actively waiting for the required GRs. As hpl tasks do not
suspend when waiting for GRs, their direct blocking times
caused by the remote tasks represent also a blocking of Ji:

Bi4(wi(q))=
∑

∀τj∈hpl(i)

(Bj2(wi(q)) +Bj3(wi(q))) (10)

Bj2(wi(q)) and Bj3(wi(q)) in (10) are calculated with (7) and
(9) for all tasks τj∈hpl(i).

The worst-case blocking time Bi(wi(q)) that a job of a task
τi can encounter in a time window wi(q) is given by the sum
of the 4 blocking factors above, i.e. (6), (7), (9) and (10).

C. Multi-Mode Multi-Core Timing Analysis Approach

The WCRTs are computed by integrating the blocking times
in Sec. IV-B in the MTBW computation with eq. (4). A
solution for eq. (4) can be computed iteratively, because all
components (i.e. number of considered tasks activations η+j
and therewith the maximum workload of the tasks, and the
load imposed on the shared resources η̃+j ) grow monotonically
with respect to the window size [18]. The WCRT of a task
τi is given by the largest response time Ri of any of the q
activations (q=1..Qi, Qi=min{q≥1|wi(q)<δ−i (q+1)}) that
lie within the MTBW wi(q), i.e.

Ri=

{
max(wi(q)− δ−i (q)); if(i==U)||(i==F )

max(0, wi(q)− xi − φi − δ−i (q)); if(i==A)
(11)

The clauses in (11) states that depending on the task’s type, Ri

is obtained by subtracting from wi(q) the distance between the
start of the transition busy window and the activation instant
of the q-th job. If τi is an added task which is not activated
within the transition busy window, Ri is 0.

As can be observed from eq. (4), (8), (9) the busy window
wi and therewith the response time Ri of a task depend on
the load η̃+j imposed on the shared resources by tasks on
other cores and potentially by their worst-case time interval xj

where the MCR shall occur. This dependency can be solved by
embedding the response- and the blocking-time analysis into
a compositional analysis methodology such as [21] or [22].

Thus, the system-level analysis is an iterative process which
performs for each task on each core (i) the above response time
analysis which includes the computation of the MTBWs, (ii)
the analysis of all possible time intervals xi where the MCR
shall occur in order to lead to the worst-case behaviour during
the transition phase and (iii) the blocking time analysis which
requires the investigation of all possible time intervals xj of
other tasks on other cores, until the definite event models have
been found. After convergence, the schedulability test consists
of checking whether Ri≤Di holds for every task τi.

V. EXPERIMENTS

To demonstrate the applicability and the benefits of the
proposed approach we compare it to the currently available
design procedure for AUTOSAR multi-core systems. The
current design practice, which is not multi-mode aware, can
safely handle the system in Fig. 1 only by assuming that all
tasks are always running on the two cores, i.e. by modelling
all tasks as unchanged, not only in the individual modes but
also during the transition phase.

Hence, for the transition phase of the system in Fig. 1, we
apply both, (a) the classic response-time analysis method for
the case where all tasks are modelled as unchanged and (b)
our approach (in Sec. III and IV) which is able to handle the
multi-mode behaviour of the multi-core system.



Fig. 4. Tasks’ WCRTs depending on the critical sections length: a) current
design practice; b) our approach for multi-mode multi-core systems.

For the evaluation we randomly generated test cases until we
got 1000 schedulable configurations of the system in Fig. 1.
The test cases were generated such that: the load on each
core was 50%; the load on a core was randomly distributed
among tasks; the tasks’ periods Pi were generated randomly
between 100 and 1000ms; the tasks’ execution times Ci were
computed based on the tasks’ periods and loads. Each task was
randomly assigned an input jitter from the interval [0, 2 · Pi],
i.e. we generated a burst of maximum 3 activations. Each task
performs two requests for each LR and GR it uses during Ci.
The total length of the critical sections per Ci was equally
split among the number of requests. Based on the number and
on the size of the critical sections the distance between every
two requests dsrr was modelled such that critical sections are
equally spread across the Ci. Thus, the load imposed on the
shared resources was calculated with η̃+i (Δt)=�Δt/dsrr�.

For each test case, the total length of the task’s critical
sections was varied from 1% to 25% of the Ci. Fig. 4 a) and
b) depict the tasks’ WCRTs depending on the critical sections’
length. For each task the average WCRT over the 1000 setups
per critical section length is given.

As expected, independent of the design approach, increasing
the size of the critical sections led to increased blocking times
and therewith to increased response-times. However, when
comparing the results of the two approaches, one can see that
our proposed approach greatly takes advantage of its ability
of handling the different types of tasks across mode changes.
Whereas for the higher priority tasks τ1F and τ2U , there is
no difference, as the AUTOSAR spinlock-based arbitration
always favours them, for the other tasks, the response-times
computed with our approach are in average 30.5% lower. More
exactly, there is an average improvement of 1.5% for task τ4U ,
of 42% for task τ3A, 53% for task τ5A and 25.5% for task τ6A.

The tests (non-optimized code) were performed on an Intel
Core i5 M460 2.53GHz CPU, 4GB RAM, 64bit Windows and
took in average 358ms for each analyzed configuration.

VI. CONCLUSION

In this paper, we presented an approach for the design
and analysis of multi-mode applications that share resources
in multi-core systems. We focused on the next generation
automotive multi-core processors using AUTOSAR, for which
there was no support for jointly addressing the problems of (i)
mode management, (ii) multi-core scheduling and (iii) shared
resource arbitration. The method we proposed allows to safely
handle local and global shared resources across asynchronous

mode changes in AUTOSAR systems. The corresponding
timing analysis approach provides timing guarantees for multi-
mode applications consisting of tasks with arbitrary activation
patterns. The applicability of the presented solution and its
benefits against existing approaches was demonstrated with
the analysis of a set of pseudo-randomly generated test cases.
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