SlackProbe: A Low Overhead In Situ On-line
Timing Slack Monitoring Methodology

Liangzhen Laif, Vikas Chandra*, Robert Aitken®, and Puneet Gupta'
UCLA Electrical Engineering Dept.™, Los Angeles; ARM Inc. R&D*¥, San Jose
E-mails: liangzhen@ucla.edu’, vikas.chandra@arm.com®, rob.aitken@arm.com®, puneet@ee.ucla.edu?

Abstract—In situ monitoring is an accurate way to monitor
circuit delay or timing slack, but usually incurs significant over-
head. We observe that most existing slack monitoring methods
exclusively focus on monitoring path ending registers, which is
not cost efficient from power and area perspectives.

In this paper, we propose SlackProbe methodology, which
inserts timing slack monitors like “probes” at a selected set of
nets, including intermediate nets along critical paths. SlackProbe
can significantly reduce the total number of monitors required
at the cost of some additional delay margin. It can be used to
detect impending delay failures due to various reasons (process
variations, ambient fluctuations, circuit aging, etc.) and can
be used with various preventive actions (e.g. voltage/frequency
scaling, clock stretching/time borrowing, etc.). Though we focus
on monitor selection in this work, we give an example of using
SlackProbe with adaptive voltage scaling.

Experimental results on commercial processors show that with
5% more timing margin, SlackProbe can reduce the number of
monitors by 15-18X as compared to the number of monitors
inserted at path ending pins.

I. INTRODUCTION

With variability increasing, it is necessary to identify chip
delay either statically (e.g. speed binning) or dynamically with
both hardware and software adaptive schemes [1]. There are
various classes of monitors that are targeted at measuring
circuit path delay.

Canary or replica circuits [2], [3] are stand-alone circuits
which are intended to mimic the timing behavior of the
original circuits. The delay of the real circuit can be estimated
through measuring delay of the replicas. Tunable replica [4]
makes the monitor tunable to reduce the mismatch of the real
circuit and replica after manufacturing. Replica monitors are
usually non-intrusive, but may fail to capture the variations
that are local to real circuits such as random manufacturing
variations and circuit aging.

In situ monitors measure the delay directly from the circuit
paths. Fick et al. [5] use a time-to-digital converter (TDC)
to measure the critical path delay. Wang et al. [6] measure
delay by reconstructing the critical path as ring-oscillators
(ROs). Another approach to measure circuit path delay is to
measure the timing slack. Since critical paths typically end at
registers, some special flip-flops can be used as slack monitors.
Razor [7], [8] uses customized flip-flops to detect timing
failures due to setup time violation and correct them through a
pipeline flush or architectural replay. Similar approaches that
reduce timing margin, but not to the point of failure, include
delaying data signals [9], advancing clock signals [10] or using
different flip-flop structures [11]-[15].

In situ monitors can accurately capture the real path delay,
but with significant overhead, especially when large number
of registers are timing critical. Some methods can be used to

This work is supported in part by NSF Variability Expedition grant CCF-
1029030

978-3-9815370-0-0/DATE13/(©2013 EDAA

reduce the overhead (e.g. [16]), but with a loss in accuracy.
We observe that most of existing methods exclusively focus on
monitoring path endpoints (i.e. destination registers). In this
work, we propose SlackProbe, a low overhead in situ on-line
timing slack monitoring methodology. SlackProbe monitors in
situ timing slack of selected circuit nets, including intermediate
nets along circuit paths, which is more power and area
efficient. The key contributions of this paper are as follows:

1) We propose a novel slack monitoring methodology
allowing placing monitors at intermediate nets along
circuit paths

2) We formulate and convert the path-based monitor inser-
tion formulation into a edge-based linear programming
(LP) problem and solve it near its theoretical lower
bound

The rest of the paper is organized as follows: Section II
gives an overview of the proposed monitoring methodology.
Section III describes the path selection process and graph
reduction. Section IV discusses the cost metrics for inserting
monitors. Section V formulates and solves the monitor inser-
tion problem. Section VI presents the experimental results.
Section VII concludes the paper.

II. MONITORING METHODOLOGY OVERVIEW
A. Monitor Working Principle

The monitor working principle is shown through an example
in Fig. 1. If a monitor is inserted at an intermediate node
A, a “probe”, which consists of delay matching gates and a
transition detector, is connected to A through a minimum size
inverter. Signal transitions at node A are transferred through
the delay chain to the transition detector and compared with
incoming clock edge. If the transition is close to its required
arrival time (RAT), i.e. within the margin window as in Fig. 1,
a corresponding signal transition will arrive at node E after
the clock edge. This triggers the transition detector and flags
a signal indicating an impending delay failure.

The monitor inserted at node A is capable to monitor the
delay of all critical paths passing through A. As shown in
Fig. 1, in stead of monitoring all four destination registers,
SlackProbe can use only two monitors while achieving the
same path coverage.

Different transition detector designs as in [10], [17]. can be
applied here. SlackProbe also allows monitors to be inserted
at path endpoints where monitors as in [7]-[9], [11] can be
used as well. Since the additional margin makes the monitor
detect an impending timing failure rather than an actual one,
there is no datapath metastability issue as discussed in [17].

B. Monitor Insertion Flow

With the proposed monitoring strategy, the problem now
becomes when, where and how to insert these monitors. In
this work, we propose the monitor insertion flow as in Fig. 2.

Monitored

Transition
A Detector
A

A’s RAT
window \l

E Transition F
Margin Detector
l——le—> A
: Matching
i delay

A T
L+ T T

A's RAT
N

Margin

OmMmMmoO @

K —

Fig. 1. SlackProbe working principle. As shown in the timing diagram,
compared to inserting monitors at destination registers, the monitor inserted
at A can monitor the path delay even when the transition does not propagate
to the destination register (i.e. 77 at C). But the monitor inserted at node A
cannot capture transitions that do not pass through A (i.e. T» at B).

Placed & Routed | — Final
Design ECO Design
Path Incremental
Selection Place & Route

Critical Path | Monitor
Monitor Location
Selection

: Delay

Path Synthesis

Fig. 2. Monitor Insertion Flow

The monitor insertion starts with a placed and routed design,
as the timing information is more accurate at this stage. Since
we only care about timing critical paths, a path selection
process is applied to extract timing critical paths and to
construct the critical path graph. Then, the monitor locations
are picked from the graph using our proposed method. For
each of the monitor locations, a delay cell path is synthesized.
The final insertion flow is similar to Engineering Change
Order (ECO) where the monitors are incrementally placed
and routed. ECO metrics like those in [18] are applied when
picking monitor locations to minimize the interference to the
original design.

C. Possible Applications of the Monitors

Since different applications will have different requirements
on the monitor, we discuss possible monitor applications here
as examples before introducing the detailed implementation
flow.

One possible application is to use it as timing-failure
event predictor and combine with some of the existing error
resilience mechanisms like in [8], [19], [20]. In this case, the
monitors have to capture all signal transition events that may
result in timing errors.

Another possible application is to use it as speed sensor indi-
cating whether current operation condition is close to possible
timing failure. This can be used by systems with adaptation
capabilities like adaptive voltage scaling (AVS), adaptive body

Worst-case design margin

Typical Monitor

. delay margin
operating .
Best-case clock period W'.JrSt case
Chip delay chip delay
Path 1
Path 2 —
Path3
Path 4
Path 5 —
Staticdesign Opportunism Delay
margin window
Fig. 3. Opportunism window is the margin saving comparing to worst-case

design. Monitor delay margin is the delay margin of the delay matching chain
which will be discussed in detail in Section IV-A.

bias (ABB) or dynamic voltage and frequency scaling (DVFS)
to account for manufacturing variations, ambient conditions as
well as circuit aging effects such as negative bias temperature
instability (NBTI), positive bias temperature instability (PBTI)
and hot-carrier injection (HCI). Since variations are either
static or changing slowly, the monitor requirements can be
relaxed to capture only the delay changes instead of all
transition events.

III. PATH SELECTION AND GRAPH REDUCTION
A. Path Selection Criteria

Given a placed and routed design, the first step is to identify
the part of the design that may be timing critical. Depending
on the application, different criticality criteria may be applied
for the selection process.

One possible path selection method is to define a targeting
typical operating clock period and corresponding opportunism
window as in Fig. 3. The circuit is designed to operate at the
typical operating clock period if there are no monitor flags. If
there is a path whose delay exceeds the typical operating clock
period, the circuit should be able to adapt accordingly with
the help of the monitors. Therefore, all circuit paths whose
worst-case delay falls into the opportunism window should be
classified as timing critical and require monitors. This method
does not require any knowledge of correlation in the variations
between the delay of different paths. Therefore, it can be
used to select paths for applications like aging sensors, where
exact delay degradations are context dependent with little pre-
assumed correlation. The size of opportunism window will
affect the total number of circuit paths to be monitored.
The monitor delay margin will affect the possible monitor
locations. So there is a trade-off between the monitoring
benefit (defined by opportunism window and monitor delay
margin) and monitoring overhead. We will discuss and explore
this trade-off in later sections and experiments.

Another way to select the paths with slack smaller than
a fixed amount at various process corners and ambient con-
ditions. Similarly, statistical methods as in [21] can also be
used. This method can be used to account for correlation in
the variation and reduce the pessimism with the help of some
pre-known information from the applications.

B. Circuit Graph Reduction

With the path selection criteria, critical and non-critical parts
can be identified from the circuit graph. We delete the non-
critical pins and gates from the original circuit graph and
obtain a reduced circuit graph. The critical paths in the original
circuit graph are still preserved in the reduced graph. With this

Do @

| margin

Fig. 4. Example of path-monitor pairs

property, we can analyze the monitor insertion problem on the
reduced circuit graph only. Unless otherwise specified, circuit
graph discussed in the rest of the paper is the reduced graph.

IV. MONITOR COST METRICS AND ANALYSIS
A. Delay Margin Cost
1) Delay Margin for Paths

If the monitor is placed at some intermediate net, the path
delay before the monitor can be captured by the monitor. But
some extra delay margin will be required for the remaining
part of the path. As shown in Fig. 4, there are three types of
relations between a monitor and a path:

1) The path passes through the net, for example path A in
Fig. 4. Since the delay up to G4 can be captured by
the monitor, the delay path should account for the delay
uncertainty of G6.

2) The path branches out at some net before the monitor,
for example path B in Fig. 4. Depending on the applica-
tion and gate type of G4, the monitor may be treated as
being inserted between G3 and G5 with G4 as part of
the delay matching. If the application is speed sensing,
path B can be considered as being monitored with delay
uncertainty of G4, G5 and G8. If the application is event
detection, only G4 with gate types that are transparent to
signal transitions (e.g. inverter, buffer etc.) are allowed.

3) The path has no joint instances with the monitor. In this
case, we consider that the monitor has no effect on the
path.

2) Delay Margin for Monitors

Though different paths may require different delay margins,
each monitor will have only one margin. The margin should
account for worst delay uncertainty after monitor insertion
point and guarantee that the delay chain is always slower than
margined part of monitored circuit paths.

In the example in Fig. 4, theoretically the best case delay of
the delay chain (i.e. ny4 to the monitor) should match the worst
case delay of the original path (i.e. G6). But this may be too
pessimistic since the delay is likely to be correlated. Similar
to on-chip variation modeling, in this work the delay chain is
designed so that its delay at typical process corner matches
the worst case delay of the original path. The equivalent delay
margin in this case equals the delay of G6 at slow process
corner (i.e. delay of the delay chain at typical process corner)
minus the delay of G6 at typical process corner. This margin
is considered as the delay uncertainty of G6.

Methods as in [3] or [4] can also be applied to synthesize
a replica-like or tunable delay path.

3) Overall Margin

Because the final delay margin for the entire circuit will be
dominated by the monitor with the largest margin, we define
the delay margin cost as the maximum monitor delay margin
constraint € on each monitor.

Given this €, we can analyze the implication of inserting a
monitor at a net n;. If the margin required by n; is smaller than
€, all paths passing through n; will be monitored. Depending
on the application, we may also want to consider another net
n; in the fan-in cone of n; (like n3 in Fig. 4). If the margin
required by paths branching out at n; is also smaller than
e (like path B in Fig. 4), n; can also be monitored by the
monitor at n;. All paths passing through n; will be monitored.
Therefore, we can define a set I,,, as the nets that can be
included as being monitored by the monitor at n,.

If we represent a path as the set of nets it passes through,
the timing margin constraint can be stated as: with a given
monitor delay margin constraint €, for any critical path Py,
there exists a monitor at net n;, such that P, N I,,, # 0.

B. Monitor Power Cost

Since the monitors are inserted as ECO, there is no direct
area overhead added to the original design. But the monitors
will introduce additional power overhead. Picking different
monitoring locations have different power overheads because
circuit nets have different signal switching probabilities. The
length of the matching delay chain will also affect the power
consumption. In this work, power overhead is modeled as
Do + (Aip + 1)d;, where); is the signal switching probability
of net n;, p is the estimated dynamic power overhead per unit
matched delay, [is the estimated leakage power overhead per
unit matched delay, d; is the delay of the path that is going to
be synthesized for the monitor at n;, and p, is the static power
overhead of the transition detector which includes additional
clock power and leakage power.

C. Design Interference Cost

The monitor insertion is considered as ECO. ECO cost
such as layout disturbance and timing disturbance should be
considered. Layout disturbance can be evaluated by taking
local layout congestion. To minimize the timing disturbance,
the monitor uses a minimum size inverter to “probe” at the
monitoring nets. The estimated timing slack after the inverter
insertion can be used for timing disturbance evaluation. Sim-
ilar to [18], we use a linear model to evaluate the design
interference cost of inserting a monitor at net n; as:

a; - exp(—1 X Sp,) + ap - Ty,

where s,, is the estimated timing slack after inserting the
inverter, r,, is the layout congestion around n;, a; and a, are
weighting parameters for different cost considerations.

D. Monitor Insertion Cost and Constraints
Based on the cost metrics, the overall cost of inserting a
monitor at net n; is

¢ =Ppo+ Nip+1)d; +ar - exp(—1 X s;) + ay - Ty,

where parameters are chosen for correct normalization. The
monitor insertion constraint is defined as in Section IV-A.

V. PROBLEM FORMULATION AND SOLUTION
A. Problem Formulation

For a given circuit, a graph can be constructed by making
the nets as nodes N = [n1n2...]T and interconnect as directed
edges. We denote x = [z175...]T as the decision vector where
x; = 1 when a monitor is inserted at n; and O otherwise.

Since inserting a monitor at n; implies that all nodes in I,
are monitored, we define set O, := {n;[n; € I,,}. A vector

y = [y1y2...]T can be derived as:

vi= >, (1)

n; GOni

So y; > 1 implies that n; is monitored because there exists
some z; = 1 and n; € I,,,. Equation (1) can be represented
as matrix representation y = Qx.

A critical path matrix can be generated from the circuit
graph as:

P11 D12

P= P21 P22 1 ifni € Py

0 otherwise

2

Assuming that the cost vector is ¢ = [cico...]T and 1 is a

row vector of 1’s, the monitor insertion problem is formulated
as follows:

where pi; = {

T

minimize: ¢ -X
subjectto: P-Q-x>1 3)
T; € {0, 1}

B. Problem Conversion

Solving (3) directly is hardly tractable for any reasonable
size of circuit because of the large number of paths. We will
convert the problem into a solvable one.

Since all entries in P and Q are either 0 or 1, entries in
P-Q are non-negative integers and some entries may be larger
than 1. This is not necessary given x; € {0,1}. We can derive
a new matrix A with aj; equals 1 if corresponding entry in
P - Q is non-zero, 0 otherwise. If we replace P-Q -x > 1
with A -x > 1 in (3), the new optimization is equivalent to
the original one.

Then we relax the constraint on z; as z; > 0. ! This gives
us an LP problem with its dual as:

maximize: 17 -f
subject to: AT .f<c 4)
£f>0

If we add two dummy nodes ns and n; as the beginning and
ending nodes for all paths, (4) becomes similar to a maximum
flow problem with f being the dedicated flow along each path.

Converting (3) into the LP problem (4) still does not reduce
the problem size. To make the problem solvable, we will
convert (4) into a formulation with edge-based variables and
constraints. We denote e = [... €; ; ...]T as the total flow on
the edges. e; ; equals the sum of all path flow that goes from
n; to n; and satisfies the flow conservation constraint. The
objective in (4) is equivalent to maximizing the total flow out
from ng.

If we look at the i-th row of the constraint AT - f < ¢,
on the left is the sum of all path flows that pass through
I,,,. The key enabling observation is that I, is defined with
respect to the delay margin, which is monotonic in topological
order. Therefore, all nets in I,,, are connected (see example in
Fig. 5(a)). If we group I,,, as one single node in the graph,
there will be no cyclic flow paths that exit I,,, and enter again
(see example in Fig. 5(b)). All paths that pass through I,,, will
pass through one and only one of the edges that goes into I,,,.
In the example in Fig. 5(a), the path flows that pass through
I, are {nq, na}, {no, ng} and {ng, ns}, of which the sum

Iconstraint z; < 1 is not necessary in this case because monitor cost ¢ > 0
and ag,i € {0, 1}

(a) Treat I, as a node (b) Example of cyclic flow

Fig. 5. Example of treating the nets in I, := {n2,n4} as a node. Cyclic
flow as in (b) is impossible because margin at no must be larger than margin
at ns. In (b), no € I, implies n5 € Ip,.

equals all the edge flow that goes into I,,, i.e. e1 4 + €5 2.
Therefore, we can replace the left part of the constraint with
the sum of all edge flow that goes into I,,,.

The converted edge-based formulation becomes:

maximize: E €s,i
Vi
subject to: Vn,, E €ji = g €k
vj vk

>

nj&ln, ,nk€ln,
e>0

(&)

Vni, ej,k S Cn,

In this edge-based LP formulation, the number of variables
equals mpg and the number of constraints equals mg + 2my,
where mg is the total number of edges and my is the total
number of nodes. For all our benchmarks, solving (5) takes
less than a minute.

C. Problem Solution

Because of the relaxation on z;, the result of (5) will be a
lower bound of that in (3).

To derive an exact solution of the monitor locations, we
take the solution of (5) and extract out the set of all nets n;
with the edge flow into I,,, equals c;. This set will be a valid
solution which satisfies constraints in (3). Then we identify the
highest cost net that is unnecessary to maintain the constraint
and delete it. This process is repeated until no more nets can
be deleted. Our experiments show that in most of the cases,
we can get the result that is close to its lower bound.

VI. EXPERIMENTAL RESULTS
A. Experiment Setup

To evaluate the effectiveness of our monitoring methodology
and problem solution, we use three commercial processor
benchmarks and implement them using a commercial sub-
32nm process technology and libraries. The implementation
is done using Cadence toolchain [22]. The implementation
information is listed in Table I. To calculate the monitor
insertion cost for each net, we obtain the net switching
probabilities through running dhrystone [23] benchmarks.

Since different applications will have different requirements
for the monitors, we have implemented three different monitor
insertion methods:

e Baseline: This is the referenced baseline method which

inserts a monitor at every critical path endpoint.

e SlackProbe Event Detection: This method aims at event
detection. It allows the monitors to be placed at path
intermediate nets. To ensure the detection of all switching
events, it allows including additional nets in I,,, only
when they are connected to the monitor through inverter
or buffer.

Processor A B C
Gate count 10434 30296 58815
Register count 1191 3344 9516
Clock period at typical corner | 1.0l ns | 1.22ns | 1.43 ns
Clock period at slow corner 123 ns | 1.48ns | 1.72 ns
Critical gate count 7246 21385 21630
Critical register count 852 2116 4195
Critical path endpoint count 2 1256 2637 4993
TABLE I

IMPLEMENTATION INFORMATION OF THE PROCESSOR BENCHMARKS

Speed sensing lower bound
-m-Event detection
—+—Speed sensing
~—Event detection lower bound

075 4
05 s

L ?ﬁ;&

0 T T T

0% 5% 10% 15%
Path criticality criteria

—-Speed sensing -#Event detection

0
[
=
o

]

N

™
Normalized Overall Cost

Number of
(SR
o oo
I

0 T T T
5% 10% 15%
Path criticality criteria

(a) Monitor count (b) Monitor cost

M Speed sensing M Event Detection B Baseline

Number of monitors
)]
(=]
S

Processor A B C

Monitor count 1256 2637 4993
Baseline Normalized cost 12.16 8.95 14.05
SlackProbe Monitor count 148 480 510
Event Normalized cost 1.34 1.69 1.57
Detection Normalized cost lower bound 1.34 1.59 1.53
SlackProbe Monitor' count 113 311 374
Speed Sensing Norma]¥zed cost 1 1.07 1.08

Normalized cost lower bound 1 1 1

1% 3% 5% 7% 9% 11% 13% 15%
Path criticality criteria

TABLE I
EXPERIMENTAL RESULTS ON THE PROCESSOR BENCHMARKS

o SlackProbe Speed Sensing: This method aims at speed
sensing. It allows the monitor to be placed at path
intermediate nets and allows including nets in the fan-
in cone regardless of the gate type.

B. Results on Different Benchmarks

For this experiment, the path selection is done through
the opportunism window approach. We define the typical
operating clock period as the clock period reported by timing
analysis with typical process corner libraries. Delay margin
€ is set to be 5% of the typical operating clock period.
Table II summarizes the experimental results for the methods
on different processor benchmarks. The total monitor cost are
normalized with respect to the lower bound cost of SlackProbe
Speed Sensing. In all three benchmarks, by allowing inserting
monitors at path intermediate node and extra delay margin,
the total number of monitors is reduced by almost an order of
magnitude.

C. Results on Different Path Selection Criteria

Depending on the application context, different path selec-
tion criteria may be applied. To evaluate the proposed method
over different path selection criteria, we pick processor A and
apply different path selection criteria to it.

Fig. 6 presents the results of different path selection criteria.
For each case, the timing margin € is kept at 5%. The paths
are selected as critical if their slack at typical corner is smaller
than the specified percent of the clock period. Compared to the
baseline method, our methods show on average 15X reduction
in the number of monitors for event detection and 18X for
speed sensing over all cases.

Since we did not have access to aging libraries, we did not
do the experiments of inserting monitors as aging sensors. But
it can be inferred from Fig. 6, depending on the aging effect
and expected life time, e.g. if worst-case delay degradation
due to process variation and aging is 15%, path selection will
be similar to the corresponding 15% point in Fig. 6.

D. Results on Different Monitor Delay Margin
To show the trade-off between delay margin and monitor
count, we also sweep the delay margin € for processor A

The path endpoint include the circuit primary outputs as well. Some flip-
flops use both D and scan-in pins mux to select different data inputs. They
are treated as different endpoints here.

(c) Comparison with baseline

Fig. 6. Monitor count and cost for processor A with different criticality
criteria (i.e. extract paths with slack less than the specified percent of clock
period at typical corner)

Speed sensing lower bound
——Eventdetection
—~Speed sensing

——Speed sensing -B-Event detection

N
wu
o

"
4 A
% 200 _ s -# Event detection lower bound
g \\ o
s \\L : o \
s =
5 \\\ =
3 100 \\.___. § o5 \\j'\
E 50 S 0.25
5 _‘ E "\N—m
0 T T = 0 . T
[
0.0% 5.0% 10.0% E 0.0% 5.0% 10.0%
Matching path delay margin Z° Matching path delay margin
(a) Monitor count (b) Monitor cost
Fig. 7. Monitor count and cost vs. delay margin for processor A

and plot the corresponding monitor count and monitor cost in
Fig. 7. The path selection criteria is the same as that in Table II,
i.e. defining the opportunism window with typical operating
clock period obtained from typical process corner libraries.
By allowing more timing margin, the number of monitors
reduces for both methods. We also try to combine different
weighting parameters of the monitor insertion cost (i.e. a;, a,
etc.). Since the monitor location selection depends more on the
circuit topology, the weighting parameters do not significantly
change the total number of monitors. But they do affect the
monitor locations locally, especially for the speed sensing case,
where different monitor location candidates can have similar
critical path coverage but different monitor insertion cost.
In all experiments, our proposed solution achieves results
equal or very close to the theoretical lower bound.

E. Implementation Issues

One major concern with in situ monitoring is the imple-
mentation feasibility and potential overhead and disturbance
due to the additional instances and wiring. To explore the
implementation overhead and find out possible implementation
issues of the monitor insertion, we pick processor A and
implement the complete monitor insertion on it.

The targeting application model is shown in Fig. 8. The
monitors are designed to give a one bit sticky flag which can
be reset externally. For implementation simplicity, we pick the
monitor structure that consist of only standard cells as shown
in Fig. 9. The monitor flags are connected through an OR tree
and gives the one bit flag signal as processor primary output.
Therefore, for each monitor, there are at least six gates in it

Processor Core

vdd

Monitor flags

Power Supply

\

Reset monitors

Regulator

t
Fig. 8. Example application: the monitors give a one bit flag to the
voltage regulator, the regulator reset the monitors after a corresponding voltage
adaptation operation

Fig. 9.
reset

Implemented monitor structure: the flag is sticky with an external

including the first minimum size inverter, four cells as in Fig. 9
and one OR gates in the OR tree.

During monitor insertion, because of the additional load
from the monitors and other ECO timing disturbance, the
original design is slowed down by about 5%. However, the
slow down is only around the selected nets, which can be
recovered through simple optimization like incremental sizing
and threshold voltage assignment. In the experiments, we
incrementally optimize the design after the monitor insertion
so that it still meets the same delay target.

The other side effect of the ECO timing disturbance is
that some new nets become timing critical. This may intro-
duce unmonitored critical paths, which will require additional
delay margin, pessimism in path selection or further timing
optimization. The slow down due to additional load from the
monitors will only affect the nets that are monitored already.
But other timing changes such as ECO routing and clock
skew changes may introduce unmonitored critical paths. In this
implementation, we found two unmonitored critical paths due
to the clock skew changes. A more careful monitor selection
and less intrusive insertion can help prevent it.

In this experiment, we implement two versions of the
monitor insertion. The implementation results are summarized
in Table III. The final layout of implementation II is shown
in Fig. 10. The layout overhead could be further reduced by
using simpler or customized monitors as in [14], [17].

VII. CONCLUSIONS

In this paper, we have proposed SlackProbe, a novel timing
slack monitoring methodology of inserting monitors at both
path ending nets and path intermediate nets. Experimental
results on commercial processors show that with 5% additonal
timing margin, our methods can reduce the total number of
monitors by 15-18X compared to the total number of critical
path ending pins. We also demonstrate the implementation fea-
sibility and overhead through an example of using SlackProbe
with adaptive voltage scaling. Future work will incorporate
the monitors in more applications as in [1] and improve the
monitor location selection and insertion to be less intrusive.

Implementation I | Implementation II
Target delay margin 5% 8%
Number of monitors 113 48
Additional instances 711 327
Instances per monitor 6.3 6.8
Additional power overhead 13.65% 6.38%
TABLE III

IMPLEMENTATION RESULTS ON PROCESSOR A

(a) Layout with monitor in- (b) Layout with both moni-
stances highlighted tor instances and wires high-
lighted

Fig. 10. Final layout of processor A with the inserted monitors placed and
routed

REFERENCES

[1]1 P. Gupta et al., “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2012, Keynote Paper.

[2] A. Drake et al., “A distributed critical-path timing monitor for a 65nm
high-performance microprocessor,” in Proc. IEEE International Solid
State Circuits Conference, feb. 2007.

[3] T.-B. Chan et al., “DDRO: A novel performance monitoring methodol-
ogy based on design-dependent ring oscillators,” in IEEE International
Symposium on Quality Electronic Design, march 2012.

[4] J. Tschanz et al., “Tunable replica circuits and adaptive voltage-
frequency techniques for dynamic voltage, temperature, and aging
variation tolerance,” in VLSI Circuits, Symposium on, june 2009.

[5]1 D. Fick et al., “In situ delay-slack monitor for high-performance pro-
cessors using an all-digital self-calibrating Sps resolution time-to-digital
converter,” in Proc. IEEE International Solid State Circuits Conference,
feb. 2010.

[6] X. Wang et al., “Path-RO: a novel on-chip critical path delay mea-
surement under process variations,” in Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2008.

[71 D. Ernst et al., “Razor: a low-power pipeline based on circuit-level

timing speculation,” in IEEE/ACM International Symposium on Microar-

chitecture, dec. 2003.

S. Das et al., “Razorll: In situ error detection and correction for pvt and

ser tolerance,” IEEE Journal of Solid State Circuits, jan. 2009.

[9]1 H. Fuketa et al., “Adaptive performance compensation with in-situ

timing error prediction for subthreshold circuits,” in IEEE Custom

Integrated Circuits Conference, sept. 2009.

B. Rebaud et al., “Digital timing slack monitors and their specific in-

sertion flow for adaptive compensation of variabilities,” in International

Conference on Integrated Circuit and System Design: Power and Timing

Modeling, Optimization and Simulation, ser. PATMOS’09, 2010.

M. Eireiner et al., “In-situ delay characterization and local supply

voltage adjustment for compensation of local parametric variations,”

IEEE Journal of Solid State Circuits, july 2007.

M. Kurimoto et al., “Phase-adjustable error detection flip-flops with 2-

stage hold-driven optimization, slack-based grouping scheme and slack

distribution control for dynamic voltage scaling,” ACM Trans. Des.

Autom. Electron. Syst., 2010.

M. Agarwal et al., “Circuit failure prediction and its application to

transistor aging,” in IEEE VLSI Test Symposium, may 2007.

B. Das et al., “Warning prediction sequential for transient error preven-

tion,” in IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems, oct. 2010.

T. Sato et al., “A simple flip-flop circuit for typical-case designs for

dfm,” in IEEE International Symposium on Quality Electronic Design,

march 2007.

K. Hirairi et al., “13% power reduction in 16b integer unit in 40nm

cmos by adaptive power supply voltage control with parity-based error

prediction and detection (pepd) and fully integrated digital 1do,” in Proc.

IEEE International Solid State Circuits Conference, feb. 2012.

K. Bowman et al., “Energy-efficient and metastability-immune resilient

circuits for dynamic variation tolerance,” IEEE Journal of Solid State

Circuits, jan. 2009.

J. Lee et al., “Incremental gate sizing for late process changes,” in Proc.

IEEE International Conference on Computer Design, oct. 2010.

M. Choudhury et al., “Timber: Time borrowing and error relaying for

online timing error resilience,” in JEEE/ACM Design, Automation and

Test in Europe, march 2010.

M. Fojtik et al., “Bubble razor: An architecture-independent approach

to timing-error detection and correction,” in Proc. IEEE International

Solid State Circuits Conference, feb. 2012.

L. Xie et al., “Representative path selection for post-silicon timing

prediction under variability,” in Proc. ACM/IEEE Design Automation

Conference, june 2010.

[Online]. Available: http://www.cadence.com

R. P. Weicker, “Dhrystone: a synthetic systems programming bench-

mark,” Commun. ACM, Oct. 1984.

[8

[t}

[10]

[11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]
[19]

[20]

[21]

[22]
[23]

