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Abstract—Increasing parameter variations, caused by vari-
ations in process, temperature, power supply, and wear-out,
have emerged as one of the most important challenges in
semiconductor manufacturing and test. As a consequence for
gate delay testing, a single test vector pair is no longer sufficient
to provide the required low test escape probabilities for a single
delay fault. Recently proposed statistical test generation methods
are therefore guided by a metric, which defines the probability
of detecting a delay fault with a given test set. However, since
runtime and accuracy are dominated by the large number
of required metric evaluations, more efficient approximation
methods are mandatory for any practical application.

In this work, a new statistical dynamic timing analysis al-
gorithm is introduced to tackle this problem. The associated
approximation error is very small and predominantly caused by
the impact of delay variations on path sensitization and hazards.
The experimental results show a large speedup compared to
classical Monte Carlo simulations.

I. INTRODUCTION

In recent years, parameter variations have emerged as a
new challenge for manufacturing test methods [1]–[3]. The
detrimental impact of these variations on the delay test quality
may lead to many test escapes due to test invalidation [4]. A
delay test is called invalid, if the test fails to detect a target
fault due to delay variations, hazards or other reasons. More
stringent path sensitization conditions can reduce the risk of
test invalidation, but these conditions may not be satisfiable for
a large number of paths [5]. Hence, a single test vector pair
can no longer provide sufficiently low test escape probabilities
for a delay fault [6].

In order to keep test cost within an acceptable budget,
statistical delay test generation methods must be aware of the
diminishing returns in delay test quality by each additional
test vector pair. The most promising approach is to guide the
test generation procedure by a metric [7]–[10], which defines
the detection probability of a delay fault with a given test
set. However, this metric must be computed O(k2n) times
to evaluate k applicable test vector pairs for each gate delay
fault in a circuit with n gates [8]. Hence, the accuracy and the
computational complexity of any practical application strongly
depend upon the efficiency of the metric evaluations.

For the research and development of new statistical test
generation methods, the output deviation was proposed as a
low-cost surrogate metric [11]. However, the output deviation
tends to saturate, and equal values are obtained for long and
intermediate sensitized paths.

In [7], the detection probability is used to guide the selection
of the longest paths through every gate of the circuit, which are
subsequently targeted for test generation. However, in order to
reduce the runtime of the algorithm, the authors approximate
the path delays as independent random variables.

An alternative method is to create a superset of test vector
pairs for each fault site. Then, a minimal subset of these
test vector pairs with sufficiently high delay test quality is
selected. A pattern-selection algorithm following this principle
was proposed in [8]. However, the detection probability was
computed using Monte Carlo simulations of the entire circuit,
which is inefficient for practical applications. Instead, only
sufficiently long paths, which are also sensitized by the given
test set, can have a significant impact on the delay test result
and should therefore be considered.

In a related work [12], the authors proposed to utilize
statistical static timing analysis techniques to estimate the
process-induced variation in pattern delays. An event-driven
timing simulation was used to identify the portion of the
circuit, which is sensitized by a given test set. After removing
the remaining parts of the circuit, a block-based statistical
static timing analysis technique was applied to estimate the
pattern delay distribution. However, the block based approach
results in unnecessary error accumulation and requires all gate
and interconnect delays to have a normal distribution.

The approach presented here combines several efficient
block- and path-based statistical static timing analysis tech-
niques, to minimize the approximation error and the com-
putational complexity. In contrast to [12], only sensitized
paths with a significant probability of causing a timing failure
are considered. The algorithm is not restricted to normally
distributed gate and interconnect delays, which is particularly
important for the consideration of the exponential fault size
distribution of a gate delay fault. Furthermore, both structural
as well as spatial correlations are taken into account.

The contribution of this work is twofold: (1) based on [12],
a new advanced statistical dynamic timing analysis algorithm
is introduced, which can be used in test applications; (2) the
efficiency of the algorithm is demonstrated in the context of
delay variation aware pattern selection for small delay defects.

The remainder of the paper is organized as follows. Section
II describes the proposed approximation algorithm. The ex-
perimental results for NXP benchmark circuits are presented
in section III. Conclusions are drawn in section IV.
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II. STATISTICAL TIMING ANALYSIS ALGORITHM

To detect a particular gate delay fault, a suitable set of test
vector pairs Θ is applied to the circuit. The proposed algorithm
approximates the probability, that an incorrect logic value will
be captured into at least one scan flip-flop. More precisely, the
algorithm computes the probability of a timing failure, which
occurs if at least one primary output of the combinational
network has not stabilized to its final logic value within the
system clock cycle time Tclk. It is assumed, that the whole
circuit is subject to delay variation, which may cause path
delay faults by itself or in combination with a gate delay fault.

A sensitization analysis similar to [12] is performed for
every test vector pair in the test set. But instead of the entire
sensitized portion of the circuit, only paths with a significant
probability of causing a timing failure are extracted. The delay
distribution of such a long path is approximately a normal
distribution, regardless of the distribution of the gate and
interconnect delays (central limit theorem). The circuit delay
for the considered test set is now given by the statistical
maximum of all path delays. The timing failure probability
is finally obtained by evaluating the cumulative distribution
function of the corresponding multivariate normal distribution.

The proposed algorithm approximates the probability of a
timing failure in four major steps, as depicted in Fig 1. The
first step identifies all paths, along which transitions travel
from the primary inputs to the primary outputs under a given
test set. Only those paths, whose probabilities of causing a
timing failure exceed a user defined threshold, are extracted
in the second step. The set of correlated random variables,
defined by all critical transition path delays, is reduced in
the third step with Clark’s maximum estimation method [13].
The probability of a timing failure is finally computed in the
last step, using an efficient numerical integration algorithm
proposed by Genz [14]. The following subsections present a
detailed description of all steps of the algorithm. A method to
enhance its accuracy is introduced in subsection II-E.

A. Identification of Complete Transition Paths

A complete transition path is a sensitized path, along which
a transition propagates from a primary input to a primary
output. The identification of complete transition paths is based
on a single pass event-driven timing simulation of each vector
pair in the test set. This simulation considers only nominal
delay values and may identify different complete transition
paths for different delays, due to dynamic path sensitization
and hazards. In rare cases, this dependency may have a large
impact on the circuit delay, leading to complete transition
paths, which are not representative for the vector pair.

Following the simulation of a vector pair, the complete
transition paths can easily be identified by tracing the events
backwards from the primary outputs to the primary inputs.
To avoid any ambiguities during event tracing, each event at
the output of a gate has a reference to its preceding event at
the gate input. A further reference to the applied delay value,
selected according to the conditions of the gate timing model,
is stored to improve the efficiency of the following step.
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Fig. 1. Flowchart of the statistical dynamic timing analysis algorithm

B. Extraction of Critical Transition Paths

A critical transition path is defined as a complete transition
path, for which the probability of the path delay exceeding the
system clock cycle time Tclk is above a user defined threshold.
If the probability is very large (e.g. greater 0.98), then a timing
violation is very likely and no further analysis is required.

For a complete transition path with correlated and normally
distributed gate and interconnect delays X1, . . . , Xk, the path
delay Y also has a normal distribution with mean µ(Y ) and
variance σ2(Y ) given by

µ(Y ) =

k∑
i=1

µ(Xi) σ2(Y ) =

k∑
i=1

k∑
j=1

σ(Xi, Xj), (1)

where σ(Xi, Xj) denotes the covariance of Xi and Xj .
Assuming independent delays X1, . . . , Xk of arbitrary dis-
tributions, the path delay distribution is obtained from the
convolution of all probability density functions of X1, . . . , Xk.

The following steps of the algorithm require the delay of all
critical transition paths to have a normal distribution. However,
according to the central limit theorem, the distribution of a sum
of independent random variables with arbitrary distribution
converges to a normal distribution. In practice, this conver-
gence occurs rapidly for less than 10 variables, especially
if the distribution of these variables is close to a normal
distribution [15]. While the central limit theorem only holds
for independent random variables, for most practical models
of correlation, the distribution is also guaranteed to converge
to a normal distribution.



C. Dimension Reduction with Statistical Maximum Operation

The goal of the remaining two steps is to compute the
probability Ψ, that the delay of at least one critical transition
path exceeds the system clock cycle time Tclk. More formally,
this probability is defined as

Ψ , 1− Pr(max{X1, . . . , Xn} ≤ Tclk), (2)

where the critical transition path delays equal correlated ran-
dom variables X1, . . . , Xn of normal distribution.

The computation of the timing failure probability (2) re-
quires knowledge about possible structural and spatial correla-
tions between the critical transition path delays. For structural
correlations, the covariance of two paths equals the sum of
the variances of all gate and interconnect delays, which are
shared by both paths. However, depending on the particular
circuit model, the estimation of spatial correlations can be
significantly more difficult and is beyond the scope of this
paper. In this case, it is assumed that the covariance is obtained
using one of the well-known methods.

Using Clark’s approximation method [13], any two random
variables Xi and Xj with 1 ≤ i < j ≤ n can be replaced by
a new random variable Y = max{Xi, Xj}, representing the
statistical maximum of Xi and Xj . Following the definitions

φ(x) ,
1√
2π
e−

x2

2 (3)

Φ(x) ,

x∫
−∞

φ(t)dt (4)

a ,
√
σ2(Xi) + σ2(Xj)− 2σ(Xi, Xj) (5)

α ,
µ(Xi)− µ(Xj)

a
, (6)

the first two moments of Y are obtained by

µ(Y ) = µ(Xi)Φ(α) + µ(Xj)Φ(−α) + aφ(α) (7)

σ2(Y ) =
(
µ2(Xi) + σ2(Xi)

)
Φ(α)

+
(
µ2(Xj) + σ2(Xj)

)
Φ(−α)

+ (µ(Xi) + µ(Xj)) aφ(α)− µ2(Y ). (8)

Before removing Xi and Xj , it is necessary to compute all
covariances σ(Xk, Y ), where Xk denotes any of the remaining
random variables. The covariance of Xk and Y is given by

σ(Y,Xk) = σ(Xi, Xk)Φ(α) + σ(Xj , Xk)Φ(−α). (9)

This approximation disregards all higher-order moments of
Y , which introduces an approximation error. The accumulation
of this error can be minimized by carefully choosing the
order, in which the pairwise statistical maximum operations
are performed [16]. In this paper, Clark’s maximum estimation
method is iteratively applied to the pair of random variables
with maximum α. To avoid unnecessary error accumulation,
this process stops once the number of random variables has
dropped below a user defined threshold.

D. Computation of Timing Failure Probability

This step finally computes the timing failure probability Ψ
using an efficient numerical integration method. Replacing the
maximum in (2) yields

Ψ = 1− Pr(Y1 ≤ Tclk, . . . , Ym ≤ Tclk), (10)

where Y1, . . . , Ym denote the remaining random variables after
the previous step. Instead of computing the entire distribution
of the statistical maximum, only the cumulative distribution
function must be evaluated. Using the definition of the cumu-
lative distribution function this becomes

Ψ = 1−
Tclk∫
−∞

· · ·
Tclk∫
−∞

φ(x;µ,Σ)dx1...dxm, (11)

where φ denotes the multivariate normal density function,
defined by the mean vector µ = [µ(Y1), . . . , µ(Ym)] and the
covariance matrix Σ = [σ(Yi, Yj)] with i, j ∈ {1, . . . ,m}.

For this problem, the numerical integration algorithm pro-
posed by Genz in [14] has proven to be surprisingly effective.
It is applicable to very large dimensions and quickly converges
to the required accuracy of about 10−4. However, in some
cases the dependencies between path delays may lead to a
covariance matrix that is not positive-definite. To avoid severe
numerical instabilities, various techniques can be applied to
transform such a covariance matrix into a positive-definite
matrix [17]. In this paper, the diagonal elements of the matrix
are multiplied with a very small constant greater than unity.

E. Enhancement of Accuracy

Path sensitization and hazards can be very sensitive to delay
variation. However, the sensitization analysis in the first step
uses only nominal delay values, which is the main source of
approximation error of this algorithm.

To explore the impact of delay variations on the compo-
sition of the critical transition path set, the algorithm can
be executed N times using randomly chosen delays during
sensitization analysis. If the approximation results Ψ1, . . . ,ΨN

differ significantly, a classical Monte Carlo simulation of the
whole circuit could be performed. However, a more efficient
approach is to use the average approximation result Ψ̄

Ψ̄ =
1

N

N∑
i=1

Ψi, (12)

where the calculation of the timing failure probability is only
required for the distinct sets of critical transition paths. To
focus on the most likely critical transition path sets, the stan-
dard deviation for the random number generation is reduced
to 0.3σ, which was chosen based on experimental results.

However, the relative frequency and the delays of the critical
transition paths are not necessarily independent as assumed
by (12), which may lead to a slight underestimation of the
timing failure probability. Indeed, the later a transition arrives
at a gate input, the more likely the off-path inputs have
already stabilized to their non-controlling values and allow
the transition to be propagated.



III. EXPERIMENTAL RESULTS

The experiments were performed on several NXP bench-
mark circuits. The circuits were first speed-optimized using a
commercial synthesis tool and then mapped to the NanGate
45nm Open Cell Library [18]. To avoid an unnecessary com-
plex experimental setup, chip layouts were not produced. As a
result, interconnect delays and spatial correlations have been
ignored. All experiments used the gate delay model defined
by the Verilog HDL [19] standard. However, instead of real
numbers, all delay values X were assumed to have a normal
distribution with σ(X) = cv|µ(X)| of the nominal value
µ(X). The nominal gate delay values were extracted from the
Standard Delay Format (SDF) description of the synthesized
netlists. A variation coefficient of cv = 0.25 was assumed,
based on predictions for the 12nm process technology [20].
The system clock cycle time Tclk was chosen, such that 5%
of the defect-free manufactured chips would fail due to timing
failures caused by delay variations.

For each circuit, a benchmark of 20000 randomly chosen
single gate delay faults was created. For every delay fault,
a set of test vector pairs, suitable for small delay defects,
was generated. Using only the nominal gate delay values,
the k longest paths through a fault site were found with a
commercial static timing analysis tool. The number of paths
was limited to 1000, of which at most 100 paths were allowed
to end at the same primary output. A commercial ATPG tool
was later used to sensitize the resulting set of paths. Only delay
faults, for which at least 20 vector pairs had been generated,
were considered. The fault size was set to the slack of the
complete transition path π̃ with the largest nominal delay,
passing through the fault site.

For every delay fault, four different test sets Θ1, . . . ,Θ4

were defined as follows. The first test set Θ1 contained only a
single vector pair which sensitizes π̃ for nominal delay values.
Then, Θi+1 was created from Θi, by adding several vector
pairs in decreasing order of the delay of the longest complete
transition path. Thereby gradually extending the test set to five,
ten and finally to twenty vector pairs.

The approximation results are compared to the fault de-
tection probability, which is computed using 105 classical full
circuit Monte Carlo simulations with a highly optimized event-
driven timing simulator. During one iteration, a fault is said
to be detected, if at least one primary output does not have
the expected value at the sampling time Tclk. The runtime
of the Monte Carlo simulations is dominated by the large
number of random values required for every iteration. This
is due to the detailed gate delay model defined by the Verilog
HDL [19] standard, which distinguishes between different pin-
to-pin, asymmetric rising/falling and conditional path delays.
Hence, a two-input gate may require up to eight different
delay values. The random number generation utilizes high-
performance implementations of the Box-Muller transform
and the Mersenne Twister pseudo-random number generator.
All programs were implemented in C++ and executed on Intel
Core i7-2600K processor workstations with 8 or 32GB RAM.

A. Proposed Approximation Algorithm

In this subsection, the effectiveness of the proposed approx-
imation algorithm is demonstrated. The results for a single
execution and for multiple executions are presented in Table I
and II, respectively. Column (1) gives the name of the circuit,
and column (2) shows the number of test vector pairs in the
individual test sets Θ. All values in columns (3)-(8) represent
average results over all delay faults. The average number of
critical transition paths |Π|, obtained for the individual test
sets, is shown in column (3). A complete transition path
with normally distributed delay Y was considered critical,
if µ(Y ) + 3σ(Y ) ≥ Tclk. The number of critical transition
paths slowly saturated, because the additional vector pairs
predominantly sensitized shorter paths and many paths may
have already been sensitized by previous vector pairs.

The runtime and the accuracy of the proposed approxima-
tion algorithm were compared to 105 Monte Carlo simulations,
which evaluated the fault detection probability as a golden
reference. The absolute approximation error is presented in
column (4) as the average absolute difference to the golden
reference. As explained in section II-E, a single test vector
pair might not sensitize a critical transition path for all
possible delay realizations, due to different arrival times of
the transitions at the off-path inputs. However, in this case, a
different vector pair might still be able to sensitize the path.
Hence, increasing the size of the test set leads to a reduction
of the approximation error.

Clark’s maximum estimation method was only applied in
rare cases of more that 1000 critical transition paths. Hence,
the impact on the average runtime and accuracy of the algo-
rithm was very small. The multivariate normal integral (11)
was computed using a FORTRAN routine named MVNDST,
which was developed by Genz [14]. The largest estimated
approximation error of the numerical integration algorithm was
always less than 10−2.

Column (5) shows the relative approximation error ε̄, de-
fined as the average mean difference to the golden reference. A
positive mean error ε̄ indicates overestimation, while a negative
ε̄ shows a tendency for underestimation of the fault detection
probability. A single execution of the proposed algorithm does
not consider the impact of delay variations on the composition
of the critical transition path set. Hence, the tendency shifts
from overestimation for small test set sizes to underestimation
for larger test set sizes.

As expected, the proposed extension of the algorithm im-
proves the accuracy by computing the average result of 10
executions. For any delay fault, the number of executions
was increased to 100 if the difference between the smallest
and greatest timing failure probability exceeded 0.1. The fault
detection probability was rarely overestimated, but contrary
to a single execution, the mean error ε̄ for some circuits
was increasing with the test set size |Θ|. This is caused by
statistical dependencies between the relative frequency of a
critical transition path and its timing failure probability, as
described in subsection II-E.



circuit |Θ| |Π| |ε| ε̄ tPA tMC S
10−2 10−2 [s] [s]

(1) (2) (3) (4) (5) (6) (7) (8)

p35k

1 9.01 6.43 0.27 0.0154 29.57 4347
5 33.20 3.99 -0.82 0.0615 60.17 1592

10 60.13 2.98 -0.66 0.1150 92.66 1176
20 111.33 2.14 -0.50 0.2230 156.86 1046

p45k

1 4.98 4.54 1.89 0.0088 30.30 6486
5 17.30 3.19 -0.36 0.0370 64.31 2666

10 29.83 2.82 -0.90 0.0676 100.92 2004
20 50.68 2.43 -1.13 0.1202 172.08 1853

p77k

1 6.81 2.81 1.42 0.0159 49.87 6320
5 21.54 2.16 0.26 0.0591 117.93 3102

10 35.08 2.09 0.03 0.1068 194.57 2501
20 55.36 2.23 -0.20 0.1894 345.27 2352

p78k

1 3.93 7.68 2.58 0.0232 174.45 7754
5 16.13 4.64 -0.30 0.1129 349.35 3158

10 29.62 3.43 -0.64 0.2179 557.12 2592
20 52.72 2.73 -0.90 0.4250 971.33 2313

p81k

1 2.90 4.21 0.89 0.0175 289.06 18307
5 11.27 3.05 -0.53 0.0691 404.64 6357

10 20.15 2.42 -0.62 0.1300 538.76 4404
20 35.31 1.97 -0.65 0.2452 805.82 3450

p100k

1 4.63 5.51 1.29 0.0169 90.59 6409
5 16.71 3.82 0.02 0.0712 193.44 3050

10 29.29 3.12 -0.27 0.1340 309.98 2536
20 49.74 2.75 -0.62 0.2502 540.13 2316

p267k

1 6.43 3.81 -0.67 0.0434 561.93 15055
5 21.18 2.93 -1.33 0.1654 770.52 5335

10 34.88 2.23 -0.96 0.3221 1001.76 3657
20 57.45 1.77 -0.74 0.6819 1476.70 2803

p330k

1 11.85 5.51 1.35 0.0715 774.28 13316
5 42.83 3.56 -0.40 0.2837 1109.19 5088

10 69.30 2.78 -0.47 0.5871 1503.43 3689
20 113.66 2.33 -0.50 2.0466 2299.52 2947

TABLE I
APPROXIMATION RESULTS FOR A SINGLE EXECUTION

Column (6) shows the average runtime for a single execution
of the proposed algorithm. The runtime is dominated by
the maximum estimation and numerical integration (41.8%),
followed by the critical transition path extraction (34.6%) and
event driven-simulation (23.6%). Clark’s maximum estimation
had only a minor impact on the average runtime.

The average runtime of the Monte Carlo simulation is
presented in column (7) and the corresponding speed-up is
given in column (8). The amount of time required for the
event-driven simulation and path selection increases linearly
with the test set size |Θ|. However, due to the increasing
number of critical transition paths, the relative contribution of
the numerical integration to the overall runtime of the approach
increases significantly. On the other hand, the Monte Carlo
algorithm becomes more efficient, because the high cost for
generating the large number of high quality random delay
values is shared among a greater number of vector pairs.
Hence, the speed-up decreases with the size of the test set.
The runtime for multiple executions depends on the number
of executions and distinct critical transition path sets.

The experimental results have shown an average speedup
of between four and five orders of magnitude, compared to
classical Monte Carlo simulations. The small approximation
error of the algorithm is predominantly caused by the impact
of delay variation on path sensitization and hazards. Multiple
executions can further enhance the accuracy of the results.

circuit |Θ| |Π| |ε| ε̄ tPA tMC S
10−2 10−2 [s] [s]

(1) (2) (3) (4) (5) (6) (7) (8)

p35k

1 8.78 5.36 -1.84 0.1828 29.57 162
5 32.74 3.44 -1.78 0.9910 60.17 61

10 59.53 2.61 -1.29 1.7703 92.66 52
20 110.58 1.90 -0.90 2.9965 156.86 52

p45k

1 4.90 3.47 0.30 0.1188 30.30 255
5 17.06 2.78 -1.14 0.5864 64.31 110

10 29.35 2.56 -1.45 1.0509 100.92 96
20 49.95 2.27 -1.47 1.8789 172.08 92

p77k

1 6.70 2.09 0.56 0.1684 49.87 296
5 21.28 1.70 -0.16 0.7546 117.93 156

10 34.71 1.69 -0.27 1.6080 194.57 121
20 54.83 1.89 -0.34 3.3099 345.27 104

p78k

1 3.71 6.04 -1.50 0.9253 174.45 189
5 15.37 4.27 -2.60 5.2061 349.35 67

10 28.29 3.33 -2.27 8.9644 557.12 62
20 50.47 2.74 -2.05 14.4722 971.33 67

p81k

1 2.92 3.62 -0.25 0.3326 289.06 869
5 11.33 2.75 -1.04 1.3735 404.64 295

10 20.17 2.25 -0.98 2.2391 538.76 241
20 35.24 1.89 -0.91 3.6286 805.82 222

p100k

1 4.48 4.59 -0.97 0.4047 90.59 224
5 16.38 3.31 -1.25 1.9264 193.44 100

10 28.58 2.80 -1.26 3.2609 309.98 95
20 48.44 2.50 -1.33 5.5870 540.13 97

p267k

1 6.41 3.53 -1.64 0.7259 561.93 774
5 21.26 2.72 -1.65 3.0388 770.52 254

10 35.05 2.10 -1.23 5.0450 1001.76 199
20 57.63 1.69 -0.97 9.2235 1476.70 160

p330k

1 11.76 4.43 -0.60 1.3944 774.28 555
5 42.90 3.03 -1.22 6.1162 1109.19 181

10 69.51 2.46 -1.06 11.3596 1503.43 132
20 113.71 2.16 -0.93 30.9242 2299.52 74

TABLE II
APPROXIMATION RESULTS FOR MULTIPLE EXECUTIONS

B. Trade-Off Between Test Cost and Statistical Test Quality

In this subsection, the accuracy of the proposed approxima-
tion algorithm is demonstrated in the context of delay variation
aware pattern selection for small delay defects. The fault detec-
tion probability is used to find a suitable compromise between
the statistical test quality and the total number of vector pairs.
Based on the results of the previous subsection, which were
stored in a database, a suitable test set Θ ∈ {Θ1, . . . ,Θ4} is
selected for each delay fault.

At first, the fault detection probability P4 of the largest test
set Θ4 with 20 vector pairs was compared to the smaller
subsets Θ1, Θ2 and Θ3 with 1, 5 and 10 vector pairs,
respectively. To minimize test cost, the smallest test set Θi

with a fault detection probability Pi satisfying

Pi ≥ P4 − b (13)

was selected. A threshold value of b = 0.10 was chosen to
specify a trade-off between test quality and test cost. This
process was repeated for all delay faults and circuits.

The described pattern selection approach was first per-
formed using only the Monte Carlo simulation results. The
test set size distribution over all delay faults in each circuit is
presented in Fig. 2. For more than 50% of all delay faults in
this example, five vector pairs provide superior fault detection
probability, close to the four times larger test set Θ4.
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Fig. 3. Test set size differences compared to Monte Carlo based approach

The whole process was repeated using the proposed ap-
proximation algorithm, and both results were compared in
Fig. 3. The abscissa shows the difference in the test set size
|ΘMC |−|ΘPA| over all delay faults and circuits, where ΘMC

and ΘPA denote the test set chosen based on the results of
the Monte Carlo simulation and the proposed approximation
algorithm, respectively. The results match for more than 80%
of all delay faults, while only for a small fraction a slightly
smaller or larger test set was selected. By using the same
randomly chosen delay values for all test sets, the average
result of multiple executions provides even greater accuracy.

IV. CONCLUSION

Delay variations in recent technology nodes reduce the
quality and reliability of all delay tests. Statistical test gen-
eration methods are guided by the fault detection probability
to find a trade-off between statistical delay test quality and test
cost. An efficient statistical dynamic timing analysis algorithm
was proposed to reduce the high runtime complexity of these
methods. The approach was compared with results of extensive
Monte Carlo simulations and has shown a large speedup with
only a small loss of accuracy.
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