
A Multi-Level Monte Carlo FPGA Accelerator
for Option Pricing in the Heston Model

Christian de Schryver, Pedro Torruella, Norbert Wehn
Microelectronic Systems Design Research Group

University of Kaiserslautern, Germany
{schryver, wehn}@eit.uni-kl.de

Abstract—The increasing demand for fast and accurate prod-
uct pricing and risk computation together with high energy costs
currently make finance and insurance institutes to rethink their
IT infrastructure. Heterogeneous systems including specialized
accelerator devices are a promising alternative to current CPU
and GPU-clusters towards hardware accelerated computing. It
has already been shown in previous work that complex state-of-
the-art computations that have to be performed very frequently
can be sped up by FPGA accelerators in a highly efficient way
in this domain. A very common task is the pricing of credit
derivatives, in particular options, under realistic market models.
Monte Carlo methods are typically employed for complex or
path dependent products. It has been shown that the multi-level
Monte Carlo can provide a much better convergence behavior
than standard single-level methods. In this work we present the
first hardware architecture for pricing European barrier options
in the Heston model based on the advanced multi-level Monte
Carlo method. The presented architecture uses industry-standard
AXI4-Stream flow control, is constructed in a modular way
and can be extended to more products easily. We show that
it computes around 100 millions of steps in a second with a total
power consumption of 3.58 W on a Xilinx Virtex-6 FPGA.

I. INTRODUCTION

Modern risk and asset management relies on state-of-the-
art financial models and simulation techniques to compute
meaningful values with sufficient accuracy in time. The in-
troduction of recent regulation mechanisms in the finance and
insurance sector like Basel III or Solvency II has again led to
an enormous increase in the demand of permanently available
computation power, since important risk numbers have to be
evaluated very frequently. At the same time, energy efficiency
is becoming more and more important due to the high energy
costs. Combining algorithmic optimizations with efficient suit-
able execution platforms is the key to construct highly efficient
hardware accelerators for financial applications. Pricing credit
derivatives, in particular options, is one fundamental task in
the risk assessment process. In this work we present the first
FPGA architecture based on the advanced multi-level Monte
Carlo method for European barrier option pricing in the state-
of-the-art Heston model in detail.

Banks, financial and insurance companies - and in particular
small and medium sized institutes - are forced to move into
the high performance computing (HPC) domain nowadays to
keep track with the market’s and regulatory needs [1] [2]. At
the same time, embedded design methodologies, for example

the use of specialized accelerator cores and low-power system
considerations, are emerging in the HPC sector of the finance
domain.

Options became very popular at the trading desk after
Black, Scholes, and Merton had published the famous Black-
Scholes model in 1973 that allowed to compute fair option
prices for the first time. The Black-Scholes model relies on
some simplifications that do not reflect observable market
characteristics in many cases [3], and has been extended by
Heston in 1993 with a stochastic volatility [4]. Therefore in
this paper we model the underlying market dynamics with the
state-of-the-art Heston model that is widely accepted in the
finance business nowadays [3]. Barrier options in the Heston
model in general can only be valuated by using numerical
methods [5].

GPUs have already emerged in these sectors over the last
years, since they allow a good trade-off for software developers
between achievable acceleration of time-critical functions and
implementation efficiency [6] [7]. Dedicated hardware acceler-
ators based on FPGAs again increase the possible speedup and
energy saving potential by orders of magnitude. In previous
work it has already been shown that they can save more than
90% of energy compared to GPUs [8] [7], by providing the
same throughput at the same time.

However, to optimize the overall system performance, the
algorithm’s characteristics need to match the underlying exe-
cution platform. Monte Carlo methods are inherently parallel
and therefore fit very well to parallel execution platforms, in
particular FPGAs where many instances can work in parallel
independently.

Although different methods like the finite difference
method, binomial or trinomial trees, or the quadrature method
can converge faster for specific products, Monte Carlo solvers
tackle the widest application range and can be adjusted to
many products. They are widely spread in the finance industry
to solve high-order problems or - as in our case - path depen-
dent products such as barrier options, where finite difference
or tree methods can not be applied easily. The multi-level
Monte Carlo method extends the standard single-level Monte
Carlo method and allows to achieve more accurate results
with the same number of samples compared to the single-
level method [9]. To the best of our knowledge, no FPGA
implementation based on the multi-level Monte Carlo method
has been presented before.978-3-9815370-0-0/DATE13/ c©2013 EDAA



In this work the single-level Monte Carlo architecture for
barrier option pricing in the Heston model presented in 2011
[8] is enhanced to multi-level Monte Carlo. We show that a
multi-level Monte Carlo architecture for asset path simulations
in the Heston model only consumes 3.58 W on a Xilinx Virtex-
6 FPGA. Our design achieves a throughput of approximately
100 millions of simulated time steps per second.

The main contributions of this paper are:
• We show the algorithmic advantages of the multi-level

Monte Carlo for barrier option pricing in the Heston
model compared to single-level Monte Carlo.

• We present the first hardware architecture based on the
multi-level Monte Carlo method together with implemen-
tation details.

• We give detailed synthesis results, throughput and energy
estimations for a Xilinx Virtex-6 FPGA.

II. RELATED WORK

A lot of publications on accelerating option pricing in the
Black-Scholes model exist today. They cover not only various
option types, but also investigate a wide range of solver
algorithms (e.g. Monte Carlo, finite difference, quadrature,
trees) on different architectures like CPUs, ASIPs, GPUs and
FPGAs.

The first papers investigating the performance of GPUs for
option pricing in the multi-asset Heston model have been
published by Bernemann et al. in 2010 [10]. They have shown
for Monte Carlo simulations that a Nvidia Tesla C1060 GPU
can outperform a dual socket Intel Xeon E5620@2.4GHz
CPU by factors between 7.5 and 50 with respect to speed,
depending on the number of underlyings. In 2011 they have
enhanced their work by showing that using quasi-random
Sobol sequences instead of pseudo random numbers on a GPU
reduces the speedup factor over a CPU system by up to 30%
[7].

The impact of different workload splits between CPU and
GPU on acceleration Heston pricing has been investigated
by Zhang and Oosterlee in 2010 [11]. They have shown for
European options that the highest speedup can be achieved if
most of the basic arithmetic operations on the high numbers
of paths are performed directly on the GPU, avoiding the
bottleneck of limited bandwidth between CPU and GPU.

The first FPGA accelerated option pricing solutions in the
Heston model have been published in 2011.

Delivorias has compared speedups for Heston simulations
on a CPU cluster, two GPUs and the MaxCloud FPGA cluster
[6]. He has shown that 4 vectis dataflow engines on the
Maxeler MaxCloud service outperform a GPU compute server
with 2x Tesla M2090 by a factor of about 1.75 with respect
to speed.

Sridharan et al. from the NSF Center for High-Performance
Reconfigurable Computing have presented a modular FPGA
accelerated system structure for multi-asset barrier option
pricing [12]. They use employ Heston cores based on the full
truncation Euler discretization scheme that we have already
verified to perform best on the algorithmic level [9]. All in all,

they show that an 48-FPGA platform can achieve a speedup of
more than 7000 compared to an SSE optimized single-threaded
C program.

Energy aspects have not been considered in any of these
works.

In 2011, it has been shown that for single-level Monte Carlo
simulations, a state-of-the-art Tesla C2050 GPU achieves a
5.5x speedup over an 8-core 3GHz Xeon CPU, by only
consuming 30% of the energy [8]. Three instances of the
Monte Carlo accelerator on one Virtex-5 FPGA running at
100 MHz can achieve the same throughput as the 8-core CPU
by only consuming 4% of the energy per simulation.

The potential benefits of using multi-level Monte Carlo
methods over single-level implementations for European bar-
rier option pricing have been investigated in 2011 [9], where
it has been shown that using multi-level Monte Carlo methods
for the underlying path simulations can reduce the computa-
tional complexity by up to 40%.

III. MULTI-LEVEL MONTE CARLO FOR OPTION PRICING
IN THE HESTON MODEL

A. Market Models for Option Pricing

In 1993, Steven Heston has generalized the Black-Scholes
model with a stochastic volatility process in the so-called Hes-
ton model [4]. It consists of a system of stochastic differential
equations, that model the dynamics of the option’s underlying
asset price S and its volatility V over the time t:

dS(t) = rS(t)dt+
√
V (t)S(t)dWS(t) (1)

dV (t) = κ(θ − V (t))dt+ η
√
V (t)dWV (t) (2)

The randomness of the market is given by the Brownian
motions WS and WV that are correlated with a factor ρ. All
other parameters further specify the setting of the financial
market [4]. The Heston model is used to model the behavior
of the option’s underlying. The desired option price is derived
from the discounted expected payoff at the time to maturity,
taking into consideration upper and lower bound for the
specific option type [13].

The Heston model in its original form is a time-continuous
model. Although closed-form and semi-closed form for very
special settings and option types exist, they are not sufficient to
cover the necessary range of practical use cases [5]. Therefore
numerical methods are mandatory to evaluate options in the
Heston model in the general case.

The correlation between the price and the volatility process
is a key feature of the Heston model to reflect realistic
market scenarios. It can be maintained by applying the Euler-
Maruyama method to the Heston model and discretizing the
time into N equidistant steps [14]. For a process between 0
and the time T the discretization points are:

0 = t0 < t1 < t2 < · · · < tN = T

For k = 0, ..., N−1, let ∆kt := tk+1−tk and accordingly for
the Brownian motions ∆kW

S := WS
tk+1
−WS

tk
and ∆kW

V :=



WV
tk+1
−WV

tk
. By assuming an equidistant grid over t, tk = k T

n
for k = 0, ..., N .

With this notation and the starting conditions V 0 = V0
and S0 = S0, applying the Euler scheme to Equation 1 and
Equation 2 lead to the discrete version given by Equation 3
and Equation 4.

Sti+1
= Sti + rSti∆kt+ Sti

√
V ti∆kW

S (3)

V ti+1
= V ti + κ(θ − V ti) + η

√
V ti∆kW

V (4)

Due to numerical reasons, negative values can occur when
simulating the discrete volatility process. Several schemes for
dealing with negative volatility values have been proposed up
to now, for example absorption, reflection, or full truncation
[9]. Numerical results indicate that full truncation performs
best on average in single- and multi-level simulations [9],
together with continuity correction of the barriers. The step
generator architecture shown in Section IV-D is based on this
algorithmic selection.

B. Monte Carlo Path Simulations

1) Single-level Characteristics: Monte Carlo methods rely
on the law of large numbers that states that an expected value
E(X) of a random variable X can be approximated by averag-
ing over a large number of sample drawn independently from
the distribution of X . For that reason Monte Carlo methods
show an intrinsic parallelism and are therefore very interesting
for the construction of parallel hardware accelerators.

Monte Carlo methods show a very robust behavior for a
wide range of applications. However, they have a rather slow
convergence rate: the standard deviation of the error in the
crude Monte Carlo method is of order O(1/

√
N) with N being

the number of samples [15]. That means: in order to increase
the mean accuracy of the result by one digit, 100 times more
experiments have to be executed.

Variance reduction techniques are basic methods to improve
the accuracy in Monte Carlo simulations for fixed sample
sizes. In our work we have used the antithetic variate: with
one random variable Z, we simulate two paths, one with Z
and one with −Z. It has been shown that antithetic variance
reduction can speed up a Monte Carlo option pricing algorithm
on CPU and GPU by around 50% [9].

Using Monte Carlo for path simulations always introduces
a simulation error. The overall error (here the mean squared
error (MSE)) can be partitioned into two parts [14]:

MSE = V ariance+ (Bias)2 (5)

The variance results from the Brownian motions in the
SDEs and is also called stochastic error. It becomes smaller
with increasing numbers of drawn samples in the Monte
Carlo setting. The bias is a systematic error introduced by
the discretization and can be reduced by simulating finer
discretization steps.

The price of the option finally is the discounted expectation
value of the Monte Carlo simulated assets in the Heston model

under consideration of the option’s payoff profile and potential
barriers [13].

2) The Multi-Level Monte Carlo Method: The multi-level
Monte Carlo method as presented by Heinrich in 2001 [16]
and refined by Giles in 2008 [17] can be seen as an extension
of the statistical Romberg method from Kebaier [18]. Like the
statistical Romberg method, it uses a telescopic sum for the
expectation values and allows to reduce the order of the com-
putational complexity from ε−3 to ε−2 · log(ε)2 with ε being
the bound of the root mean squared error rMSE =

√
MSE

[14].

In contrast to the single-level method, where the number of
simulations and time steps is given by the user, the multi-level
Monte Carlo method uses an heuristic scheme to determine the
amount of simulations needed to achieve a certain accuracy of
the result. This is achieved by adapting the number of time
steps for every simulation level. It is important to emphasize
the difference between the algorithm used in this work (that
varies the discretization level over the simulated time), and the
approach presented by Jin et al. that is called multi-level as
well, but works with different computational precisions [19].

95

100

105

110

115

120

125

0 0.2 0.4 0.6 0.8 1
Time

A
ss

et
 P

ric
e

Fig. 1. A continuous asset price and two different discretizations using 4
and 16 discretization steps.

Figure 1 shows a discrete asset path simulation on two
different levels, that means with 4 and 16 discretization
steps (corresponding level 1 and level 2 in this example).
The multi-level constant M is defined as the ratio M =
number of fine steps

number of coarse steps , in this case M = 4. The key is that
both levels are simulated simultaneously with the same Brow-
nian motions. For the coarse steps, the Brownian increments of
the finer level are accumulated to simulate one bigger step. It
can be seen that the asset prices of the coarse step simulations
are not matching the fine step prices. The variance of the
difference for fine and coarse step simulations is evaluated by
the multi-level controller to adjust the number of simulations
in the next simulation run [17]. The stopping criteria for the
simulation is the variance of the difference between fine and
coarse step results that has to be below a predefined threshold.

Our proposed architecture strongly corresponds to the algo-
rithmic partitioning by splitting the multi-level control from
the path simulator engine as shown in Figure 2.



IV. HARDWARE ARCHITECTURE

In Section III-B we have shown why multi-level Monte
Carlo simulations have a huge potential for credit derivative
pricing. In this section we derive an efficient hardware archi-
tecture for multi-level Monte Carlo simulations and present
comprehensive architectural details.

Uniform
RNG

FP-Converter

ICDF-Lookup
Unit

RNG
Correlator

Step
Generator

WS, WV

Barrier
Check

Coarse Step
Accumulator

Monte Carlo
parameters 

Final path 
prices 

Antithetic
Unit

Step
Control

AXI
Interconnect

Multi-Level Control

Payoff Computation

Final Results

Fig. 2. Structure of the multi-level Monte Carlo path simulator.

Figure 2 shows the overall structure of the proposed multi-
level Monte Carlo accelerator engine. The architecture can be
split into two paths: the Monte Carlo path simulator at the
bottom, and the payoff and multi-level control at the top. The
payoff computation and the multi-level control are dedicated
to be executed on an embedded CPU (for example the ARM
Cortex-A9 on the recent Xilinx Zynq EPP) and are therefore
not further discussed. It is important to note that the main
computational load is located in the path simulator presented in
this chapter, and that the control flow introduced by the multi-
level control is not a critical point in the overall simulation.

The path simulator is in the lower area of Figure 2 is
pipelined with a cyclic inner data path that allows the direct
feedback of data packets for the iterations of the Monte Carlo
simulation. It consist again of several parts: the modules that
feed random numbers into the data path (green and orange),
and the application’s data path based upon different cores that
implement a part of the algorithm (blue). All blocks in the
data path are connected with AXI4-Stream flow control in
order to provide automatic stalling propagation and to reduce
the necessary overall control overhead.

First investigations have shown that 32 bit single precision
floating point arithmetics provide enough resolution for our
application. Therefore from the input of the RNG correlator
on, we this data type throughout the design. The floating point

units have been created with the Xilinx CoreGen tool with
maximum pipelining based on the Xilinx Floating Point IP-
Core Library 6.0.

A. AXI4-Stream Based Data Paths

It has already been shown that the hardware needed for
this kind of simulations can result in data paths with over 40
stages [8]. Furthermore, the multi-level Monte Carlo method
increases the necessary control flow not only in the multi-level
controller, but also in the path simulator: the Brownian incre-
ments for the coarse step simulations have to be accumulated,
and the path simulator has to maintain the correlation between
the coarse step paths and the fine path equivalent.

In spite of the increased control flow, we still tackle a
strongly data driven application here. Therefore we have
decided to equip every core with the recent AXI4-Stream
industry interface standard. This approach avoids large overall
control units and therefore simplifies the validation to a large
extent, since every core can be tested independently out of
the system context by employing reusable AXI4-Stream data
feeder, receiver and evaluator modules. If a component is
approved, it can be integrated in the data path seamlessly.

B. Random Number Generator and Inner Datapath

As shown in Figure 2, the random number generation and
preparation can be separated from the cyclic inner data path.
For the random number generation (RNG), we use a MT19937
Mersenne Twister together with an ICDF based converter unit
that generates normally distributed random numbers [20] (the
green components).

The orange blocks prepare the Gaussian random numbers
for the use in the Heston path simulation. The RNG correlator
unit outputs a pair of random numbers with the correlation
ρ (details in Section IV-C). This pair is consumed by the
antithetic unit that mirrors the input at the output for one clock
cycle, and outputs the negative input in the next clock cycle
corresponding to Z and −Z in Section III-B1. The correlator
in combination with the antithetic unit allows to provide one
pair of random numbers in every clock cycle with only one
random number generator.

The coarse step accumulator generates the Brownian incre-
ments for the coarse step simulations by accumulating all fine
steps of the corresponding fine paths. Since we simulate path
parallel, that means the next time steps over all paths in the
queue, the accumulator internally stores the coarse step values
for all fine paths that are currently processed and outputs the
coarse step increments for a coarse step run after every M
fine step runs (see Section III-B2).

The cyclic inner data path (blue components in Figure 2)
is formed by the step generator (details in Section IV-D), the
barrier checker and the AXI interconnect. It uses a packet
concept to store the current price, volatility, and status of
barrier hits (two one-bit flags) for the current time step of every
path. During initialization, the data path is filled with packets
containing start price, start volatility, and cleared barrier flags.
All components are configured with the current option, market,



and simulation parameters over the AXI interconnect that
also returns the final prices for all paths. The barrier checker
compares the current price against the given barrier values and
sets the barrier hit flags if a barrier hit has been detected.

For the internal data handling managed by the step control
and in order to keep the system as simple as possible, we
make the assumption that all the data in the pipeline is valid
and ordered at any point in time. This allows to control the
whole data path by using a single counter, without any other
complementary logic. After the last steps have been computed,
the data is streamed out over the AXI interconnect in order.

C. Correlator Core

The correlator introduces the statistically correlation ρ be-
tween the two Brownian motions WS and WV in Equation 1
and Equation 2 out of two independent random numbers Z1

and Z2 by computing [14]:

WS = Z1 (6)
WV = ρ ·Z1 +

√
1− ρ2 ·Z2 (7)

Mux
AXI
Mult

AXI
Add

Controller

Mux

Mx*rho

Rho

Sqr_rho

input_num

tvalid

Volatility Inc.

Price Inc.

tready_mtvalid

valid_config

FIFO FIFO

tready_s

Fig. 3. Detailed block diagram of the correlator core.

Figure 3 shows the detailed structure of the correlator core.
It is an exemplary showcase for the other components. Since
Z1 is transmitted across the core and not processed on its
pipeline, two FIFOs maintain the integrity of the packets at the
output. This way, when a core is stalled the external data will
move at the same phase. We did not implement skid registers
between the units, because we routed the ready signal from the
master interface to all of the cores, making the whole system
to respond at once to the ready signal.

D. Step Generator Core

The step generator unit computes the values for price and
volatility of the next time step on a path due to Equation 3
and Equation 4. Figure 4 shows the data flow graph of the step
generating function. It consists of a large number of arithmetic
units, but shows a regular structure. For that reason we have
used the Xilinx AutoESL high-level synthesis tool (the Vivado
HLS predecessor) to generate the step generator architecture.
It invokes the Xilinx CoreGen Tool for generating floating
point cores.

RI-Rate Sqrt(delta)delta Price B. Incrm.

/ x

+

2x

Volatility

Max(in,0)

Price

-1

x

x

+

√

Price_o

Fig. 4. Data flow diagram of the option price step generator function.

V. RESULTS

We have synthesized our design with the Xilinx ISE 14.2
suite. The target device was the Virtex-6 XC6VLX240T-
1FFG1156. The optimization goal was set to speed with extra
effort set to high in the MAP and PAR stages. Table V shows
the results count after place & route.

The proportion of the resource usage per core is illustrated
in Figure 5. We can see that the majority of the resources are
occupied by the step generator that contains the vast majority
of floating point cores and pipeline registers.

Slice
Registers DSP48E1s

Correlator

Antithetic

Accumulator

Step-Gen

Bar-Checker

Interconnect

Overhead

Fig. 5. Resource consumption per core inside the path simulator.

Regarding power consumption, the Xilinx XPower Esti-
mator predicts a chip-only power consumption (including
dynamic power) of 3.58 W for our design, being able to
operate on ambient temperature up to 80 ◦C with a standard
setup.

The data path of the Monte Carlo path simulation acceler-
ator is able to run up to 120 MHz (timing constraint set to
120 MHz). This relatively low frequency results from a critical
path through a DSP48E1 slice in the step generator, that has
been introduced by the high-level synthesis. With 120 MHz
system clock frequency, our design provides a throughput of
around 120 million packets per second.

The highest utilization rate for the selected FGPA device is
8% for the DSP48E1 slices. We have been able to synthesize
eleven instances of the presented system with the available
resources of one XC6VLX240T-1FFG1156 device, what re-
sults in a total throughput of around 1.1 billions of time step
computations per second.

A fair comparison with our base architecture from 2011 [8]
is not feasible, since the target devices differ and the presented
architecture provides a much higher functional range.



Functional Unit Correlator Antithetic Accumulator Step Barrier AXI Data Path Data Path
Generator Checker Interconnect total total

Slice-Registers 934 66 996 5644 7 652 11949 3%
Registers-as FF 934 66 996 5638 7 652 11943
Slice LUT’s 724 67 520 7178 95 415 10288 6%
LUT - FF pairs 812 67 1057 8903 96 681 14842
DSP48E1’s 5 0 2 55 0 0 68 8%
BRAMs (36E1) 0 0 0 0 0 64 64 6%
Max Freq.[MHz] 294.2 984.25 232.5 101.9 144.19 211.01 120.00

TABLE I
RESOURCE UTILIZATION COUNT FOR EACH CORE AND THE COMPLETE PATH SIMULATOR.

VI. CONCLUSION

Monte Carlo methods are widely spread in finance and
insurance industry, since complex or path dependent products
in the finance domain can only be evaluated by running Monte
Carlo simulations. The recent regulations and the need to
compute prices and risk numbers very frequently nowadays
have led to a dramatic increase in computation demands for
finance simulations in the past. This is further supported by the
trend to employ more realistic market models like the Heston
model. FPGA accelerators have a huge potential for providing
high simulation throughputs at very low power consumption.

In this work we present the first multi-level Monte Carlo
FPGA architecture for FPGAs. The multi-level method iter-
atively runs Monte Carlo simulations by adjusting the sim-
ulation numbers and precisions, and has shown reduce the
computational complexity compared to single-level methods
by up to 50%. For European double barrier option pricing,
we present the Heston discretization and the derivation of the
hardware architecture from the multi-level algorithm in detail,
together with specific implementation characteristics. For a
Xilinx Virtex-6 FPGA we show that our proposed design can
simulate up to 100 millions of time steps in an asset path
simulation with less than 3.6 W. This clearly highlight the
suitability of FPGAs for accelerating finance products with an
impressive energy efficiency.

ACKNOWLEDGMENT

We gratefully acknowledge the partial financial support
from the Center of Mathematical and Computational Mod-
elling (CM)2 of the University of Kaiserslautern and from the
German Federal Ministry of Education and Research under
grant number 01LY1202D. The authors alone are responsible
for the content of this paper. Furthermore, we thank Steffen
Omland for his helpful mathematical support.

REFERENCES

[1] S. Weston, J. Spooner, J.-T. Marin, O. Pell, and O. Mencer, “FPGAs
Speed the Computation of Complex Credit Derivatives,” Xcell Journal,
no. 74, pp. 18–25, Mar. 2011.

[2] S. Weston, J.-T. Marin, J. Spooner, O. Pell, and O. Mencer, “Accelerating
the Computation of Portfolios of Tranched Credit Derivatives,” in High
Performance Computational Finance (WHPCF), 2010 IEEE Workshop
on, Nov. 2010, pp. 1–8.

[3] R. Lord, R. Koekkoek, and D. van Dijk, “A comparison of biased sim-
ulation schemes for stochastic volatility models,” Quantitative Finance,
vol. 10, no. 2, pp. 177–194, 2010.

[4] S. L. Heston, “A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options,” Review of
Financial Studies, vol. 6, no. 2, p. 327, 1993.

[5] S. A. Griebsch and U. Wystup, “On the Valuation of Fader and Discrete
Barrier Options in Heston’s Stochastic Volatility Model,” Quantitative
Finance, vol. 11, no. 5, pp. 693–709, May 2011.

[6] C. Delivorias, “Case Studies in Acceleration of Heston’s Stochastic
Volatility Financial Engineering Model: GPU, Cloud and FPGA
Implementations,” Master’s thesis, The University of Edinburgh,
Aug. 2012. [Online]. Available: http://www.hpcfinance.eu/sites/www.
hpcfinance.eu/files/Christos Delivorias 0.pdf

[7] A. Bernemann, R. Schreyer, and K. Spanderen, “Accelerating Exotic
Option Pricing and Model Calibration Using GPUs,” WestLB et al.,
Herzogstrasse 17 Düsseldorf 40217 Germany, Feb. 2011. [Online].
Available: http://ssrn.com/abstract=1753596

[8] C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen,
A. Kostiuk, and R. Korn, “An Energy Efficient FPGA Accelerator for
Monte Carlo Option Pricing with the Heston Model,” in Reconfigurable
Computing and FPGAs (ReConFig), 2011 International Conference on,
Dec. 2011, pp. 468–474.

[9] H. Marxen, A. Kostiuk, R. Korn, C. de Schryver, S. Wurm,
I. Shcherbakov, and N. Wehn, “Algorithmic Complexity in the Hes-
ton Model: An Implementation View,” in Proceedings of the fourth
workshop on High Performance Computational Finance (WHPCF ’11).
ACM New York, NY, USA, Nov. 2011, pp. 5–12, iSBN 978-1-4503-
1108-3.

[10] A. Bernemann, R. Schreyer, and K. Spanderen, “Pricing Structured
Equity Products on GPUs,” in High Performance Computational Finance
(WHPCF), 2010 IEEE Workshop on, Nov. 2010, pp. 1–7.

[11] B. Zhang and C. W. Oosterlee, “Acceleration of Option Pricing Tech-
nique on Graphics Processing Units,” Delft University of Technology,
Tech. Rep. 10-03, Feb. 2010.

[12] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, “FPGA-
based Reconfigurable Computing for Pricing Multi-asset Barrier Op-
tions,” Proceedings of Symposium on Application Accelerators in High-
Performance Computing PDF (SAAHPC), Jul. 2012.

[13] J. C. Hull, Options, Futures, And Other Derivatives, 8th ed. Pearson,
2012.

[14] H. Marxen, “Aspects of the Application of Multilevel Monte Carlo
Methods in the Heston Model and in a Lévy Process Framework,” Ph.D.
dissertation, University of Kaiserslautern, 2012.

[15] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo Methods and Models
in Finance and Insurance. Boca Raton, FL: CRC Press., 2010.

[16] S. Heinrich, “Multilevel Monte Carlo methods,” Large-Scale Scientific
Computing, pp. 58–67, 2001.

[17] M. B. Giles, “Multilevel Monte Carlo path simulation,” Operations
Research-Baltimore, vol. 56, no. 3, pp. 607–617, 2008.

[18] A. Kebaier, “Statistical Romberg Extrapolation: A New Variance
Reduction Method and Applications to Option Pricing,” The Annals of
Applied Probability, vol. 15, no. 4, pp. 2681–2705, 2005. [Online].
Available: http://www.jstor.org/stable/30038520

[19] Q. Jin, D. Dong, A. Tse, G. Chow, D. Thomas, W. Luk, and S. Weston,
Reconfigurable Computing: Architectures, Tools and Applications: 8th
International Symposium, Arc 2012, Hongkong, China, March 19-23,
2012, Proceedings. Springer-Verlag New York Incorporated, Mar. 2012,
vol. 7199, ch. Multi-level Customisation Framework for Curve Based
Monte Carlo Financial Simulations, pp. 187–201.

[20] C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, A. Kostiuk,
and R. Korn, “A Hardware Efficient Random Number Generator for
Nonuniform Distributions with Arbitrary Precision,” International Jour-
nal of Reconfigurable Computing (IJRC), vol. 2012, Mar. 2012, article
ID 675130, 11 pages.


