Design of Low Energy, High Performance
Synchronous and Asynchronous 64-Point FFT

William Lee!, Vikas S. Vijl, Anthony R. Thatcher?, Kenneth S. Stevens!
'University of Utah, 2Intel Corporation

Abstract—A case study exploring multi-frequency design is
presented for a low energy and high performance FFT circuit im-
plementation. An FFT architecture with concurrent data stream
computation is selected. An asynchronous and synchronous
implementations for a 16-point and a 64-point FFT circuit were
designed and compared for energy, performance and area. Both
versions are structurally similar and are generated using similar
ASIC CAD tools and flows. The asynchronous design shows a
benefit of 2.4x, 2.4x and 3.2x in terms of area, energy and
performance respectively over its synchronous counterpart. The
circuit is further compared with other published designs and
shows 0.4x, 4.8x and 32.4x benefit with respect to area, energy
and performance.

Index Terms—Asynchronous circuits, FFT, synthesis, timing
analysis, low power digital, low energy digital, synchronous
circuits, high performance

I. INTRODUCTION

Scaling has enabled the transistor revolution leading to
more than a billion transistors on a chip. This allows large,
concurrent designs to be built. This growth in complexity has
been supported by CAD algorithms and tools enabling the
rapid development of complex circuits. However, this CAD
has been targeted to the customary clocked design practice
that employs a single frequency.

Given the large number of transistors now at our disposal,
we feel that designs that operate at multiple frequencies afford
an additional avenue for power and performance optimization.
Asynchronous design is modular and easily integrates multiple
design frequencies. Thus it is a good target for experimenting
with multi-frequency designs. The power and performance
difference between single and multiple frequency designs is
highlighted in the asynchronous domain with two micropro-
cessors. A clocked DLX microprocessor was translated into a
single frequency asynchronous design using a “desynchroniza-
tion” technique [1]. This resulted in the asynchronous design
having a small penalty in terms of power, performance and
area over its synchronous counterpart. On the other hand, an
asynchronous version of the Pentium front end was redesigned
to a multi-frequency asynchronous architecture operating at
three frequencies: 720MHz for instruction decode, 3.6GHz for
instruction selection, and 900MHz for instruction steering and
issue [2]. The asynchronous design was fabricated in the same
foundry as its commercial counterpart, and achieved three
times the performance at half the energy per instruction.

This work applies a multi-frequency approach to the design
of an FFT. A multirate FFT architecture was formulated which
consists of distributed pipeline stages operating at different
frequencies [3]. This FFT design does not use shared memory;
rather it employs concurrency and parallel data streams using
distributed pipeline elements. This results in high throughput,
low energy, and multiple operating frequencies. An asyn-
chronous design using this architecture was implemented using
full custom design methods [4]. The low productivity limited
that design to a 16-point realization. The work reported here

978-3-9815370-0-0/DATE13/(©2013 EDAA

FF;

clock network

Fig. 1. Clocked design. Frequency and datapath delay of first pipeline stage is
constrained by FFi/Clij — FFi+1/d + margin < FFi+1/Clk?Tj+1

L; Lit1 Liyo

n n
e At (Dt 45

I‘qu' reqitg
gckv LC; LCit2 aﬁkiiB
Fig. 2. Timed (bundled data) handshake design. Delay sized by RT constraint

reqit — Lit1/d+ margin < L;41/clk?. Each reg; 1 handshake on
LC; indicates new data is presented to pin d of Lj;.

req¢+2'.m S

“Cit+ifackiyo

ret]z‘+bm

ack 4 1

implements both clocked and asynchronous 16 and 64 point
versions of the multirate FFT architecture. The asynchronous
designs employ a novel CAD flow that uses the same CAD
tools and design flow as clocked design.

The primary goal of this paper is to design and compare
multi-frequency asynchronous and synchronous 16-point and
64-point FFT architectures. These designs are also compared
against other outstanding single clock frequency FFT architec-
tures for area, energy and performance. Overall the clocked
multi-frequency 64-point FFT shows a 10.2x improvement in
performance and 2.0x improvement in energy per operation
over a comparable low energy single frequency design, but at
a cost of 6.1 greater area. The multi-frequency asynchronous
design improves upon the multi-frequency clocked design by
a factor of 2.4x reduction in both area and energy per point,
and a 3.2x improvement in performance.

II. BACKGROUND

One of the major benefit of synchronous design is the
presence of mature CAD tools and flows, which enables quick
development of complex designs. To allow rapid development
of asynchronous designs, a novel relative-timing (RT) based
design flow is used. This flow allows asynchronous design
elements to be specified and characterized for use with the
synchronous CAD tools. These elements can be directly
inserted in designs with supporting constraints to enable
synthesis, place and route, timing driven sizing, optimization
and validation to be performed on them. This flow also allows

[Make async. v . |Rel. Timing behavioral .v Behavioral
Design — » Character- [———— | System
Elements specification ization Design
g v
. Complete Ooz;, Structural
f\’](')i%f)’f’m »|Rel. Timing J“C?,- esign
alidation Validation & Simulation
Y
T [negative slack__ ¥ i
Physical | Timing | ’g;ﬁ};‘% RS &Zpgﬁ{gl&
Design Closure Synthesis v Delay Values
Fig. 3. Simplified Relative Timing Multi-Synch. Design Flow

a more accurate comparison between designs as the same
algorithms and parameters for the tool flows, such as synthesis
with Design Compiler, are used.

A. Relative Timing

The effect of time on a system is to order and sequence
events. Relative timing (RT) is a method of modeling and
controlling the results of circuit timing. A RT constraint
consists of a common timing reference and a pair of events
that are ordered in time for correct circuit operation. We call
the common reference a point-of-divergence, or pod, and the
ordered events the point-of-convergence, or poc. A constraint
is represented as pod — poco+m < poc; where poc, must
occur in time before poc; with margin m. Hence the maximum
path delay from pod to poco, must be less than the minimum
path delay from pod to poc;. This can easily be represented by
two related design constraint equations set_max_delay and
set_min_delay, which perform timing driven synthesis that
enforce the constraints on the logic paths. The RT constraints
for a traditional clocked linear pipeline and a handshake linear
pipeline are shown in Fig. 1 and 2.

B. Asynchronous CAD Tool Flow

The asynchronous CAD tool flow used is summarized in
Fig. 3. Asynchronous controllers are designed and character-
ized [5]. Controller design begins with a specification, which is
synthesized either by hand or by using asynchronous synthesis
tools like petrify, 3D, minimalist. [6]. The result is a circuit
definition which is then tech mapped to gates of the standard
cell library. To ascertain the proper functioning of the circuit,
a reset signal is added to the circuit to ensure all wires in it
are defined and also to allow it to start in the correct state. A
new specification is created with reset which is then verified
against the implementation to generate RT constraints [7]. RT
paths are used for performance and correctness reasons. RT
constraints are represented as two separate delay paths mapped
0 set_max_delay and set_min_delay algorithms. Timing
in sequential circuits must be represented as directed acyclic
graphs (DAGs) to the synchronous CAD tools for performing
timing driven sizing, optimization and static timing analysis
(STA). Hence RT paths are used to constrain the timing
arcs which can be cut by the tools to generate the acyclic
timing graph. Structural asynchronous Verilog elements are
hereby created and characterized with timing and cycle cut
constraints.

The characterized Verilog design elements are used in a
complete architecture. The RT constrained architecture can
then be passed through the same synchronous CAD tools
and flows as the clocked design it is compared against.
This involves synthesis, place and route, simulation, timing
validation and timing closure. Everything other than the asyn-
chronous handshake control elements (the LC blocks in Fig. 2)

a(n) 20 || =o(v) 20 (N1=1)
=
. N1 p'\. FFT 1O (| &7 N zq (1) TN T 2 V-
o1 (0|2 R ’”wz L R

No-pt. FFT |

Fig. 4. Multirate FFT Architecture [3]

is synthesized and place and routed similar to synchronous
design. The exact same scripts were used for synthesis and
place and route (other than the clock distribution and gating
algorithms), providing a more accurate comparison between
the clocked and asynchronous architectures.

C. FFT Architecture

The FFT is an algorithm that requires global dependencies,
but it can be derived in a multirate form that allows a hier-
archical representation as shown in Eqn. 1 [3]. This multirate
architecture exploits performance from concurrency by allow-
ing parallel computations to occur at reduced frequencies. The
equation represents No FFTs using N; values as the inner
summation, which are scaled and then used to produce Ny
FFTs of Ny values. This representation has the advantage that
it takes a high frequency stream and decimates it so that each
of the internal FFTs operate at a lower decimated data stream
frequency. This allows the architecture to simultaneously have
lower energy and higher performance.

Ny—1 Ny{—1
_ ming ming mamng
X, (ma) = E Wy E aL'nz(nl)WN1 Wi
no=0 n1=0

ey

The general architecture derived from Eqn. 1 is shown
in Fig. 4. There are three architectural control structures: a
decimator, expander, and crossbar block. Each of the IV; blocks
can be another hierarchical instance of the design where i is
the size of the FFT performed in that block. The values of
N1 x Ny equals Ny or N; at the higher level in the hierarchy.

The decimator block down-samples the input stream [8]. For
a sampled signal xz(n), the output of the M-fold decimator
is given by y(Mn). The sampling of the N decimator is
arranged in a regular repeating fashion where the first sample
is steered to the first output stream, the second to the second
stream and so on. The M*" item is steered back to the first
stream. This effectively produces M parallel streams operating
at 1/M the frequency of the input.

The expander block is the dual of the decimator block. They
take M low-frequency streams and up-sample by combining
them into a stream that has an M -fold higher frequency. In the
FFT architecture, the expander operates on a stream of data
xzo(ms), ..., xn—1(mso) reproducing a stream at the original
frequency and in the correct functional order for the algorithm.

Product blocks multiply a stream of results coming from
the N; point FFT units by a set of constant values. Both
constants and results are complex numbers, requiring four
multiplications and two additions per sample. The constants

1cO

ra,
ra

Fig. 5.
b ——— 10

— a0
ab
— rl

al

T

LC circuit implementation [5]

Fig. 6. Fork/Join Template
are calculated by Wy*"?, where m; =
N2 :?0,...,Ab — 1.

The crossbar switch maps results from the product block
to the Ny FFT units. The N9 FFT units take a transform of
time displaced Fourier transform samples. Each N;-point FFT
provides one data sample to each of the Ny-point FFT units.
The first row of the No FFT units takes the first sample from
each of the N; rows, the second row the second sample, and
so on. This is implemented by performing an N» up-sampling
followed by a N; down-sampling. Another solution is to steer
the data to Ny Ni-way decimators, followed by N1 No-way
expanders. Decimator sequencing here is different than that of
the top level block because it steers the first Ny samples to
each row before moving onto the next row.

0,...,Ny — 1 and

III. FFT DESIGN

Multi-frequency asynchronous and clocked 64-point FFT
designs are implemented from the architecture block diagram
shown in Fig. 4. Both designs are hierarchically decomposed
at the top level such that N; = 16 and Ny = 4. The 16-point
FFT implementations are also hierarchically decomposed with
N1 = Ny = 4. The terminal hierarchical nodes in the designs
is the 4-point FFT blocks since it can be implemented with
simple add and subtract operations due to the value of the
constant data values. There are four frequency domains in this
design. The frequency of the incoming data is f, which gets
decimated to derive f/4, f/16 and f/64 frequencies.

The datapath for all the designs are specified behaviorally
with the control being the only differentiating point. The asyn-
chronous design is implemented as a bundled data pipeline
(Fig. 2). The LC block that controls timing and sequencing
is a 4-phase handshake protocol similar to that in Fig. 5.
This cell generates a local clock signal to control the pipeline
stage based on the handshake with the adjacent handshake
controllers.

These designs operate on fixed-point data. The input and
output are 32 bits wide, with the upper 16 bits representing the
real value and the lower 16 representing the imaginary value.
The fields use twos complement representation of signed
numbers that are decimal values less than or equal to plus
or minus one. The first four bits are used for the whole part
of the number and the rest 12 bits for the fractional part.

A. Asynchronous Design

The first step in an RT asynchronous design is to create and
characterize the handshake elements. This design uses four
circuit elements: a linear pipeline controller (LC) (Fig. 5), a
2-input Fork/Join element, the decimator and expander. The
LC circuit interfaces two pipeline stages by controlling the
protocol between the stages and storing one data word (Fig. 2).
The fork (Fig. 6) broadcasts a request from a sender to two
receivers. The ack from the two receivers is synchronized with
a C-element before being passed on to the sender [9]. The join
element contains the same logic and is the dual of the fork.
Requests from two senders are first synchronized before being
sent to a receiver, while the ack signal from the receiver is
broadcasted to both the senders.

Fig. 8 shows the design of the 4-way decimator. It consists
of a ring connected shift register with one bit asserted to steer
the requests to four different pipelines based on the value in
the shift register. The req and the ack signals are active high.
Since only one acknowledgment is active at a time, the four
ack signals are passed through an OR gate. Values in the shift
register update when the input request goes low. The circuit
is characterized for its timing constraints. As long as the shift
register can change in one half cycle time (before the next
req occurs), this logic will operate correctly. Note that this
block adds a 2-input AND gate delay on the request path and
a 4-input OR gate delay on the acknowledge path. This is
the only overhead of the decimator, and adds approximately
8 gate delays to the cycle time of the architecture, allowing it
to operate at approximately a 16 gate delay cycle time. This
resulted in a frequency that was close to 1.3 GHz, which we
deemed as a sufficiently fast performance target.

The design of the asynchronous expander in Fig. 10 is
similar to the decimator. It includes an NN;-bit ring connected
shift register and some combinational gates to select the data
and control signals to be driven to the output channel.

Once these blocks were designed the top level asynchronous
architecture was built by simply composing the pipeline
control and datapaths together. We employed a hierarchical
structural design style which was almost identical to drawing
and connecting block level schematics for the design. In
this method a functionally correct design was hierarchically
designed and validated for performance and correctness. First
a simple 4-point FFT was built, which was used to build
a 16-point FFT, and then these components were integrated
into the 64-point FFT. The dataflow graph of a 4-point FFT
is shown in Fig. 11. The pipelined asynchronous control
logic for that design is shown in Fig. 12. The design of the
pipeline was almost as simple as drawing the figure for the
paper, where the butterfly network and first set of adders are
between stages LC1 and LC2, the second butterfly network and
adders are between stages LC2 and LC3, and the last network
convolution is between stages LC3 and LC4. Following is a
code snippet from the design to give you a flavor of the RTL.
Some liberty is taken in the syntax to compress the example.
This shows a pipeline stage at the input of the design that feeds
into the next stage of 16-point FFTs. Each pipeline stage and
structural block is similarly designed.

module FFT_64 (ri, ai, DI, ro, ao, DO, rst);
input [‘*WORD_SIZE-1:0] DI;
// 1input pipeline
linear_control LCO (.lr(ri), .la(ai), .rr(pOr),
.ra(pl0a), .ck(ck0), .rst(rst));
latch PO (.d(DI), .clk(ckO), .g(PODO0));

clk

£ShiftReg
ShiftReéJ

D1 ng ‘
[T rl

Din t— +—]
——— | D3 rd
R2 R6
i | .

[

[

|

[eaQ
BN

— — Din D1
— — EDQ
D3
Di
Fig. 7. Synchronous Decimator Fig. 8. Asynchronous Decimator
decimator_4 D4_0 (.DI(PODO), .D1(PODT1), .D2(PODT2),
.D3(PODT3), .D4(PODT4),
.ri(pOr), .ai(pOa), .rst(rst),
.r1(pOrtl), .r2(pOrt2), .r3(p0rt3), .r4(pOrt4d),
.al(pOatl), .a2(plOat2), .a3(plat3), .ad(plat4d));
// The FFT_16 modules.
FFT_16 F16_0 (.ri(pOrtl), .ai(plOatl), .ro(plrtl),
.ao(platl), .DI(PODT1l), .DO(P1DT1l), .rst(rst));

Performance and functionality optimizations in an asyn-
chronous design are somewhat independent operations. A
design that is functionally correct can be created relatively
quickly. However, particularly for multi-frequency designs,
some effort is needed to balance the cycle times and pipelining
to optimize performance. This is very different from clocked
design where performance and pipelining are essential for
correct functionality, and part of the initial specification.

A primary aspect of optimizing performance of an asyn-
chronous architecture is to calculate the critical paths and
focus on those. Experimenting with the power-performance
tradeoffs allowed us to quickly identify the critical paths in
the asynchronous design. Due to the multirate architecture,
it was not the complex multipliers or adders that operate at
1/4, 1/16, or 1/64 the input frequency. Rather, the top level
decimators and expanders limit the operating frequency of the
design. We therefore focused on designing high throughput
decimators and expanders.

The performance optimizations will be illustrated with the
4-point FFT pipeline shown in Fig. 11 and 12. From a cor-
rectness perspective, the data through the expander could pass
straight through the expander through the butterfly network to
the adders. However, this would create too long a cycle time at
the decimators. Increased performance is obtained by adding
pipeline stages before and after the decimators and expanders
since they are the critical paths in the design.

The next power-performance optimization of the asyn-
chronous 4-point FFT design was to determine the frequency
target for the smallest area and lowest power adder in the given
technology. A 16-bit ripple carry adder needed about 860ps
in this technology, so that became the performance target of
the 4-point FFT design. This was less than the time available
for the computation (3ns in the top level 64-point block and
12ns in the 16-point blocks at 1.3 GHz operating frequency).
However slowing the operation down beyond 860ps simply
adds more area, energy, and latency to the control path.

An additional performance critical aspect of a design is
due to pipeline synchronizations. Adding or removing pipeline
stages in an asynchronous design can be employed to remove
forward and backward stalls in an architecture. This has
been referred to as “slack matching” in the asynchronous

T44%:(
al ao
[} a?2 —
| ws |
a4 —

Fig. 9. Synchronous Expander Fig. 10. Asynchronous Expander
Re{x[0]} Re{X[0]}
Im{x[0]} Im{X[0]}
Re{x[1]} Re{X[1]}
Im{x[1]} Im{X[1]}
Re{x[2]} Re{X[2]}
Im{x[2]} Im{X[2]}
Re{x[3]} Re{X[3]}
Im{x[3]} Im{X[3]}

Fig. 11. Data Flow Graph of 4-point FFT Calculation

literature [10]. Therefore a version of the performance critical
4-way decimator was designed as a 2x2 pipelined decimator
to increase throughput and reduce sensitivity to backward
stalls. Likewise the crossbar and 16-way expander in the 64-
point design of Fig. 13 have been pipelined.

The asynchronous design was built using “natural” pipelin-
ing for each block with pipeline performance targets based on
the top level architecture. For example, pipeline stages exist
between the adders of the design whereas they can be removed
from a performance perspective. A few modifications to the
original pipeline structure have been made to improve area in
the “async-opt” design.

B. Synchronous Design

The synchronous FFT is designed using the same architec-
ture in Fig. 4. It consists of clocked decimators and expanders
(Fig 7 and 9). The 4-point synchronous FFT design is a six
deep pipeline.

Fig. 7 shows the clocked 4-way decimator. The design
consists of a high frequency register bank and a low frequency
register bank, a clock divider, and a shift register to track the
relationship between the two clocks. The shift register must
be properly initialized in relation to the global state of the
circuit based on data arrival to ensure proper data steering. The
data is incrementally latched into the high frequency register
bank. At the low frequency clock the data is then shifted
into the low frequency register bank, where it is sampled at
a 1/Na frequency. The expander in Fig. 9 is the dual of
the decimator. The parallel data stored into a low frequency
register is streamed and stored in the output register based on
the higher frequency clock. The channel selection is dependent
on the shift register and requires properly initialization similar
to the decimator.

e 7 "

j4 C3 8 38

u
H
=
o

Cc2 f5

Fork _delay Join Fork

X) . pu)
lr oo Decd — — — —
la
C1y 72 j2 C24 16 j6 C3y
s ” " "

delay
-—

3| 19 79

Exp4

f10

fi1 j11

<

H
=
w

Join Fork Join

Fig. 12. 4-point FFT Design

IV. RESULTS

These circuits use the Artisan academic library in IBM’s
65nm 10sf process. The circuits were designed in behav-
ioral Verilog, synthesized using Design Compiler, and place
and routed using SoC Encounter. Circuits were simulated
for timing and functional correctness using Modelsim with
postlayout parasitics back-annotated. Testing was performed
using pre-defined input vectors which included 1024 random
numbers. Both 64-point FFT circuits have less than +0.3%
variation as compared to MATLAB FFT computation. Various
performance parameters including forward latency, cycle time,
and throughput were also generated from the simulation along
with VCD (Value Change Dump) file. The simulation VCD
file along with the parasitics of the place and routed design
was used to calculate the power numbers for each design by
PrimeTime PX.

Tab. T and II summarize these multirate designs against
several other designs. These 16-point implementations are
compared against a design that is similar in architecture [11].
The 64-point benchmark is a low power Texas Instruments
design [12]. Performance is measured as the time to com-
pletely process 1024 samples.

The simplicity of making architectural and performance
modifications to the asynchronous design allowed us to
quickly explore a simple area improvement to our asyn-
chronous architecture. The 64-point architecture contains four
16-point FFT’s. Each of these contain three complex mul-
tipliers operating at 1/16 the top level frequency. At this
frequency the multipliers could be shared, removing 8 complex
multipliers from the design (Async-opt) resulting in an overall
18% area reduction. This modification had a minor positive
affect on performance and negative affect on latency and
energy per point. Other modifications that reduce area at little
or no energy and performance cost can also be explored, as
well as other optimizations based on target versus required
frequencies. Asynchronous designs are particularly amenable
to such architectural explorations.

For comparison, results in these tables are optimistically
scaled to an equivalent for 65nm technology node by using
theoretical constant-field scaling assuming the scaling factor
k = 1.43 per node (let s = 1/x = 0.7) [13]. This results in
delays in the tables multiplied by s, s2, and s°® for the 90nm,
130nm, and 600nm nodes. Energy values are scaled by s3, s5,
and s'®. Area reduces by s? per generation.

The biggest advantage of this multi-frequency architecture
against the others comes in the form of throughput. These
designs can sustain a rate of one data point per clock cycle,

FFT4

FFT4

FFT4

FFT4

FFT4

FFT4

FFT4

FFT4
Dec

Crossbar
4x16

16

FFT4

FFT4

FFT4

FFT4

NI TLTITL T T TL T TLTL T TL TL TL T1

A P L A 1 A 1 A A

- FFT4
FFT4
FFT4
FFT4
Fig. 13. 64-point FFT Design

at a relatively constant frequency regardless of the point size.
The asynchronous design also provides a substantial reduction
in latency. From an idle start, the asynchronous 16 and 64-
point designs can complete processing 1024 samples over 8
and 32 times faster respectively than the benchmark designs.
Multi-frequency design also shines in energy per sample. The
asynchronous designs consume approximately one-fourth the
energy per sample of the competitors. This 16-point pipelined
design is less than half the size of this comparable clocked
hierarchical pipelined design. When comparing this design
against the low power 64-point design from Texas Instruments,
the clocked design and area optimized asynchronous designs
consume six and two times the area. This points out the
very different design targets and architecture styles. Their
architecture shares the computation units for area efficiency
at a cost of higher energy and much lower performance.

The Async-opt design is significantly better than the clocked
design of the same architecture. The 64-point design shows an
improvement of 2.28x the energy per data point and 3.16x
the performance while costing only one-third the area.

Accurately comparing FFT designs with different point
sizes, technology nodes, and architectures is challenging.
Tab. III therefore provides a design comparison based on three
metrics - Benefit Product [15] and er? using Baireddy as the
reference, and Normalized FFTs per Energy [14]. Benefits
Product is the product of the area, energy, and execution
time. Baas and Chong employ voltage scaling to quadratically
reduce energy. Energy times square of the execution time (e7?)

rr
ra

TABLE I
THE 16-POINT FFT COMPARISON RESULT (¥ CONSTANT FIELD SCALED TO 65 NM TECHNOLOGY)

Design Tech. | Points — | Word | Clock | 1K-point Exec. | Power | Energy/point| Area |Exec.Time|Energy| Area
nm |Samples| bits | MHz Time ps mW pJ Kgates| Benefit |Benefit|Benefit
This Design (Async)|| 65 |16-1024| 16 | 1,274 0.83 30.9 25.05 54 8.32 393 | 273
This Design (clock) || 65 [16-1024| 16 | 588 1.73 24.7 41.83 71 3.98 235 | 2.07
Guan [11] 130 | 16-1024| 16 | 653* 6.91* 14.6* 98.33* 147 1.00 1.00 | 1.00
TABLE I
THE 64-POINT FFT COMPARISON RESULT (* CONSTANT FIELD SCALED TO 65 NM TECHNOLOGY, + NOMINAL PROCESS VOLTAGE)
Design Tech.| Points — |Word | Clock | 1K-point Exec. | Power | Energy/point| Area | Exec.Time|Energy| Area
nm | Samples | bits | MHz Time us mW pJ um? | Benefit |Benefit |Benefit
This Design (Async-opt) 65 | 64-1024 | 16 | 1,357 0.87 69.4 59.23 395 32.24 451 | 047
This Design (Async) 65 | 64-1024 | 16 | 1,316 0.87 65.5 55.65 479 32.39 4.80 | 0.39
This Design (Clock) 65 | 64-1024 | 16 | 667 2.76 50.2 135.30 |1,160| 10.21 1.97 | 0.16
Baireddy [12] 90 | 64-4096 | — | 514" 28.18" 9.7* 266.95* | 186" 1.00 1.00 | 1.00
Chong (1.1V) (Async) [14]]| 350 | 128-128 | 16 - 1,633.64" - 445" 45* 0.02 5998 | 4.12
Chong (3.5V) (Async)[14]|| 350 | 128-128 | 16 - 513.43* - 45.06" 45* 0.05 592 | 4.12
Baas (3.3V) [15] 600 [1024-1024| 20 |1,470" 3.53* 11.7* 40.31% 679" 7.98 6.62 | 0.27
Baas (5V)*[15] 600 |1024-1024| 20 |2,228* 2.33* 40.7* 92.55* 679" 12.10 2.88 | 0.27
TABLE IIT REFERENCES

DESIGN COMPARISONS (+ THE NOMINAL PROCESS VOLTAGE)

2

—

[1]

[2]

[3]

[4]

Design er Normalized FFTs| Benefit
Advantage | per Energy [14] |Prod. [15]

This Design (Async-opt) || 4,683.38 17.35 68.54
This Design (Async) 5,031.00 18.47 60.37
This Design (Clock) 205.60 7.60 3.23
Baireddy [12] 1.00 - 1.00
Chong (Async-1.1V) 0.02 8.33 4.26
Chong (Async-3.5V)" 0.02 17.01 1.34
Baas (3.3V) [15] 421.98 8.44 14.48
Baas (5V)*[15] 421.98 3.31 9.56

provides a reference that is independent of voltage scaling.
The Normalized FFTs per Energy metric largely disregards
performance. Those results are normalized to the 350nm node
to produce the same values as reported in [14].

V. CONCLUSIONS

Multirate asynchronous and a synchronous 16 and 64-point
FFT circuits were implemented and compared against pub-
lished FFT designs. A novel relative-timing based flow which
enables the use of pre-characterized sequential templates with
synchronous CAD tools and flows to develop asynchronous
circuits is used. This work demonstrated that the flow can be
efficiently applied to a large asynchronous design. The relative
cost of development of an asynchronous circuits with the new
flow is similar to its synchronous counterpart for development
of these multirate designs. The FFT circuit operates at 1.4GHz
and consumes 59.2pJ of energy per data point. A 2.4x, 2.4x
and 3.2x benefit in terms of area, energy and throughput
respectively over its synchronous counterpart is achieved. Also
a 048x, 4.5x and 32.20x benefit over a low power 64-
point FFT design by Texas Instruments [12] as well as a
2.77x, 8.01x and 8.32x benefit over a similar 16-point FFT
architecture [11] are reported respectively for area, energy and
throughput.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by Semiconduc-
tor Research Corporation Tasks 1817.001 and 2235.001, and
the National Science Foundation under Grant No. 1218012.

[5]

[6]

[7]

[8]
[9]
[10]
(11]

[12]

[13]
[14]

[15]

J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desyn-
chronization: Synthesis of Asynchronous Circuits From Synchronous
Specifications,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 25, no. 10, pp. 1904-1921, Oct 2006.
K. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. Myers, K. Yun,
R. Kol, C. Dike, and M. Roncken, “An Asynchronous Instruction Length
Decoder,” IEEE Journal of Solid State Circuits, vol. 36, no. 2, pp. 217-
228, Feb. 2001.

B. Suter and K. Stevens, “Low Power, High Performance FFT Design,”
in Proceedings of IMACS World Congress on Scientific Computation,
Modeling, and Applied Mathematics, no. 1, 1997, pp. 99-104.

B. W. Hunt, K. S. Stevens, B. W. Suter, and D. S. Gelosh, “A Single Chip
Low Power Asynchronous Implementation of an FFT Algorithm for
Space Applications,” in International Symposium on Advanced Research
in Asynchronous Circuits and Systems. 1EEE, April 1998, pp. 216-223.
K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous
Templates for Integration into Clocked CAD Flows,” in 15th Interna-
tional Symposium on Asynchronous Circuits and Systems. 1EEE, May
2009, pp. 151-161.

R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asyn-
chronous and Synchronous Fininte State Machines: Algorithms and
Tools. Kluwer Academic, 2001.

Y. Xu and K. S. Stevens, “Automatic Synthesis of Computation Interfer-
ence Constraints for Relative Timing,” in 26th International Conference
on Computer Design. 1EEE, Oct. 2009, pp. 16-22.

B. W. Suter, Multirate and Wavelet Signal Processing. Academic Press,
1997.

R. E. Miller, Switching Theory. New York, New York: Wiley, 1965,
vol. 2, chapter 10 reviews Muller’s work on speed independent circuits.
A. M. Lines, “Pipelined Asynchronous Circuits,” Master’s thesis, Cali-
fornia Institute of Technology, Pasadena, CA, 1998.

X. Guan, Y. Fei, and H. Lin, “Hierarchical Design of an Application-
Specific Instruction Set Processor for High-Throughput and Scalable
FFT Processing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 3, pp. 551-563, March 2012.

V. Baireddy, H. Khasnis, and R. Mundhada, “A 64-4096 point
FFT/IFFT/Windowing Processor for Multi Standard ADSL/VDSL Ap-
plications,” in International Symposium on Signals, Systems and Elec-
tronics. 1EEE, 2007, pp. 403—405.

A. Chandrakasan, W. Bowhill, and F. Fox, Design of High-Performance
Microprocessor Circuits. Wiley-IEEE Press, 2000.

K. Chong, B. Gwee, and J. Chang, “Energy-efficient synchronous-logic
and asynchronous-logic FFT/IFFT processors,” IEEE Journal of Solid-
State Circuits, vol. 42, no. 9, pp. 2034-2045, 2007.

B. Baas, “A low-power, high-performance, 1024-point fft processor,”
Solid-State Circuits, IEEE Journal of, vol. 34, no. 3, pp. 380-387, 1999.

