
Multispeculative Additive Trees in High-Level
Synthesis

Alberto A. Del Barrio*, Roman Hermida*, Seda Ogrenci Memik#, Jose M. Mendias*, Maria C. Molina*
*Architecture and Technology of Computing Systems, Universidad Complutense de Madrid (UCM), Spain

#Department of Electrical Engineering and Computer Science (EECS), Northwestern University, Evanston, Illinois
albertodbg@fdi.ucm.es, rhermida@dacya.ucm.es, seda@eecs.northwestern.edu, {cmolinap, mendias}@dacya.ucm.es

1Abstract— Multispeculative Functional Units (MSFUs) are
arithmetic functional units that operate using several predictors
for the carry signal. The carry prediction helps to shorten the
critical path of the functional unit. The average performance of
these units is determined by the hit rate of the prediction. In spite
of utilizing more than one predictor, none or only one additional
cycle is enough for producing the correct result in the majority of
the cases. In this paper we present multispeculation as a way of
increasing the performance of tree structures with a negligible
area penalty. By judiciously introducing these structures into
computation trees, it will only be necessary to predict in certain
selected nodes, thus minimizing the number of operations that
can potentially mispredict. Hence, the average latency will be
diminished and thus performance will be increased. Our
experiments show that it is possible to improve on average 24%
and 38% execution time, when considering logarithmic and
linear modules, respectively.

Index Terms — Speculation, operation trees, High-Level
Synthesis.

I. INTRODUCTION

There are many DSP and multimedia applications
composed of one or several additive structures. Addition chains
or trees usually appear in signal processing applications such as
ECG [1], numerical integration methods [2], or the ADPCM
[3]. Thus, it is crucial to improve the quality of adders and
adder-dominated structures without incurring significant area
or power overhead.

Historically there have been two points of view to face the
abovementioned problem. On the one hand, increasing the
adders’ complexity and thereby, their speed. Various adder
designs have been proposed to achieve different trade-offs
between hardware complexity and performance [4]. All such
adders exhibit a certain fixed amount of latency. A different
design option is the Carry Save Adder (CSA) [4], where the
carry propagation is accelerated at the expense of utilizing
many Full-Adder cells. Despite recent contributions towards
Dataflow Graph (DFG) transformations to optimize the use of
CSAs [7], the application of these structures still restricts the
use of crucial High-Level Synthesis (HLS) techniques such as
module sharing. In order to maximally reuse a CSA-tree, a
similar cluster of nodes must appear several times in different

1 This work was supported by the Spanish Government Research

Grant TIN 2008/00508
1 978-3-9815370-0-0/DATE13/©2013 EDAA

control steps, which is not as easy to encounter as in the case of
a single addition node.

On the other hand, the introduction of Variable Latency
Functional Units (VLFUs) has augmented the possibilities in
the design space [8-11]. Although literature offers several
possibilities for handling these units [11-14], all of them are
subject to the possibility of the worst-case timing, i.e. VLFUs
working in long latency mode. Some of the VLFUs available in
literature [14] are based on various forms of speculation over a
carry value. We shall refer to them as Speculative FUs (SFUs).
In this paper, first we extend the concept of SFUs with the
application of speculation over multiple points of the addition
carry chain. Hence, in this work, Multispeculative FUs
(MSFUs) will be described and afterwards utilized to optimize
additive structures. We propose to take advantage of these
structures for reducing the number of mispredictions and thus
increasing overall performance. The basic idea is to pipeline
some intermediate carries from one addition to the other, in the
case of the inner nodes of the additive structure. In this way,
the number of possible mispredictions will be diminished.
According to our experiments it is possible to reduce execution
time by 24% and 38% on average with respect to a baseline
implementation with non-speculative logarithmic and linear
FUs, respectively.

The rest of the paper is organized as follows: section II
presents the Multispeculative Adder and the additive structures
where it can be introduced. Section III describes the application
of multispeculation over the datapaths. Finally, sections IV and
V present our experimental results and conclusions.

II. MULTISPECULATIVE ADDITIVE STRUCTURES

A generic n-bit Multispeculative Adder (MSADD) consists
of n/k fragments of width k that operate in parallel, whose
carry-in is provided by a predictor. A hit signal will indicate
when the operation is correct: iff all the true carry-out values of
each module are equal to the corresponding prediction of the
carry-in values of the following module. Each predictor will be
updated with the true carry-out iff there is a misprediction. The
main idea for using MSADDs is that despite utilizing more
than one predictor, almost every addition will be executed in
two very short cycles at the most, because the probability of
propagating a misprediction from a fragment to the following
one is the same as finding a chain of k propagates signals,
which is very low if k is large enough [8,9]. Nevertheless, the
objective must be reducing the latency of the whole additive
structure, instead of a single addition. Our idea consists of
pipelining the inner nodes’ carries from a cstep to the following

[15] during the first cycles, avoiding thus any penalty cycles
during this first set of operations. Finally in the last cycles,
predictors will be utilized as usual, reducing the critical path of
the last stage, which is the main limitation of CSA structures,
and thus increasing performance.

Figure 1 shows our proposed MSADD. This MSADD is
specially oriented to implement additive structures. Hence, as
prediction is only applied in the last stage we have chosen the
simplest predictors, i.e. D-flipflops, for diminishing as much as
possible the critical path of the MSADD. Thereby, in the last
cycles a failure will be produced iff a carry-out from any
fragment is ‘1’, i.e. different from the prediction. The D-
flipflops will be cleared every time the additive structure
finishes its execution correctly. In addition to this, the
destination register utilized in the last cstep must be used as the
source when correction is required. Only a slight modification
of the controller is necessary to indicate that the D-flipflops
must always be written and the carries pipelined during the first
csteps, and the hit signal considered from the last cycle
onwards, i.e. in prediction mode. In this last cstep/state a
control mechanism similar to [12,13] is utilized, i.e. if the hit
signal is false there will be a transition to a correction state, and
otherwise there will be a transition to the following state.

In the next subsections, a more detailed explanation of how
these principles apply to concrete structures will be presented.

A. Scheduling of Addition Chains

In general, a conventional addition chain of L operands will
require L-1 cycles, with monocycle FUs, provided that a single
adder is reused to implement all the operations. On the other
hand, in the multispeculative case, the addition of L operands
will need L-1+1=L cycles at the most, with a high-probability.
Note that in the best case the chain only requires L-1 cycles and
in the worst case (L-1)+n/k-1 cycles. It should be reminded that
in addition to this the MSADD is divided into k-bit fragments,
and thus cycle time will become proportional to the k-bit delay,
instead of the n-bit delay.

Let us assume an addition chain A+B+C+D with 16-bit
operands, i.e. L=4. A conventional chain-like implementation
will take 3 cycles. In the multispeculative case, it will require
3+1=4 cycles with a high-probability. Figure 2 depicts the two
most common cases when applying multispeculation. Figure 2
a) shows this addition chain in a case of primary hit. During the
first 2 cycles the intermediate carries are pipelined, but in the
last stage a static zero prediction is considered. As the carry-out
signals proceeding from the intermediate fragments are ‘0’ (see
the red dotted lines), there is no need for additional cycles.

Figure 2 b) on the contrary, depicts a case of misprediction in
cycle 3, because there are two intermediate carries equal to ‘1’.
In the next cycle these logic ‘1’ values are added, and as the
resulting carry-out signals are ‘0’, there is a hit in cycle 4.

Finally, let us emphasize the importance of prediction in the
last cstep. If no prediction were performed, it would take n/k =
16/4 = 4 cycles to propagate the carries and thus certify the
correction of the addition. Overall we would require (L-1)+n/k-
1=6 cycles, which is 50% more in comparison with the
expected L=4 cycles.

B. Scheduling of Full Binary Addition Trees

Figure 3 is an example of scheduling, binding and carry
propagation of a full binary addition tree with 8 operands. The
scheduling is determined by the dotted lines and the binding by
the node colors. Let Ai be the ith adder, and let Ci be the
associated carry-out vector. It must be noticed that these carry
vectors are only shown in the speculative cases. In figures 3 a)
and 3 b), 4 non-speculative adders and 4 MSADDs have been
considered, respectively.

With multispeculation, each adder Ai is producing a vector
of provisional results (Vi), and a vector of intermediate carries
(Ci), such that the final result SAi=Vi+Ci. The problem in a full
binary tree structure is that every adder produces two vectors,
and can only consume three. Hence, two adders will produce
four vectors, and in the following level of the tree only three of
these vectors will be consumed. In order to solve this problem,
we propose to consume these additional vectors through the
non-active adders, thanks to the associative property of the
addition. This is the key idea: in any full binary adder tree there
is always a level above which all the previous levels contain
more additions than available adders, and below which all the
following levels contain more available adders than additions.
Hence, it is guaranteed that there will be idle adders available.

In figure 3 a) the datapath only requires 3 cycles. On the
other hand, 4 short cycles are enough in figure 3 b), with a high
probability. As it can be observed, in cstep 1 C1, C2, C3 and

Figure 1. MSADD for implementing additive structures

Figure 2. Multispeculative flow for three 16-bit additions with 4-
bit blocks, a) primary hit, b) failure and one correction cycle cases

a)

b)

0

0000 + 0000

0

1111 + 0001 0111 + 0011

101000000000

1 0

1 0

101111111101

0 1

0011

0

0

0011 1011

A+B

A+B+C

P
ip

e
lin

e

CLEAR

Frag 2 Frag 1 Frag 0

Frag 2 Frag 1 Frag 0

0

0000 + 1111

0 Frag 3

1111

0

1111

0 Frag 3

1110

010100110100

0 10 0

1001

0

1011 0110

A+B+C+D
Frag 2 Frag 1 Frag 0

1110

0

0000

1 Frag 3

P
re

d
ic

tio
n

Cycle 1

Cycle 2

Cycle 3

0

0000 + 0000

0

1111 + 0001 0111 + 0011

1010 0000 0000

1 0

1 0

1011 0010 0001

0 1

0011

0

0

0011 1011

A+B

A+B+C

P
ip

el
in

e

Frag 2 Frag 1 Frag 0

Frag 2 Frag 1 Frag 0

0

0000 + 1111

0 Frag 3

1111

0

1111

0 Frag 3

1110

0101 0011 0100

0 1 1 0

1101

1

1110 0110

A+B+C+D
Frag 2 Frag 1 Frag 0

1110

0

0000

1 Frag 3

P
re

di
ct

io
n

1011 0010 0010
CLEAR

1111

1 0 0 0

0000

0

0000 0000

A+B+C+D
Frag 2 Frag 1 Frag 0 1

0000

1 Frag 3

Cycle 1

Cycle 2

Cycle 3

Cycle 4

C4 are produced, but in cstep 2 only A1 and A3 are active, so
only C1 and C3 can be consumed. In order to solve the
problem of consuming C2 and C4 vectors, the idle adder A2
will add both C2, already stored in the D-flipflops of A2, and
C4. It should be pointed out that the carry-out vector of A2 in
cstep 2 will be full of zero’s because k>1. Hence, the result
vector coming out from A2 will be enough for accumulating
three input vectors that in the worst case will only contain a ‘1’
in the least significant position of each MSADD submodule.
This new addition will be called carry-propagation addition. In
cstep 3 we will proceed in the same manner as with the
addition chains, and A1 will work in predictive mode, i.e.
considering a static-zero prediction. Thus, C1 will be consumed
in its own A1 adder, while C3 will be added in A2, with a new
carry-propagation addition, to the previous result proceeding
from cstep 2. The result Z’ will be equal to Z iff there is a hit in
A1, and if the result coming out from A2 is equal to zero.
Otherwise, a last cstep 3’ will be necessary for adding both
output vectors from A1 plus the accumulated result from A2. In
cstep 3’, A1 will work in prediction mode until it produces a
hit. Hence, if the carry-out vector C1=’0’, the result Z’’ will be
equal to Z. This will happen with a high probability, since both
C1 and the result coming from A2 in cstep 3 will usually
contain only a few ‘1’s in the least significant positions of
every MSADD submodule. Thus, 4 cycles will be sufficient
with a high probability.

In a full binary addition tree, the number of required csteps
depends on both the number of operands and the number of
available adders, as stated in the following proposition.

Lemma 1. Provided that the number of operands is L=2m,
and the number of available adders is s=2r, where m,r>=0, the
number of required csteps is given by equation (1).

2 log log 1 (1)

Proof. Provided that L=2m, s=2r, in every level i of the tree

there will be (L/2i) additions. Hence every level will take
(L/2i)/s csteps. This will be the case until s=L/2i, i.e. i=log(L/s).
This sums L/s-1 csteps. From this tree level onwards, log(s)
csteps will be required. Note that the similar demonstration
with 2m < L < 2m+1 and 2r < s < 2r+1 cannot be presented in this
paper due to space restrictions.

In the example depicted in figure 3 a), L=8 and s=4, thus

8/4+log(4)-1=3 csteps are required. On the other hand, the
multispeculative version shown in figure 3 b) takes 4 cycles
with a high probability. Therefore, it can be concluded that if a
non-speculative full binary tree of L operands requires
L/s+log(s)-1 cycles, with monocycle FUs, its multispeculative
version will take L/s+log(s) cycles at the most with a high
probability. It should be noticed that this additional cycle
corresponds to cstep 3’ in figure 3 b). This is what we shall call
the recovery cstep, that is required just in case of misprediction,
but that is not necessary if there is a hit. In conclusion, in both
chains and trees, the latency is increased by only one cycle. In
fact, an additions’ chain is a simplified case of tree where s=1.
On the other hand, with multicycle FUs multispeculation will
also reduce the average latency of the circuit. However, this
reduction cannot be exactly quantified because it depends on
the latency of the individual FUs. The example in section III.A
will serve to illustrate this latency reduction.

III. ON THE APPLICATION OF MULTISPECULATION TO HIGH-
LEVEL SYNTHESIS

In this section, the principles and methodology to
incorporate multispeculation to HLS will be generalized and
explained in detail. Although all the aforementioned techniques
can be applied directly to certain DFGs that are exactly in the
form of additive binary trees, there are cases when the DFG is
composed of several additive trees. In such cases, we will
restrict the use of multispeculation only to those additive trees.
Similar principles as those described for full binary trees, will
be applied to generic additive trees. An additive tree is one that
is composed only of addition nodes, except for the leaf nodes,
that can also be products. In this case, we can take advantage
from the fact that multipliers are usually implemented with a
partial product matrix in CSA form and a last CPA stage. If this
last CPA stage is a MSADD, the result produced by a
multiplier Mi can be expressed as the sum of two bit vectors Vi
and Ci such that SMi=Vi+Ci. Only a slight modification of the
MSADD presented in figure 1 is required. A multiplexer at the
input of every submodule will be required in order to select
either the carry stored in the own D-flipflop of the MSADD, or
another carry coming from a multiplier.

Hence, it is necessary to design an algorithm to identify
those additive structures where multispeculation can be applied
and develop an automated procedure to keep the datapath in a
correct state. Finally an interface for communicating with the
controller must be defined. This interface will be composed of

Figure 3. Scheduling, binding and carries propagation of the Z=(A+B+C+D+E+F+G+H) addition tree with a) 4 non-speculative

adders, b) 4 MSADDs

a) b)

+ + + +

+ +

+

A B C D E F G H

Z

cstep 1

cstep 2

cstep 3

A1 A2 A3 A4
+ + + +

+ +

+

A B C D E F G H

Z’

cstep 1

cstep 2

cstep 3

C1 C3
C2 C4

C3C1

+

C2 C4

0

+
C3

0

cstep 3’ +

C1
0

Z’’C1

a hit signal collected from each unit [14]. The controller will be
similar to the one presented in [12,13], i.e. if there is a failure
there will be a transition to a correction state, and otherwise a
transition to the following state.

Moreover, the HLS flow must be adapted to the special
features of multispeculative trees with new algorithms. The fact
that must be taken into account is that the availability of the
operators is somehow restricted once they are utilized inside an
additive tree, because they will not be available for a different
additive structure until the associated carry vector of the
operator under question has been consumed. However, as it
will be shown in the following discussion, with a reasonable
number of resources a penalty on the latency can be avoided.

Figure 4 illustrates our design flow. First, all the additive
binary trees are identified, by finding those node sets where
any internal result is never multiplied. Second, a recovery
addition per tree is included in the DFG. And third, the carry
propagation additions are introduced where required, e.g. in
the example of figure 3 b). The introduction of these recovery
and carry-propagation additions constitutes the mechanism for
keeping the datapath in a correct state, as in the full binary
addition trees case. Afterwards, the DFG is scheduled and
bound. In our case, due to the aforementioned operators’
restriction, we have applied a combined resource constrained
scheduling and binding algorithm [6]. In order to schedule
operations, first they are ordered according to the inverse of
their mobility, and then they are scheduled and bound iff there
is a suitable free FU. The main difference with regard to a
conventional flow comes when the operation to be scheduled in
a given cstep and bound to a given FU, and the previous
operation bound to this FU lie in different trees. In such case, it
must be determined whether the carry-out vector associated to
the FU has been consumed or not. If this carry-out vector has
not been consumed yet, the FU is not ready to be bound to this
new operation, as the carry-out vector must be added in the
same tree where it was generated. Otherwise, if the operation
belongs to the same tree as the previous operation bound to the
FU, the carry-out vector can be accumulated in this FU.

A. An Illustrative Example

In order to show the principles of multispeculation over
complete datapaths, our techniques will be applied to the
Discrete Wavelet Transform (DWT) [5] benchmark. We have
used logarithmic like non speculative adders and multipliers
that take 2 and 4 cycles, while their multispeculative
counterparts require 1 cycle and 3 cycles, respectively, in case

of a primary hit. It must be noticed that multispeculative
multipliers are composed of a CSA matrix and a MSADD last
stage. Hence, the non speculative latencies have been derived
as log(n) and 2log(n), and the speculative ones as log(k) and
log(n)+log(k), for both the adders and multipliers, respectively.
Thereby, using n=16 and k=4, it is possible to obtain the
aforementioned values.

Figure 5 a) depicts the DFG of the DWT. Operations are
labeled with numbers 1 through 17. Figure 5 b) corresponds to
a conventional resource constrained scheduling [6] using 2
non-speculative multipliers and 1 adder. As it can be observed,
it takes 28 csteps. Figures 5 c), d) and e), illustrate the
application of our methodology. First, all the additive binary
trees are identified. Figure 5 c) depicts the 6 trees that comprise
the DWT DFG. Second, a recovery addition is introduced at
the end of every tree. This is shown in figure 5 d), where the
new recovery additions (Operations 4’, 7’, 8’, 11’, 12’ and 17’)
are highlighted in darker shade colour. Recovery additions will
be later executed as many times as needed for producing the
correct result of the tree. Third, the carry-propagation additions
must be introduced when necessary. In this example, as the
carry propagation can be performed through their own tree
nodes, there is no need to introduce any one. Finally, this new
DFG is scheduled and bound considering that all the operations
will produce a hit in the prediction. We have utilized the
algorithm described in section III, using 2 multipliers and 1
adder, as in the non-speculative case. The resulting schedule
and FU-binding is shown in figure 5 e). Note that the FU-
binding to the two multipliers is depicted with the use of
different filling colors/patterns for the nodes: solid shaded
nodes map to M1 and striped nodes map to M2. Addition nodes
are bound to the only adder A1. In order to understand the
algorithm several cases related to figure 5 e) will be explained.
For instance let’s consider the tree composed of Operations 1,
2, 3, 4 and 4’. As there are enough resources, M1 and M2 are
utilized for binding both Operations 1 and 3. Now, let’s
consider the tree composed of Operations 6, 8 and 8’. As M1 is
free in cstep 4, and its carry-out vector is consumed by
Operation 2 in cstep 4, it is possible to bind Operation 6 to
multiplier M1. Finally, let´s consider Operation 14. It could
have been scheduled in cstep 10 because M1 is free in this
cstep and its carry-out vector is being consumed by Operation
7. However, as Operation 9 belongs to a different unscheduled
tree to that one of Operation 14, and it has more priority than
Operation 14, it cannot be scheduled yet. Hence, it is
scheduled in cstep 11, after scheduling Operation 9.

Dotted arrows in figure 5 e) denote how the carry vectors
are propagated. It should be noted that recovery additions do
not have an output dotted arrow because they produce a correct
result. The csteps are numbered with a label C or C’ in the
leftmost part of figure 5 e). The C‘ csteps are recovery csteps
that only contain recovery additions. Hence, these C’ csteps
can be skipped in execution if the controller detects a hit. Thus,
in figure 5 e), if Operations 7, 11 and 17 produce a hit, csteps
10’, 14’ and 19’ will actually not be necessary. Besides the C’
csteps, every cstep containing a recovery addition will become
a recovery cstep. These csteps are highlighted with a solid
background in figure 5 e). Hence, as stated in section III and
according to our experiments, none or only one recovery cycle
will usually be enough for certifying the correct result, so the

Figure 4. Design flow for multispeculative additive structures

trees := getAddi veStructures(DFG)
trees := putRecoveryAddi ons(DFG,trees)

trees:= putCarryPropagateAddi ons(DFG,trees)

avgLat := simulate(trees);
Synthesize

avgDelay := avgLat*delay(trees);
area := area(trees)

msTreesSchedulingBinding(opera ons,operators)

average latency will range between 19 and 19+6 recovery
csteps = 25 cycles, which is better than the conventional case.
Nevertheless, it must be taken into account that Operations 4’,
8’ and 12’ are always executed, because they are scheduled in
csteps that also execute non-recovery operations. In other
words, a 1-cstep recovery slot is available for Operations 4, 8
and 12. Thus, provided that a cycle is enough for correcting the
results, Operations 4’, 8’ and 12’ will serve to correct possible
mispredictions coming from Operations 4, 8 and 12,
respectively. Therefore, the actual average latency will range
between 19 and 22 cycles.

In conclusion, as it can be observed, the application of
multispeculation over additive binary trees has reduced the
instances of actual mispredictions. If the existence of additive
trees had been ignored [14], every operation might have
produced a misprediction, while in our case only 6 operations
can mispredict, and furthermore even 3 of them can hide one
recovery cycle, which diminishes average latency even further.

IV. EXPERIMENTS

In this section we first describe our experimental
framework. Next, we discuss our experimental results.

A. Framework

Our implementations have been generated following the
flow detailed in figure 4. A simulator has been built in order to
measure the number of hits and mispredictions, as well as the
average number of cycles. The benchmarks are simulated for
106 iterations to obtain execution time and area results. During
the simulation, inputs are modeled stochastically, in a similar
fashion to the profiling information obtained in [16] by Brooks
and Martonosi. Taking into account the data presented in [16],
the most significant fragment of the two operands consists of a
sign extension with a high probability (>0.9). On the contrary,

the least significant fragments behave roughly random.
Afterwards the resulting datapaths have been automatically
coded in VHDL and synthesized with Synopsys Design
Compiler, with a 65 nm library. Area is measured in μm2 and
delay in nanoseconds. Finally, average execution time is
obtained as the product of both the average latency and the
delay given by Synopsys.

B. Results

In order to check the performance and area of the
MSADDs, several experiments have been performed.

1) Area-Delay results
Several benchmarks have been synthesized in order to get

area and delay results, namely:
 The 16-bit Dilation inner loop code, used in the ECG [1].
 The 16-bit Accum submodule in the ADPCM decoder [3].
 The 16-bit Discrete Wavelet Transform (DWT) [5].
 The 16-bit Finite Impulse Response (FIR) filter [5].
 The 16-bit Autoregressive Filter (ARF) [5].
 The 32-bit Simpson 3/8 integration (Simpson38) [2].
 The 32-bit Trapezoid integration (Trapezoid) [2].
 The 16-bit dot product of two vectors, each of 8

components (Dot_8).
Tables I a) and b) present the simulation and synthesis

results of these benchmarks for both logarithmic (Kogge-
Stone) and linear (Ripple Carry) modules [4], respectively. In
both tables, the leftmost column indicates the name of the
benchmark, while columns 2 and 3, and columns 4 and 5
contain the execution time and area of the baseline
implementation (Conv), and the percentage variation of the
multispeculative one (MS), respectively. This baseline flow is
composed of conventional list-scheduling and left-edge binding
algorithms using non-speculative FUs.

Figure 5. a) Discrete Wavelet Transform (DWT) DFG [5], b) conventional scheduling with non-speculative FUs, c) additive

structures in the DWT DFG without and d) with the recovery additions, e) scheduling and FU-binding with multicycle MSFUs

x

+

1

2 x 3

+ 4

x

+

5

7

x

+

9

11

x

+

6

8

x

+

13

15

x

+

10

12

+ 17

x

+

14

16

x

+

1

2

x 3

+ 4

x 6

x 5
+ 8

+ 7

x 9

+ 11

x 10

+ 12

x 13

+ 15

x 14

+ 16

+ 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

a) b) c)

x

+

1

2 x 3

+ 4

x

+

5

7

x

+

9

11

x

+

6

8

x

+

13

15

x

+

10

12

+ 17

x

+

14

16

d) e)
x

+

1

2 x 3

+ 4

x

+

5

7

x

+

9

11

x

+

6

8

x

+

13

15

x

+

10

12

+ 17

x

+

14

16

+ 4’

+ 7’ + 8’

+ 11’ + 12’

+ 17’

x 1

+ 2

x 3

+ 4

+ 4’

x 6

+ 8
x 5

+ 7

+ 8’

+ 7’

x 10

+ 12

+ 12’ x 9

+ 11

+ 11’

x 13

+ 15

+ 17’

+ 17

x 14

+ 16

1

2

3

4

5

6

7

8

9

10

10’

11

12

13

14

14’

15

16

17

18

19

19’

As it is shown, multispeculative results improve execution
time by 24% (44% in the best case) and by 38% (63% in the
best case) on average for logarithmic and linear modules,
respectively. In terms of area, the average area penalty of the
multispeculative results is close to zero and 6% for logarithmic
and linear implementations, respectively. As it can be
observed, execution time reduction and area penalty are lower
for logarithmic modules than the linear ones. The reason is that
the introduction of multiple prediction points in the logarithmic
FU design reduces the number of levels in the carry tree
propagation, and hence their area and execution time. This fact
compensates for the overhead due to the additional routing and
control. On the other hand, linear multispeculative
implementations enjoy larger benefits in execution time,
because in the baseline design the carry propagation is not as
optimized as in the logarithmic case.

2) Scalability study
In this last experiment, the variation of area and execution

time with respect to the number of resources has been studied.
Figure 6 shows the execution time, area and Area Delay
Product (ADP) variation percentages in the Dot_8 benchmark
utilizing logarithmic modules. The X axis depicts the number
of adders and multipliers. Note that other configurations with
more resources produce the same execution time results than
those depicted in figure 6, and that is why they are not shown.
The following trend can be observed from these results: the
reduction in execution time increases as the number of
available MSFUs increases. The only exception happens with
the (2,8) configuration. This is because the number of adders is
low with respect to the number of multipliers, and hence the
multispeculative implementation needs some extra csteps for
introducing the carry-propagation additions. Nevertheless, this
kind of configuration with such an unbalanced set of FUs is not
usual. On the other hand, area penalty remains around 1.5%-
2% for all configurations. Hence, ADP gain will increase along
with the execution time. Therefore, it can be concluded that
multispeculation scales well.

V. CONCLUSIONS

This work introduces multispeculation in additive binary

trees. The main idea consists of pipelining the carry vectors in
the inner nodes of the trees. Thanks to the associative property
of addition, carry vectors that cannot be consumed by active
adders can be accumulated at a later stage. In this way, only
the last addition of the entire structure can potentially suffer a
misprediction. However, as stated in the paper, an additional
cycle is enough for correcting all the mispredictions with a high
probability. Hence, it is possible to reduce the number of
operations that could potentially mispredict, and increase
performance.

REFERENCE
[1] Y. Sun, K.L. Chan, S.M. Krishnan, “ECG signal conditioning by

morphological filtering”, Computers in biology and medicine, 2002, vol.
32, no. 6, pp. 465-479.

[2] R.L. Burden, J.D. Faires, “Numerical Analysis”, Brooks/Cole Cengage
Learning, 9th ed., 2000.

[3] 40, 32, 24, 16 kbits/s Adaptative Differential Pulse Code Modulation
(ADPCM). Recommendation G.726. ITU.

[4] I. Koren, “Computer Arithmetic Algorithms”, A K Peters, 2nd ed, 2002.

[5] S.P. Mohanty, N. Ranganathan, E. Kougianos, P. Patra. “Low-Power
High-Level Synthesis for Nanoscale CMOS”, Springer, 2008.

[6] P. Coussy, A. Morawiec, “High-Level Synthesis. From Algorithm to
Circuit Design”, Springer, 2008.

[7] A.K Verma, P. Brisk, P. Ienne, “Data-Flow Transformations to
Maximize the Use of Carry-Save Representation in Arithmetic Circuits”,
IEEE TCAD, Vol. 27, no. 10, pp. 1761-1764, Oct. 2008.

[8] S.M. Nowick, “Design of a low-latency asynchronous adder using
speculative completion”, IEE Proc. Comput. Digit. Tech., 1996, vol 143,
no. 5, pp. 301-307.

[9] A.K. Verma, P. Brisk, P. Ienne, “Variable Latency Speculative Addition:
A New Paradigm for Arithmetic Circuit Design”, DATE 2008, pp. 1250-
1255.

[10] A. Cilardo, “A New Speculative Addition Architecture Suitable for
Two’s Complement Operations”, DATE 2009, pp. 664-669.

[11] D. Bañeres, J. Cortadella, M. Kishinevsky, “Variable-Latency Design by
Function Speculation”, DATE 2009, pp. 1704-1709.

[12] L. Benini, E. Macii, M. Poncino, G. De Micheli, “Telescopic Units: A
New Paradigm for Performance Optimization of VLSI Designs”, IEEE
TCAD, 1998, vol. 17, no. 3, pp. 220-232.

[13] V. Raghunatan, S. Ravi, and G. Lakshminarayana, “Integrating Variable
Latency Components into high-level synthesis”, IEEE TCAD, vol. 19,
no. 10, pp. 1105–1117, Oct. 2000.

[14] A.A. Del Barrio, S. O. Memik, M.C. Molina, J.M. Mendias, R. Hermida,
“A Distributed Controller for Managing Speculative Functional Units in
High-Level Synthesis”, IEEE TCAD, Vol. 30, no. 3, pp. 350-363, 2011.

[15] L. Dadda, V. Piuri, “Pipelined Adders”, IEEE TOC, 1996, vol 45, no. 3,
pp. 348-356.

[16] D. Brooks, M. Martonosi, “Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance”, HPCA 1999,
pp. 13-22.

Table I. Execution time and area results for a) logarithmic
and b) linear-like modules

a)

b)

Benchmark ExTime Area %ExTime %Area

Dilation 4.28 653 ‐14.79 ‐2.87

Accum 3.37 1552 ‐26.17 3.96

DWT 15.84 9602 ‐22.63 2.25

FIR 12.34 10091 ‐20.96 2.36

ARF 19.96 11330 ‐9.38 2.43

Simpson38 4.87 3007 ‐43.72 0.36

Trapezoid 3.70 807 ‐36.48 ‐10.35

Dot_8 13.16 9721 ‐17.53 1.78

Conv MS

Benchmark ExTime Area %ExTime %Area

Dilation 6.16 626 ‐35.13 2.41

Accum 4.78 1499 ‐42.63 8.63

DWT 27.11 9437 ‐29.80 5.13

FIR 21.19 9899 ‐28.35 5.46

ARF 34.93 11139 ‐17.16 5.19

Simpson38 8.11 2954 ‐63.08 5.86

Trapezoid 6.94 687 ‐59.27 7.25

Dot_8 22.02 9556 ‐29.41 5.11

Conv MS

Figure 6. Execution time gain, area penalty and Area Delay
Product percentages variation for the dot product with a

different set of (adders, multipliers)

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

5
(1,1) (1,2) (2,3) (2,4) (2,8) (4,8)

%
 V
ar
ia

o
n

ExTime Area ADP

