
Multispeculative Additive Trees in High-Level 
Synthesis 

Alberto A. Del Barrio*, Roman Hermida*, Seda Ogrenci Memik#, Jose M. Mendias*, Maria C. Molina* 
*Architecture and Technology of Computing Systems, Universidad Complutense de Madrid (UCM), Spain 

#Department of Electrical Engineering and Computer Science (EECS), Northwestern University, Evanston, Illinois 
albertodbg@fdi.ucm.es, rhermida@dacya.ucm.es, seda@eecs.northwestern.edu, {cmolinap, mendias}@dacya.ucm.es

 
 

1Abstract— Multispeculative Functional Units (MSFUs) are 
arithmetic functional units that operate using several predictors 
for the carry signal. The carry prediction helps to shorten the 
critical path of the functional unit. The average performance of 
these units is determined by the hit rate of the prediction. In spite 
of utilizing more than one predictor, none or only one additional 
cycle is enough for producing the correct result in the majority of 
the cases. In this paper we present multispeculation as a way of 
increasing the performance of tree structures with a negligible 
area penalty. By judiciously introducing these structures into 
computation trees, it will only be necessary to predict in certain 
selected nodes, thus minimizing the number of operations that 
can potentially mispredict. Hence, the average latency will be 
diminished and thus performance will be increased. Our 
experiments show that it is possible to improve on average 24% 
and 38% execution time, when considering logarithmic and 
linear modules, respectively.  

Index Terms — Speculation, operation trees, High-Level 
Synthesis. 

I.  INTRODUCTION 

There are many DSP and multimedia applications 
composed of one or several additive structures. Addition chains 
or trees usually appear in signal processing applications such as 
ECG [1], numerical integration methods [2], or the ADPCM 
[3]. Thus, it is crucial to improve the quality of adders and 
adder-dominated structures without incurring significant area 
or power overhead.  

Historically there have been two points of view to face the 
abovementioned problem. On the one hand, increasing the 
adders’ complexity and thereby, their speed. Various adder 
designs have been proposed to achieve different trade-offs 
between hardware complexity and performance [4]. All such 
adders exhibit a certain fixed amount of latency. A different 
design option is the Carry Save Adder (CSA) [4], where the 
carry propagation is accelerated at the expense of utilizing 
many Full-Adder cells. Despite recent contributions towards 
Dataflow Graph (DFG) transformations to optimize the use of 
CSAs [7], the application of these structures still restricts the 
use of crucial High-Level Synthesis (HLS) techniques such as 
module sharing. In order to maximally reuse a CSA-tree, a 
similar cluster of nodes must appear several times in different 
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control steps, which is not as easy to encounter as in the case of 
a single addition node. 

On the other hand, the introduction of Variable Latency 
Functional Units (VLFUs) has augmented the possibilities in 
the design space [8-11]. Although literature offers several 
possibilities for handling these units [11-14], all of them are 
subject to the possibility of the worst-case timing, i.e. VLFUs 
working in long latency mode. Some of the VLFUs available in 
literature [14] are based on various forms of speculation over a 
carry value. We shall refer to them as Speculative FUs (SFUs). 
In this paper, first we extend the concept of SFUs with the 
application of speculation over multiple points of the addition 
carry chain. Hence, in this work, Multispeculative FUs 
(MSFUs) will be described and afterwards utilized to optimize 
additive structures. We propose to take advantage of these 
structures for reducing the number of mispredictions and thus 
increasing overall performance. The basic idea is to pipeline 
some intermediate carries from one addition to the other, in the 
case of the inner nodes of the additive structure. In this way, 
the number of possible mispredictions will be diminished. 
According to our experiments it is possible to reduce execution 
time by 24% and 38% on average with respect to a baseline 
implementation with non-speculative logarithmic and linear 
FUs, respectively. 

The rest of the paper is organized as follows: section II 
presents the Multispeculative Adder and the additive structures 
where it can be introduced. Section III describes the application 
of multispeculation over the datapaths. Finally, sections IV and 
V present our experimental results and conclusions. 

II. MULTISPECULATIVE ADDITIVE STRUCTURES 

A generic n-bit Multispeculative Adder (MSADD) consists 
of n/k fragments of width k that operate in parallel, whose 
carry-in is provided by a predictor. A hit signal will indicate 
when the operation is correct: iff all the true carry-out values of 
each module are equal to the corresponding prediction of the 
carry-in values of the following module. Each predictor will be 
updated with the true carry-out iff there is a misprediction. The 
main idea for using MSADDs is that despite utilizing more 
than one predictor, almost every addition will be executed in 
two very short cycles at the most, because the probability of 
propagating a misprediction from a fragment to the following 
one is the same as finding a chain of k propagates signals, 
which is very low if k is large enough [8,9]. Nevertheless, the 
objective must be reducing the latency of the whole additive 
structure, instead of a single addition. Our idea consists of 
pipelining the inner nodes’ carries from a cstep to the following 



[15] during the first cycles, avoiding thus any penalty cycles 
during this first set of operations. Finally in the last cycles, 
predictors will be utilized as usual, reducing the critical path of 
the last stage, which is the main limitation of CSA structures, 
and thus increasing performance.  

Figure 1 shows our proposed MSADD. This MSADD is 
specially oriented to implement additive structures. Hence, as 
prediction is only applied in the last stage we have chosen the 
simplest predictors, i.e. D-flipflops, for diminishing as much as 
possible the critical path of the MSADD. Thereby, in the last 
cycles a failure will be produced iff a carry-out from any 
fragment is ‘1’, i.e. different from the prediction. The D-
flipflops will be cleared every time the additive structure 
finishes its execution correctly. In addition to this, the 
destination register utilized in the last cstep must be used as the 
source when correction is required. Only a slight modification 
of the controller is necessary to indicate that the D-flipflops 
must always be written and the carries pipelined during the first 
csteps, and the hit signal considered from the last cycle 
onwards, i.e. in prediction mode. In this last cstep/state a 
control mechanism similar to [12,13] is utilized, i.e. if the hit 
signal is false there will be a transition to a correction state, and 
otherwise there will be a transition to the following state. 

In the next subsections, a more detailed explanation of how 
these principles apply to concrete structures will be presented. 

A. Scheduling of Addition Chains 

In general, a conventional addition chain of L operands will 
require L-1 cycles, with monocycle FUs, provided that a single 
adder is reused to implement all the operations. On the other 
hand, in the multispeculative case, the addition of L operands 
will need L-1+1=L cycles at the most, with a high-probability. 
Note that in the best case the chain only requires L-1 cycles and 
in the worst case (L-1)+n/k-1 cycles. It should be reminded that 
in addition to this the MSADD is divided into k-bit fragments, 
and thus cycle time will become proportional to the k-bit delay, 
instead of the n-bit delay. 

Let us assume an addition chain A+B+C+D with 16-bit 
operands, i.e. L=4. A conventional chain-like implementation 
will take 3 cycles. In the multispeculative case, it will require 
3+1=4 cycles with a high-probability. Figure 2 depicts the two 
most common cases when applying multispeculation. Figure 2 
a) shows this addition chain in a case of primary hit. During the 
first 2 cycles the intermediate carries are pipelined, but in the 
last stage a static zero prediction is considered. As the carry-out 
signals proceeding from the intermediate fragments are ‘0’ (see 
the red dotted lines), there is no need for additional cycles. 

Figure 2 b) on the contrary, depicts a case of misprediction in 
cycle 3, because there are two intermediate carries equal to ‘1’. 
In the next cycle these logic ‘1’ values are added, and as the 
resulting carry-out signals are ‘0’, there is a hit in cycle 4.  

Finally, let us emphasize the importance of prediction in the 
last cstep. If no prediction were performed, it would take n/k = 
16/4 = 4 cycles to propagate the carries and thus certify the 
correction of the addition. Overall we would require (L-1)+n/k-
1=6 cycles, which is 50% more in comparison with the 
expected L=4 cycles. 

B. Scheduling of Full Binary Addition Trees 

Figure 3 is an example of scheduling, binding and carry 
propagation of a full binary addition tree with 8 operands. The 
scheduling is determined by the dotted lines and the binding by 
the node colors. Let Ai be the ith adder, and let Ci be the 
associated carry-out vector. It must be noticed that these carry 
vectors are only shown in the speculative cases. In figures 3 a) 
and 3 b), 4 non-speculative adders and 4 MSADDs have been 
considered, respectively. 

With multispeculation, each adder Ai is producing a vector 
of provisional results (Vi), and a vector of intermediate carries 
(Ci), such that the final result SAi=Vi+Ci. The problem in a full 
binary tree structure is that every adder produces two vectors, 
and can only consume three. Hence, two adders will produce 
four vectors, and in the following level of the tree only three of 
these vectors will be consumed. In order to solve this problem, 
we propose to consume these additional vectors through the 
non-active adders, thanks to the associative property of the 
addition. This is the key idea: in any full binary adder tree there 
is always a level above which all the previous levels contain 
more additions than available adders, and below which all the 
following levels contain more available adders than additions. 
Hence, it is guaranteed that there will be idle adders available. 

In figure 3 a) the datapath only requires 3 cycles. On the 
other hand, 4 short cycles are enough in figure 3 b), with a high 
probability. As it can be observed, in cstep 1 C1, C2, C3 and 

 
Figure 1. MSADD for implementing additive structures 

 
Figure 2.  Multispeculative flow for three 16-bit additions with 4-
bit blocks, a) primary hit, b) failure and one correction cycle cases 
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C4 are produced, but in cstep 2 only A1 and A3 are active, so 
only C1 and C3 can be consumed. In order to solve the 
problem of consuming C2 and C4 vectors, the idle adder A2 
will add both C2, already stored in the D-flipflops of A2, and 
C4. It should be pointed out that the carry-out vector of A2 in 
cstep 2 will be full of zero’s because k>1. Hence, the result 
vector coming out from A2 will be enough for accumulating 
three input vectors that in the worst case will only contain a ‘1’ 
in the least significant position of each MSADD submodule. 
This new addition will be called carry-propagation addition. In 
cstep 3 we will proceed in the same manner as with the 
addition chains, and A1 will work in predictive mode, i.e. 
considering a static-zero prediction. Thus, C1 will be consumed 
in its own A1 adder, while C3 will be added in A2, with a new 
carry-propagation addition, to the previous result proceeding 
from cstep 2. The result Z’ will be equal to Z iff there is a hit in 
A1, and if the result coming out from A2 is equal to zero. 
Otherwise, a last cstep 3’ will be necessary for adding both 
output vectors from A1 plus the accumulated result from A2. In 
cstep 3’, A1 will work in prediction mode until it produces a 
hit. Hence, if the carry-out vector C1=’0’, the result Z’’ will be 
equal to Z. This will happen with a high probability, since both 
C1 and the result coming from A2 in cstep 3 will usually 
contain only a few ‘1’s in the least significant positions of 
every MSADD submodule. Thus, 4 cycles will be sufficient 
with a high probability. 

In a full binary addition tree, the number of required csteps 
depends on both the number of operands and the number of 
available adders, as stated in the following proposition. 

Lemma 1. Provided that the number of operands is L=2m, 
and the number of available adders is s=2r, where m,r>=0, the 
number of required csteps is given by equation (1). 

2 log log 1 (1) 

 
Proof. Provided that L=2m, s=2r, in every level i of the tree 

there will be (L/2i) additions. Hence every level will take 
(L/2i)/s csteps. This will be the case until s=L/2i, i.e. i=log(L/s). 
This sums L/s-1 csteps. From this tree level onwards, log(s) 
csteps will be required. Note that the similar demonstration 
with 2m < L < 2m+1 and 2r < s < 2r+1 cannot be presented in this 
paper due to space restrictions.  

In the example depicted in figure 3 a), L=8 and s=4, thus 

8/4+log(4)-1=3 csteps are required. On the other hand, the 
multispeculative version shown in figure 3 b) takes 4 cycles 
with a high probability. Therefore, it can be concluded that if a 
non-speculative full binary tree of L operands requires 
L/s+log(s)-1 cycles, with monocycle FUs, its multispeculative 
version will take L/s+log(s) cycles at the most with a high 
probability. It should be noticed that this additional cycle 
corresponds to cstep 3’ in figure 3 b). This is what we shall call 
the recovery cstep, that is required just in case of misprediction, 
but that is not necessary if there is a hit. In conclusion, in both 
chains and trees, the latency is increased by only one cycle. In 
fact, an additions’ chain is a simplified case of tree where s=1. 
On the other hand, with multicycle FUs multispeculation will 
also reduce the average latency of the circuit. However, this 
reduction cannot be exactly quantified because it depends on 
the latency of the individual FUs. The example in section III.A 
will serve to illustrate this latency reduction. 

III. ON THE APPLICATION OF MULTISPECULATION TO HIGH-
LEVEL SYNTHESIS 

In this section, the principles and methodology to 
incorporate multispeculation to HLS will be generalized and 
explained in detail. Although all the aforementioned techniques 
can be applied directly to certain DFGs that are exactly in the 
form of additive binary trees, there are cases when the DFG is 
composed of several additive trees. In such cases, we will 
restrict the use of multispeculation only to those additive trees. 
Similar principles as those described for full binary trees, will 
be applied to generic additive trees. An additive tree is one that 
is composed only of addition nodes, except for the leaf nodes, 
that can also be products. In this case, we can take advantage 
from the fact that multipliers are usually implemented with a 
partial product matrix in CSA form and a last CPA stage. If this 
last CPA stage is a MSADD, the result produced by a 
multiplier Mi can be expressed as the sum of two bit vectors Vi 
and Ci such that SMi=Vi+Ci. Only a slight modification of the 
MSADD presented in figure 1 is required. A multiplexer at the 
input of every submodule will be required in order to select 
either the carry stored in the own D-flipflop of the MSADD, or 
another carry coming from a multiplier.  

Hence, it is necessary to design an algorithm to identify 
those additive structures where multispeculation can be applied 
and develop an automated procedure to keep the datapath in a 
correct state. Finally an interface for communicating with the 
controller must be defined. This interface will be composed of 

 
Figure 3. Scheduling, binding and carries propagation of the Z=(A+B+C+D+E+F+G+H) addition tree with a) 4 non-speculative 

adders, b) 4 MSADDs 

a) b)

+ + + +

+ +

+

A B C D E F G H

Z

cstep 1

cstep 2

cstep 3

A1 A2 A3 A4
+ + + +

+ +

+

A B C D E F G H

Z’

cstep 1

cstep 2

cstep 3

C1 C3
C2 C4

C3C1

+

C2 C4

0

+
C3

0

cstep 3’ +

C1
0

Z’’C1



a hit signal collected from each unit [14]. The controller will be 
similar to the one presented in [12,13], i.e. if there is a failure 
there will be a transition to a correction state, and otherwise a 
transition to the following state. 

Moreover, the HLS flow must be adapted to the special 
features of multispeculative trees with new algorithms. The fact 
that must be taken into account is that the availability of the 
operators is somehow restricted once they are utilized inside an 
additive tree, because they will not be available for a different 
additive structure until the associated carry vector of the 
operator under question has been consumed. However, as it 
will be shown in the following discussion, with a reasonable 
number of resources a penalty on the latency can be avoided.  

Figure 4 illustrates our design flow. First, all the additive 
binary trees are identified, by finding those node sets where 
any internal result is never multiplied. Second, a recovery 
addition per tree is included in the DFG. And third, the carry 
propagation additions are introduced where required, e.g. in 
the example of figure 3 b). The introduction of these recovery 
and carry-propagation additions constitutes the mechanism for 
keeping the datapath in a correct state, as in the full binary 
addition trees case. Afterwards, the DFG is scheduled and 
bound. In our case, due to the aforementioned operators’ 
restriction, we have applied a combined resource constrained 
scheduling and binding algorithm [6]. In order to schedule 
operations, first they are ordered according to the inverse of 
their mobility, and then they are scheduled and bound iff there 
is a suitable free FU. The main difference with regard to a 
conventional flow comes when the operation to be scheduled in 
a given cstep and bound to a given FU, and the previous 
operation bound to this FU lie in different trees. In such case, it 
must be determined whether the carry-out vector associated to 
the FU has been consumed or not. If this carry-out vector has 
not been consumed yet, the FU is not ready to be bound to this 
new operation, as the carry-out vector must be added in the 
same tree where it was generated. Otherwise, if the operation 
belongs to the same tree as the previous operation bound to the 
FU, the carry-out vector can be accumulated in this FU.  

A. An Illustrative Example 

In order to show the principles of multispeculation over 
complete datapaths, our techniques will be applied to the 
Discrete Wavelet Transform (DWT) [5] benchmark. We have 
used logarithmic like non speculative adders and multipliers 
that take 2 and 4 cycles, while their multispeculative 
counterparts require 1 cycle and 3 cycles, respectively, in case 

of a primary hit. It must be noticed that multispeculative 
multipliers are composed of a CSA matrix and a MSADD last 
stage. Hence, the non speculative latencies have been derived 
as log(n) and 2log(n), and the speculative ones as log(k) and 
log(n)+log(k), for both the adders and multipliers, respectively. 
Thereby, using n=16 and k=4, it is possible to obtain the 
aforementioned values. 

Figure 5 a) depicts the DFG of the DWT. Operations are 
labeled with numbers 1 through 17. Figure 5 b) corresponds to 
a conventional resource constrained scheduling [6] using 2 
non-speculative multipliers and 1 adder. As it can be observed, 
it takes 28 csteps. Figures 5 c), d) and e), illustrate the 
application of our methodology. First, all the additive binary 
trees are identified. Figure 5 c) depicts the 6 trees that comprise 
the DWT DFG. Second, a recovery addition is introduced at 
the end of every tree. This is shown in figure 5 d), where the 
new recovery additions (Operations 4’, 7’, 8’, 11’, 12’ and 17’) 
are highlighted in darker shade colour. Recovery additions will 
be later executed as many times as needed for producing the 
correct result of the tree. Third, the carry-propagation additions 
must be introduced when necessary. In this example, as the 
carry propagation can be performed through their own tree 
nodes, there is no need to introduce any one. Finally, this new 
DFG is scheduled and bound considering that all the operations 
will produce a hit in the prediction. We have utilized the 
algorithm described in section III, using 2 multipliers and 1 
adder, as in the non-speculative case. The resulting schedule 
and FU-binding is shown in figure 5 e). Note that the FU-
binding to the two multipliers is depicted with the use of 
different filling colors/patterns for the nodes: solid shaded 
nodes map to M1 and striped nodes map to M2. Addition nodes 
are bound to the only adder A1. In order to understand the 
algorithm several cases related to figure 5 e) will be explained. 
For instance let’s consider the tree composed of Operations 1, 
2, 3, 4 and 4’. As there are enough resources, M1 and M2 are 
utilized for binding both Operations 1 and 3. Now, let’s 
consider the tree composed of Operations 6, 8 and 8’. As M1 is 
free in cstep 4, and its carry-out vector is consumed by 
Operation 2 in cstep 4, it is possible to bind Operation 6 to 
multiplier M1. Finally, let´s consider Operation 14. It could 
have been scheduled in cstep 10 because M1 is free in this 
cstep and its carry-out vector is being consumed by Operation 
7. However, as Operation 9 belongs to a different unscheduled 
tree to that one of Operation 14, and it has more priority than 
Operation 14, it cannot be scheduled yet. Hence, it is 
scheduled in cstep 11, after scheduling Operation 9.  

Dotted arrows in figure 5 e) denote how the carry vectors 
are propagated. It should be noted that recovery additions do 
not have an output dotted arrow because they produce a correct 
result. The csteps are numbered with a label C or C’ in the 
leftmost part of figure 5 e). The C‘ csteps are recovery csteps 
that only contain recovery additions. Hence, these C’ csteps 
can be skipped in execution if the controller detects a hit. Thus, 
in figure 5 e), if Operations 7, 11 and 17 produce a hit, csteps 
10’, 14’ and 19’ will actually not be necessary. Besides the C’ 
csteps, every cstep containing a recovery addition will become 
a recovery cstep. These csteps are highlighted with a solid 
background in figure 5 e). Hence, as stated in section III and 
according to our experiments, none or only one recovery cycle 
will usually be enough for certifying the correct result, so the  

Figure 4. Design flow for multispeculative additive structures 

trees := getAddi veStructures(DFG) 
trees := putRecoveryAddi ons(DFG,trees) 

trees:= putCarryPropagateAddi ons(DFG,trees) 

avgLat := simulate(trees); 
Synthesize 

avgDelay := avgLat*delay(trees); 
area := area(trees) 

msTreesSchedulingBinding(opera ons,operators) 



average latency will range between 19 and 19+6 recovery 
csteps = 25 cycles, which is better than the conventional case. 
Nevertheless, it must be taken into account that Operations 4’, 
8’ and 12’ are always executed, because they are scheduled in 
csteps that also execute non-recovery operations. In other 
words, a 1-cstep recovery slot is available for Operations 4, 8 
and 12. Thus, provided that a cycle is enough for correcting the 
results, Operations 4’, 8’ and 12’ will serve to correct possible 
mispredictions coming from Operations 4, 8 and 12, 
respectively. Therefore, the actual average latency will range 
between 19 and 22 cycles. 

In conclusion, as it can be observed, the application of 
multispeculation over additive binary trees has reduced the 
instances of actual mispredictions. If the existence of additive 
trees had been ignored [14], every operation might have 
produced a misprediction, while in our case only 6 operations 
can mispredict, and furthermore even 3 of them can hide one 
recovery cycle, which diminishes average latency even further.  

IV. EXPERIMENTS 

In this section we first describe our experimental 
framework. Next, we discuss our experimental results. 

A. Framework 

Our implementations have been generated following the 
flow detailed in figure 4. A simulator has been built in order to 
measure the number of hits and mispredictions, as well as the 
average number of cycles. The benchmarks are simulated for 
106 iterations to obtain execution time and area results. During 
the simulation, inputs are modeled stochastically, in a similar 
fashion to the profiling information obtained in [16] by Brooks 
and Martonosi. Taking into account the data presented in [16], 
the most significant fragment of the two operands consists of a 
sign extension with a high probability (>0.9). On the contrary, 

the least significant fragments behave roughly random. 
Afterwards the resulting datapaths have been automatically 
coded in VHDL and synthesized with Synopsys Design 
Compiler, with a 65 nm library. Area is measured in μm2 and 
delay in nanoseconds. Finally, average execution time is 
obtained as the product of both the average latency and the 
delay given by Synopsys. 

B. Results 

In order to check the performance and area of the 
MSADDs, several experiments have been performed. 

1) Area-Delay results 
Several benchmarks have been synthesized in order to get 

area and delay results, namely:  
 The 16-bit Dilation inner loop code, used in the ECG [1]. 
 The 16-bit Accum submodule in the ADPCM decoder [3].  
 The 16-bit Discrete Wavelet Transform (DWT) [5]. 
 The 16-bit Finite Impulse Response (FIR) filter [5]. 
 The 16-bit Autoregressive Filter (ARF) [5]. 
 The 32-bit Simpson 3/8 integration (Simpson38) [2]. 
 The 32-bit Trapezoid integration (Trapezoid) [2].  
 The 16-bit dot product of two vectors, each of 8 

components (Dot_8). 
Tables I a) and b) present the simulation and synthesis 

results of these benchmarks for both logarithmic (Kogge-
Stone) and linear (Ripple Carry) modules [4], respectively. In 
both tables, the leftmost column indicates the name of the 
benchmark, while columns 2 and 3, and columns 4 and 5 
contain the execution time and area of the baseline 
implementation (Conv), and the percentage variation of the 
multispeculative one (MS), respectively. This baseline flow is 
composed of conventional list-scheduling and left-edge binding 
algorithms using non-speculative FUs. 

 
Figure 5. a) Discrete Wavelet Transform (DWT) DFG [5], b) conventional scheduling with non-speculative FUs, c) additive 

structures in the DWT DFG without and d) with the recovery additions, e) scheduling and FU-binding with multicycle MSFUs
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As it is shown, multispeculative results improve execution 
time by 24% (44% in the best case) and by 38% (63% in the 
best case) on average for logarithmic and linear modules, 
respectively. In terms of area, the average area penalty of the 
multispeculative results is close to zero and 6% for logarithmic 
and linear implementations, respectively. As it can be 
observed, execution time reduction and area penalty are lower 
for logarithmic modules than the linear ones. The reason is that 
the introduction of multiple prediction points in the logarithmic 
FU design reduces the number of levels in the carry tree 
propagation, and hence their area and execution time. This fact 
compensates for the overhead due to the additional routing and 
control. On the other hand, linear multispeculative 
implementations enjoy larger benefits in execution time, 
because in the baseline design the carry propagation is not as 
optimized as in the logarithmic case. 

2) Scalability study 
In this last experiment, the variation of area and execution 

time with respect to the number of resources has been studied. 
Figure 6 shows the execution time, area and Area Delay 
Product (ADP) variation percentages in the Dot_8 benchmark 
utilizing logarithmic modules. The X axis depicts the number 
of adders and multipliers. Note that other configurations with 
more resources produce the same execution time results than 
those depicted in figure 6, and that is why they are not shown. 
The following trend can be observed from these results:  the 
reduction in execution time increases as the number of 
available MSFUs increases. The only exception happens with 
the (2,8) configuration. This is because the number of adders is 
low with respect to the number of multipliers, and hence the 
multispeculative implementation needs some extra csteps for 
introducing the carry-propagation additions. Nevertheless, this 
kind of configuration with such an unbalanced set of FUs is not 
usual. On the other hand, area penalty remains around 1.5%-
2% for all configurations. Hence, ADP gain will increase along 
with the execution time. Therefore, it can be concluded that 
multispeculation scales well. 

V. CONCLUSIONS 

This work introduces multispeculation in additive binary 

trees. The main idea consists of pipelining the carry vectors in 
the inner nodes of the trees. Thanks to the associative property 
of addition, carry vectors that cannot be consumed by active 
adders can be accumulated at a later stage.  In this way, only 
the last addition of the entire structure can potentially suffer a 
misprediction. However, as stated in the paper, an additional 
cycle is enough for correcting all the mispredictions with a high 
probability. Hence, it is possible to reduce the number of 
operations that could potentially mispredict, and increase 
performance.  
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Table I. Execution time and area results for a) logarithmic 
and b) linear-like modules 

 

a)

b)

Benchmark ExTime Area %ExTime %Area

Dilation 4.28 653 ‐14.79 ‐2.87

Accum 3.37 1552 ‐26.17 3.96

DWT 15.84 9602 ‐22.63 2.25

FIR 12.34 10091 ‐20.96 2.36

ARF 19.96 11330 ‐9.38 2.43

Simpson38 4.87 3007 ‐43.72 0.36

Trapezoid 3.70 807 ‐36.48 ‐10.35

Dot_8 13.16 9721 ‐17.53 1.78

Conv MS

Benchmark ExTime Area %ExTime %Area

Dilation 6.16 626 ‐35.13 2.41

Accum 4.78 1499 ‐42.63 8.63

DWT 27.11 9437 ‐29.80 5.13

FIR 21.19 9899 ‐28.35 5.46

ARF 34.93 11139 ‐17.16 5.19

Simpson38 8.11 2954 ‐63.08 5.86

Trapezoid 6.94 687 ‐59.27 7.25

Dot_8 22.02 9556 ‐29.41 5.11

Conv MS

Figure 6. Execution time gain, area penalty and Area Delay 
Product percentages variation for the dot product with a 

different set of (adders, multipliers) 
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