
Profit Maximization through Process Variation
Aware High Level Synthesis with Speed Binning

Zhao Mengying
City University of Hong Kong

Orailoglu Alex
University of California, San Diego

Xue Chun Jason
City University of Hong Kong

Abstract—As integrated circuits continuously scale up, pro-
cess variation plays an increasingly significant role in system
design and semiconductor economic return. In this paper, we
explore the potential of profit improvement under the inherent
semiconductor variability based on the speed binning technique.
We first accordingly propose a set of high level synthesis
techniques, including allocation, scheduling and resource binding,
thus essentially constructing designs that maximize the number
of chips that can be sold at the most advantageous price,
leading to the maximization of the overall profit. We explore
subsequently the optimal bin placement strategy for further profit
improvement. Experimental results confirm the superiority of the
high level synthesis results and the associated improvement in
profit margins.

I. INTRODUCTION

With the continuous scaling of integrated circuits, fabri-
cation size is shrinking in nanometer regimes. As a result,
production to ensure predictable performance can no longer
be guaranteed. Transistor parameters, such as channel length,
gate-oxide thickness and threshold voltage, deviate from nom-
inal values, thus introducing ambiguities on the optimal course
to be taken in processor design. Intel lab results show a
twenty-fold variation in leakage power for a 30% variation
in performance based on a design in 180nm technology [1].
When looked at from the vantage point of total power, a
40%-70% variation is associated with a 20%-50% variation
in frequency, as [2] reports. Due to the transistor parameter
fluctuations resulting from process variation, fabricated chips
vary from each other in performance. Manufactured products
of the same design may end up being used as high performance
1 GHz chips, or end up being used as lower-performance 600
MHz chips. In such a manufacturing environment, the issue
of speed binning is brought to the forefront.

Speed binning refers to the test procedures that help qualita-
tively categorize working chips into different bins according to
the highest speed test that they could pass, so that chips could
be offered to customers with the appropriate frequency grades
[3]. For instance, the MPC7455 microprocessor has been
offered in 6 grades, i.e. 6 bins: 600, 733, 800, 867, 933 MHz
and 1GHz [4]. Chips in different bins are correspondingly
offered with various price grades, thus delivering distinct
economic returns. The profit is defined as follows:

Profit = income− cost =
n∑

i=1

pi · ni − cost (1)

where n is the number of bins, pi and ni represent the price
of the ith bin and the number of chips falling into this bin,
and cost denotes the cost of the design. Figure 1 shows one
example with 3 bins. The price is a stair-case function of Tclk

delay. Profit is maximized by intelligently distributing chips

into bins for aggressive income and retaining a low design
cost at the same time.

As one indispensable step in system design, high level
synthesis (HLS) translates the behavioral description into a
corresponding register level structure description, including
resource allocation (functional unit type selection), scheduling
(assigning operations into clock steps) and binding (resource
instance mapping) [5]. Due to the process variation, the
concept of performance yield is developed and widely used as
HLS optimization criterion. It describes the probability of a
certain design meeting the predefined performance constraints
space [6], e.g. 90% performance yield means 90% of the chips
statistically satisfy design constraints. A number of researchers
conduct variation-aware HLS based on this yield theory to
deal with process variation, like minimizing latency [7] [8]
or area [9] while guaranteeing satisfactory performance yield.
Our objective is to build a satisfactory circuit performance
distribution (Tclk) by HLS solutions, which determines the
economic profit in the context of speed binning.

Fig. 1. Income calculation.

The binning result is affected by all the system design
levels. Prior work on profit-aware design considers economic
issues for profit maximization at the circuit design level [10]
[11], whereas we focus at HLS. In this paper, we explore
the potential HLS approaches to strive for profit improvement
under process variation, and build up a set of HLS techniques
to maximize the number of chips that can be sold at the
most advantageous price, thus maximizing overall profit. To
the best of our knowledge, this is the first work discussing
speed binning in the context of embedded system processors.
In particular, our contributions are summarized as follows:

• Introduce speed binning into the HLS domain to derive
maximal economic return.

• Develop a set of HLS approaches for profit maximization,
including allocation, scheduling and binding.

• Propose a strategy for optimal bin placement.
The remainder of this paper is organized as follows. Section

II shows an example to illustrate how the HLS decisions affect
economic profit. Section III accordingly introduces profit-
aware HLS strategies. Section IV presents the optimal bin978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

selection approach. Section V presents the experimental setup
and results. Section VI offers a brief set of conclusions.

II. MOTIVATION

In this section, we present an example to illustrate how the
HLS decisions affect profit, i.e. the difference between income
and the expense associated in generating it.

Figure 2(a) shows the given DFG and resource library. Each
operation can be mapped to either of two types, mnemonically
denoted as Fast and Slow. Figure 2(b) presents four distinct
HLS solutions. S1 achieves the best performance with the
fastest modules. S2 ignores process variation and is imple-
mented with the lowest cost. However, when applied to speed
binning, neither deliver a satisfactory profit. Two bins are set:
bin1 is set at a clock cycle delay of 9 and bin2 is set at 12,
with the price of 200 and 70, respectively. All chips slower
than 12 are discarded and deliver no economic return. Figure
2(c) lists the economic features. Though S2 has the lowest
implementation cost, due to the uncertainties resulting from
process variation, 51% of the chips are discarded, and the other
49% are only eligible for the slower bin, resulting in a com-
paratively lower income, which falls short of compensating
for the cost and thus delivers no profit. In contrast, S1 derives
the best income (with 100% eligible chips sold at the higher
price), yet also with the most expensive design cost, resulting
in an unsatisfactory profit. Consequently, a tradeoff between
high income and low cost should be taken into account for
profit optimization. In this case, by intelligently selecting
the appropriate cost-effective components and an associated
binding strategy, S3 and S4 attain various tradeoffs. Both of
them deliver a quite high income, which not only suffices to
compensate for the comparatively high cost, but also delivers
additional profit.

+

<

<

+ +

+

+

<

<

+ +

+

S1 S2 S3

+

<

<

+ +

+

+

<

<

+ +

+

S4

+F_2

+F_1

<F_1

<F_2

+F_1

+F_3

+S_1

<S_1

<F_1

+S_1

+S_2
+S_3

+S_1

<F_1

<F_2

+S_1

+S_2 +F_1

+F_1

<S_1

<F_1

+S_1

+F_1
+S_2

+/<:

 operation

F/S:

 type, Fast or Slow

_1/_2/_3:

 component number

+

<

<

+ +

+

A

B

C

D

E

F

CCT=12

CCN=2
(a)

(b)

(c)

Resource Library

operations types

+

Delay

(μ,δ)
cost

S (6, 0.6) 15

F (2, 0.2) 40+

+

<
S (4, 0.4) 6

F (1, 0.1) 20<

<
Bin Setting: Bin1=9, Bin2=12

Bin Price: p(Bin1)=200, p(Bin2)=70

Fig. 2. HLS example. Clock cycle time=12. Clock cycle number=2. (a) DFG
and settings. Each operation has two types: Fast and Slow. (b) Four possible
HLS solutions. (c) Economic features of these four solutions.

To sum it, as HLS steps, allocation decides the cost;
scheduling and binding determine the income by intelligently

distributing chips into various speed bins. In this paper, we
explore the intertwined HLS solutions for the best tradeoff
between income and cost so as to achieve profit maximization.
An optimal bin placement strategy is also proposed for further
profit improvement.

III. PROFIT-AWARE HLS UNDER PROCESS VARIATION

In this section, we present the profit-aware HLS considering
process variation.

Algorithm 1 Profit-aware HLS under process variation.
Input: DFG, Resource Library, price profile P, bin setting
Output: HLS solution for DFG

1: map all the operations to the fastest components
2: do scheduling; //objective: equalizing slacks of all clock cycles
3: while 1 do
4: assign each node one corresponding nodePriority NP;
5: for each operation calculate the operationPriority OP;
6: operationToSlowDown=max{OP(i)| i∈ operation of DFG};
7: if operationToSlowDown < 0 then
8: break; //no operation can be slowed down
9: else

10: slowDown(operationToSlowDown);
11: end if
12: end while
13: do binding; //objective: resource sharing among critical paths

among all clock cycles

Intuitively, we start with the design with the highest income,
by mapping all the operations to the fastest components, and
then iteratively slow down some of them based on defined
priorities, until we pinpoint the best tradeoff between perfor-
mance and cost, thus maximizing the profit (Algorithm 1).
The slowdown procedure is conducted for all clock cycles
simultaneously. For example, if each clock cycle has one adder
candidate to slow down, they should be degraded at the same
time. Differentially slowing down a component across clock
cycles consistently leads to guaranteed suboptimal solutions,
as allocation is determined by the maximum cardinality of
each type. Consequently, for one operation, only the global
slowdown of a component in all clock cycles may conceivably
deliver profit1. The operation to slow down is selected by
operation priority (OP), which is computed based on node
priority (NP). We will apply the proposed HLS solutions on
the example shown in Figure 2 for a detailed explanation.

A. Equal-slacks guided scheduling
As the initial allocation before scheduling, all the nodes are

mapped to the fastest components, with traditional ASAP (as
soon as possible) and ALAP (as late as possible) applied to
determine mobilities for each node.

Then scheduling assigns each node into an appropriate clock
cycle. We define the nodeList of one clock cycle as the set of
nodes it possibly holds. It is initialized with all nodes whose
mobility spans the clock cycle in question. At each step, one
unscheduled node will be removed from one of the nodeLists
thus narrowing down the scheduling space. At termination, the
nodeLists denotes the exact scheduling result for all the cycles.

For a particular clock cycle, the most problematic case
(with the smallest slack) would happen when the nodes in its
nodeList are all scheduled in this cycle. A variable, denoted

1The strategy of uniformly degrading component performance can be
relaxed when clock cycles do not fully utilize resources of the particular
component type.

dangerSlack, is proposed to describe this characteristic. It is
defined as the slack of one clock cycle when all nodes in
its nodeList are scheduled into it. DangerSlack outperforms
the real slack by considering the potential danger to clock
cycles, because it considers not only the nodes that have been
scheduled into this cycle, but also those having possibilities
to be scheduled in. In the proposed strategy, scheduling starts
from the most dangerous clock cycle, namely the one with
the smallest dangerSlack, and excludes components out of
its nodeList to relieve the impact of overcrowding. Thus the
excluded node loses one degree of freedom in its mobility and
is eventually fixed to a particular clock cycle when only one
possibility is left.

Algorithm 2 Equal-slacks Guided Scheduling
Input: an original DFG
Output: the DFG with all nodes scheduled into appropriate clock

cycles
1: apply ASAP and ALAP on the DFG
2: for each clock cycle Ci do
3: initialize available resource of Ci with resource library;
4: initialize nodeList of Ci, the set of nodes having mobility

across Ci, and corresponding startNodeList, endNodeList;
5: end for
6: while not all nodes are fixed do
7: //dangerSlack exclusion
8: for each clock cycle Ci do
9: derive dangerSlack of Ci;

10: end for
11: get the most dangerous clock cycle Cdan with the smallest

dangerSlack;
12: find the functional unit FUexc to exclude ;
13: exclude FUexc from Cdan;
14: update nodeList, startNodeList and endNodeList of Cdan;
15: update the ASAP or ALAP of related nodes accordingly;
16: end while

Algorithm 2 describes the scheduling process. DangerSlack
exclusion (Line 7-15) protects dangerous clock cycles that po-
tentially have the smallest slack by excluding one component
at each iteration. The functional unit (FU) to be excluded
is chosen as follows (Line 12). Firstly, its exclusion should
impose least impact on others, so it is chosen from either
startNodeList or endNodeList of the danger cycle. Secondly,
it is suboptimal to exclude one FU whose ASAP (or ALAP)
is the danger step, since it imposes a significant restriction
for both itself and its successors (or predecessors). Last but
not least, the exclusion should bring the current clock cycle
the maximum delay reduction to get this cycle a bigger
dangerSlack. Even, if no delay reduction can be obtained
by excluding any component because of the parallelism, the
exclusion may still be reasonable because delay reduction can
possibly be attained in cognition with subsequent exclusions.

Table I shows the scheduling procedure of the example in
Figure 2. The scheduling result based on the DFG equipped
with fastest components is shown in Figure 3(a).

After scheduling, every node of the DFG will have been
fixed into the appropriate clock cycle and the slacks of each
clock step are at that point typically evenly distributed. In
the following section, we will introduce approaches to replace
some of the modules with slower and cheaper module types.
Prior to that, we expose the profit benefit measure of slowing
one node, i.e. the node priority.

TABLE I
SCHEDULING PROCEDURE OF THE EXAMPLE IN FIGURE 2. GIVEN 2

CLOCK CYCLES.

Step NodeList DangerSlack Action / Result
1 CC1 ABCDEF 4 exclude F / F fixed in CC2

CC2 ABCDEF 4 -
2 CC1 ABCDE 6 -

CC2 ABCDEF 4 exclude A / A fixed in CC1
3 CC1 ABCDE 6 exclude D / D fixed in CC2

CC2 BCDEF 6 -
4 CC1 ABCE 6 exclude E / E fixed in CC2

CC2 BCDEF 6 -
5 CC1 ABC 8 -

CC2 BCDEF 6 exclude B / B fixed in CC1
6 CC1 ABC 8 -

CC2 CDEF 7 exclude C / C fixed in CC1
7 CC1 ABC

CC2 DEF scheduling completed.

+

<

<

+ +

+

+

A

B

C

D

E

F

+

<

<

+ +

+

+

+F_1

<S_1

+S_1

+S_2

+F_1

<F_1

A

F

(a)

A

B

C

D E

F

A

(c) (d)(b)

A

B

C

D E

F

A2

2

2

1

1

1

Fig. 3. HLS decisions. (a) Scheduling. (b) Commonality Factors. (c)
Allocation. (d) Binding. A and F share the same adder.

B. Node Priority (NP)
Node priority of one vertex is developed to denote the

potential profit benefit when slowed down. When a node
is replaced with a slower component, both the cost and
income would potentially drop, with the profit benefit being
determined by the severity of the individual decreases.

NP =
costReduction− incomeReduction ∗ criticalFactor

commonalityFactor
(2)

1) CostReduction: The costReduction is the price differ-
ence between the previously assigned fast type and its replace-
ment. In the previous example, it would be 40 − 15 = 25 if
the fast adder is replaced with the slow type.

2) IncomeReduction: Before defining incomeReduction, we
explore approaches to estimate income. Given the price profile
and bin settings, income is determined by the Tclk distribution.
However, it is hard to derive the exact Tclk distribution without
allocation, scheduling and binding information from HLS.
Based on the fact that Tclk is mainly decided by the critical
path, we approximate Tclk by the expectation delay of the
critical paths of each clock cycle. In the income estimation, the
Tclk distribution is assumed to follow a Gaussian distribution
(µ, σ) with σ/µ = 0.1. We choose Gaussian because com-
ponent delays are widely estimated as Gaussian distributions
and the circuit SSTA result can accurately be approximated by
Gaussian distributions [12].

TABLE II
Tclk -INCOME ESTIMATION TABLE FOR incomeReduction ESTIMATION

Tclk(10
−10s) ≤ 6 7 8 9 10 11 12

income (price unit) 200 199 186 134 89 62 36

Table II shows the estimation with settings in Figure 2. For
example, with clock cycle time being 12 and two bins set at

9, 12 respectively, when the expectation delay of the critical
path is 8, the income is estimated by Tclk following (8, 0.82),
which computes to 186. Note the critical path here refers to
the longest path in one clock cycle instead of the whole DFG.

Thus the incomeReduction is defined as the income differ-
ence between critical path delays of the current clock cycle
before and after one node slowing down. In this example, if
A is slowed down, the duration of the critical path ‘A-B-C’
would increase from 4 to 8, resulting in incomeReduction =
income(4)− income(8) = 14 .

3) Critical Factor (criF): CriF, ranging in [0,1], represents
the impact on the critical path delay of this slowdown. CriF =
1 means the node is in the critical path and its slowdown
directly results in the income reduction.

criF =
max{delay of paths that contain this node}

delay of the critical path of DFG
(3)

Due to process variation and multi-types for each operation,
the critical path is not readily recognizable. Our solution is to
derive the expectation delay of one component under process
variation. It is derivable because the delays follow certain
delay distributions, either Gaussian or non-Gaussian. As we
map all the nodes to the fastest components at first and then
slow them down, at each step, the module type is determined.
In this way, the delays of each path can be calculated and
then used for criF calculation. For node A in this example,
criF = 1 because the longest path containing A is ‘A-B-C-E-
F’, which is exactly the critical path of this DFG.

4) Commonality Factor (comF): For a vertex, to measure
how much its replacement with a slower component is go-
ing to prevent other vertices in the DFG from also being
replaced by slower components, we apply the identical concept
of commonality factor proposed in [13]. In Figure 3(b),
comF (C) > comF (E) since the slowdown of C prevents
all others’ slowdown, whereas the slowdown of E still gives
a chance to D because of their parallelism2.

Based on all the previously defined variables:
NP(A)= 25−(income(4)−income(8))∗ 12

12

2 = 5.5;
NP(B)=NP(C)= 14−(income(4)−income(7))∗ 11

11

2 = 6.5.
Similarly, NP(D) = 25; NP(E) = NP(F) = 11.

C. Component slowdown based on Operation Priority (OP)
OP is the criterion of choosing the operation to slow down.

It is determined as the minimal positive NP of nodes belonging
to this operation, implying the lower bound of the profit benefit
of degrading this operation globally. In the previous example:
OP(<)=min{NP(B), NP(C)} =6.5;
OP(+)=min{NP(A), NP(D), NP(E), NP(F)} =5.5.

The operation to slow down would be the one with the
biggest OP, i.e. ‘<’ in this example. According to the pro-
cedure described in Algorithm 3, at each clock cycle, among
all the components of <, the one having the biggest NP is
picked to slow down. In cycle 1, B and C have the same NP
and we replace B with one slow unit. Clock cycle 2 has no <
operation and is thus not subject to component degradation.

Past the first iteration, the algorithm would encounter
NP (A) = −56; NP (C) = −48; NP (D) = 25; NP (E) =
NP (F) = 11. So ‘+’ is chosen as the slowdown operation

2The detailed derivation of comF can be found in [13].

and component D is degraded to the slow type. Notice that
the negative NP indicates that the reduction in income can
not compensate the reduction in cost, degrading profit. After
another slowdown iteration, in which E is degraded to the
slow type, all the NPs become negative, indicating that the
allocation has been completed, as shown in Figure 3(c).

Algorithm 3 SlowDown
Input: DFG, operation to slow down oper picked based on OP

1: for each clock cycle j of DFG do
2: if there are components of operation oper then
3: node ← the one with biggest NP in all oper components;
4: t= module type of node;
5: m= currently occupied resource # of operation oper, type t

in cycle j;
6: end if
7: end for

D. Binding
The binding procedure maps the operations to particular

hardware resources. Our objective is the resource sharing
among different clock cycles, so as to tighten the correlations
among all cycles, which benefits the performance according
to timing analysis. The longest path dominates Tclk, so nodes
in the longest paths from all clock cycles ideally should be
merged into the same hardware as much as possible.

To implement this approach, each clock step maintains one
longPath, which is the longest path in this cycle with at least
one component unbound. Among the longPaths of all clock
cycles, the longest one is referred to as the criticalPath of
the flow graph. The objective of the binding algorithm is
to match the same FU-instance mapping between all other
longPaths and the criticalPath. The match starts from the
biggest unbound component in the criticalPath, because it
has the biggest criticality to determine the chip frequency. So
it is assigned one current available resource. Then for every
longPath, if there is one unbound component that shares the
same type with the first assigned one, it will be matched to the
same instance if the resource is available. After each mapping
iteration, the criticalPath and longPaths are updated, to replace
paths that have completed binding with the second longest one.
The binding result of the previous example is shown in Figure
3(d), which can be seen to be S4 in Figure 2(b).

IV. OPTIMAL BIN PLACEMENT

In this section we present the optimal bin placement strategy
under the assumption that the bin placement can be adjusted
by designers.

The optimal bin placement problem is defined as follows.
Given the circuit Tclk distribution D, the price profile P and
the desirable bin number n, to find the corresponding n places
for the bin setting, so as to maximize profit.

In this problem formulation, system design is assumed to
have been completed, implying that the exact Tclk distribution
has been derived and the cost is fixed. Profit maximization
is consequently solely converted to income maximization,
which is implemented by adjusting bin positions and thus chip
numbers in each bin based on the cognizant Tclk distribution
(Equation 1).

If the number of bins is not restricted, the ideally maximal
income would be derived with infinite bins, as every chip
is then placed in an individual bin and sold at the most
advantageous price. The ideal income is calculated by the

convolution of circuit distribution and price: Income =
convolution(D,P).

Figure 4 shows that the Income rises at various rates for
different delay regions. For example, in [7, 9] the profit rises
sharply, which means that setting a bin here benefits more than
setting one in the range [9, 11]. The bin density in a certain
range is directly determined by the profit improvement.

Algorithm 4 Optimal bin boundary selection (OBBS).
Input: circuit Tclk distribution D, price profile P, bin number n
Output: bin boundaries BB

1: Income=convolution(D, P); //derive the ideal income
2: a=min(Income);
3: b=max(Income);
4: equally divide region [a, b] by n-1 boundaries, stored in R;
5: Income’=inverse(Income); //derive the inverse function of Income
6: for i=1:n-1 do
7: BB(i)=Income’(R(i));
8: end for
9: in [BB(n-1), b], find a boundary p that makes set BB(1:n-1)∪p

give highest income; //determine the last bin
10: BB(n)=p;

Algorithm 4 presents the optimal bin selection strategy
(OBBS). After deriving the ideal Income function (Line 1),
the Income region is equally divided into n partitions, where
n denotes the bin number. These corresponding partition
boundaries, calculated by the inverse function of Income, are
selected as bins. Note that the last bin is somewhat special.
If it is selected at the rightmost boundary, which is close to
the clock cycle time, almost all the remaining chips would
fall into this bin. It delivers a good economic return when the
price curve is flat. However, when the price curve is sharp in
this region, placing the last bin at the biggest delay results in
a much lower bin price, which significantly degrades the chip
values in the last bin. To handle this, we use the exhaustive
search for the last bin in range [2nd-last-bin, clock-cycle-time]
(Line 4 - 10). The last bin then will typically be selected as
somewhat in the middle of this region when the price curve
is sharp and the exact clock cycle time when the price is
extremely flat. Figure 4 illustrates the OBBS for S4 in Figure
2(b) when 3 bins are needed.

Fig. 4. OBBS for S4 in Figure 2(b). Given bin number n=3.

Based on the fact that the bins are essentially selected as
the tradeoff between chip numbers in each bin and the bin
price, the algorithm places bins according to the derivative of
the ideal Income function. The algorithm can be understood
as follows. First, we derive the derivative curve of Income,
and tend to put more bins in the range with bigger derivative
values. Then we distribute the bins proportionally according
to the area under the derivative curve, as the integral of
the derivative function would signify the original Income.
Consequently, the bins are selected as the boundaries of the
equal division of the Income range.

V. EXPERIMENTS

We have tested the proposed design approaches on the same
HLS benchmarks used in [14]. They provide a representative
spectrum because of the differences in size and parallelism
(nodes/critical path). We adopt the price profile of Intel
Prescott processors, which is simulated from the data given
in [10].

p = 0.0000139 ∗ e3.384∗fre + 1.473; (4)

where fre denotes the labeled speed of one chip when sold.

A. Evaluation of the profit-aware HLS under process variation
The proposed strategy is both process variation aware and

profit aware, which is denoted as double-aware (DA). To
evaluate the necessity of process variation awareness, we
compare the profit derived by the proposed DA strategy with
process variation unaware (PV-unA) approach. To confirm the
importance of tradeoff between income and cost, we also
compare the profit performance between DA and performance-
yield-optimization (PYO) based method.

The PV-unA method is implemented by aggressive schedul-
ing and blind binding. The aggressive scheduling step sched-
ules components to the current clock cycle as long as the
overall delay is smaller than the clock cycle time. The blind
binding step matches available components to operations in de-
scending speed order and subject to the constraint of ensuring
no timing constraint violations in the clock cycle. The PYO
strategy maximizes the chip numbers in the most expensive
bin. It selects the components with best performance, performs
equal-slack guided scheduling and maximizes the resource
sharing among critical paths of all the clock cycles in binding.

Monte Carlo methods are applied to simulate the inherent
correlations between clock cycle distributions that share the
same resource. To make the experiment consistent and effi-
cient, for all test benches, the clock cycle time is chosen to
be 18, with the two bins set at 14 and 18, respectively.

TABLE III
PROFIT IMPROVEMENT WITH COMPONENTS FOLLOWING GAUSSIAN

DELAY DISTRIBUTIONS.

test Clock cycle time = 18. Bin setting: (14, 18).
Bench profit profit improvement (%)

PV-unA PYO DA DA v.s. PV-unA DA v.s. PYO
ARF 0.67 0.90 0.98 46.6 8.9
EWF 0.66 0.96 1.10 67.2 14.6
Cos1 0.58 0.70 0.93 61.5 32.4
Cos2 0.55 0.77 0.86 56.4 12.0

jWBH 0.48 0.60 0.76 60.4 26.6
mMM 0.39 0.56 0.66 68.0 18.9
jFDCT 0.79 1.16 1.44 83.9 24.4
Average 63.4 19.7

Table III shows the profit improvement with components
following Gaussian distributions. On average, the proposed DA
has a 63.5% profit improvement in comparison to PV-unA, and
a 19.7% improvement in comparison to the PYO method. The
improvement over PV-unA benefits from the handling with
process variation, whereas the advantage over PYO results
from design cost reduction. Take jFDCT, for example. Due
to the process-variation-unaware strategy, PV-unA aggressively
schedules too many components in one clock cycle, resulting
in only 59% of the chips eligible for Bin2 and no chip in

Bin1. Evidently the low income is the reason for unsatisfactory
profit. PYO achieves the highest income but is also equipped
with the most expensive cost. DA slows down 27% of the
components used by PYO, thus significantly lowering the cost.
At the same time, it keeps 98% chips sold at the higher price
and the other 2% falling into the second bin, thus retaining a
satisfactory income.

TABLE IV
PROFIT IMPROVEMENT WITH COMPONENTS FOLLOWING NONGAUSSIAN

(UNIFORM AND TRIANGLE) DELAY DISTRIBUTIONS.

test profit improvement (%)
Bench nonGaussian-Uniform nonGaussian-Triangle

DAv.s.PV-unA DAv.s.PYO DAv.s.PV-unA DAv.s.PYO
ARF 44.8 7.5 54.1 8.6
EWF 66.5 14.0 67.1 22.9
Cos1 60.9 31.1 61.4 47.1
Cos2 55.8 11.5 67.4 13.4

jWBH 80.9 45.9 71.8 41
mMM 68.6 19.2 80.0 20.3
jFDCT 84.6 24.8 89.6 28.9
Average 66.0 22.0 70.2 26.0

We also conduct the identical experiments with compo-
nents that follow a non-Gaussian delay distribution, shown
in Table IV. Comparing with PV-unA and PYO, DA achieves
66.0% and 22.0% for Uniform component distributions; 70.2%
and 26.0% for Triangle distributions. This evinces that the
proposed HLS approach is suitable for both Gaussian and
non-Gaussian distributions and superior at dealing with big
variations, furthermore.

B. Evaluation of the optimal bin placement
One previous work also presents a heuristic of the optimal

bin placement for profit maximization, in which the bins are
initialized by equally dividing the performance yield and the
bins are shifted gradually until no profit improvement can
be observed [10]. We refer to it as EY (equal-yield based)
approach in this paper.

Though we have the same problem definition, the EY
strategy is applicable only when Tclk follows a Gaussian
distribution. In contrast, the proposed OBBS (optimal bin
boundary selection) method is suitable for any kind of dis-
tribution. In order to compare with the EY strategy, we first
evaluate the OBBS with Gaussian distributions, and then
test it on the benchmarks with complicated non-Gaussian
Tclk distributions, to evaluate the profit compared with the
exhaustive bin boundary search.

TABLE V
INCOME RESULT FOR GAUSSIAN DISTRIBUTIONS (µ, σ). µ = 10.

σ = 0.8 σ = 1.0 σ = 1.2
Bin# n=2 n=4 n=10 n=2 n=4 n=10 n=2 n=4 n=10

EY [10] 4.17 5.17 6.13 4.23 5.35 6.49 4.32 5.59 6.96
OBBS 4.46 5.47 6.33 4.43 5.65 6.81 4.51 6.00 7.49
optimal 4.48 5.48 6.36 4.44 5.67 6.83 4.52 6.01 7.50

Table V presents the income results for Gaussian distribu-
tions. Without loss of generality, we set the mean as 10 and
test various deviations. The results show that the proposed
OBBS strategy has a 5.7% income improvement on average in
comparison to the EY method and always performs better than
99.5% of the optimal results. OBBS outperforms EY more
significantly with severe process variation (bigger σ/µ) and
more bins.

We also apply OBBS on test benches HLS solutions. To
evaluate the profit performance, exhaustive search is conducted
to obtain the optimal bin placement. Figure 5 presents the
profit relative to the optimal solution, implying 98.9% of the
optimal solution on average.

Fig. 5. Profit relative to the optimal bin placement, when applying OBBS
on test benches.

VI. CONCLUSION

In this paper, we introduce speed binning into the HLS do-
main to help derive maximal economic return. Taking process
variation into account, we develop a set of HLS approaches
for profit maximization, including allocation, scheduling and
binding. Experimental results confirm the superiority of HLS
results and the associated improvement in profit margins,
when said components follow Gaussian, Uniform and Triangle
delay distributions. We also propose an optimal bin boundary
selection (OBBS) algorithm, delievering a near-optimal perfor-
mance. To sum it, this paper constructs both process variation
aware and profit aware HLS designs in the context of speed
binning, delivering maximal economic profit.

ACKNOWLEDGMENT

This work is partially supported by grants from the Research
Grants Council of the Hong Kong Special Administrative
Region, China [Project No. CityU 123811 and 123210].

REFERENCES

[1] T. Karnik, S. Borkar, and V. De, “Sub-90 nm technologies-challenges
and opportunities for cad,” in ICCAD, 2002, pp. 203–206.

[2] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in ISCA, 2008, pp.
363–374.

[3] B. Cory, R. Kapur, and B. Underwood, “Speed binning with path delay
test in 150-nm technology,” IEEE Design and Test of Computers, vol. 20,
pp. 41–45, 2003.

[4] D. Belete, A. Razdan, W. Schwarz, R. Raina, C. Hawkins, and J. More-
head, “Use of DFT techniques in speed grading a 1 GHz+ microproces-
sor,” in ITC, 2002, pp. 1111–1119.

[5] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level
synthesis: introduction to chip and system design. Kluwer, 1992.

[6] F. Wang, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan,
“Variation-aware task allocation and scheduling for MPSoC,” in ICCAD,
2007, pp. 598–603.

[7] Y. Chen, J. Ouyang, and Y. Xie, “ILP-based scheme for timing variation-
aware scheduling and resource binding,” in International SOC Confer-
ence, 2008, pp. 27–30.

[8] J. Jung and T. Kim, “Scheduling and resource binding algorithm
considering timing variation,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, pp. 205–216, 2011.

[9] F. Wang, Y. Xie, and A. Takach, “Variation-aware resource sharing and
binding in behavioral synthesis,” in ASPDAC, 2009, pp. 79–84.

[10] A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K. Roy, “Speed
binning aware design methodology to improve profit under parameter
variations,” in ASPDAC, 2006, pp. 712–717.

[11] A. Davoodi and A. Srivastava, “Variability driven gate sizing for binning
yield optimization,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, pp. 683–692, 2008.

[12] A. Datta, S. Bhunia, S. Mukhopadhyay, N. Banerjee, and K. Roy,
“Statistical modeling of pipeline delay and design of pipeline under
process variation to enhance yield in sub-100nm technologies,” in DATE,
2005, pp. 926–931.

[13] S. Bakshi and D. Gajski, “Component selection for high-performance
pipelines,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 4, pp. 181–194, 1996.

[14] J. Jung and T. Kim, “Timing variation-aware high-level synthesis con-
sidering accurate yield computation,” in ICCD, 2009, pp. 207–212.

