
High-performance Imaging Subsystems and their Integration in Mobile Devices

Menno Lindwer, Mark Ruvald Pedersen

IAG/MCG/VIED

Intel Corporation

Eindhoven, The Netherlands

Abstract— Within today’s SoCs, functionality such as video,

audio, graphics, and imaging is increasingly integrated through

IP blocks, which are subsystems in their own right. Integration of

IP blocks within SoCs always brought software integration

aspects with it. However, since these subsystems increasingly

consist of programmable processors, many more layers of

firmware and software need to be integrated. In the imaging

domain, this is particularly true. Imaging subsystems typically

are highly heterogeneous, with high levels of parallelism. The

construction of their firmware requires target-specific

optimization, yet needs to take interoperability with sensor input

systems and graphics/display subsystems into account. Hard real-

time scheduling within the subsystem needs to cooperate with less

stringent image analytics and SoC-level (OS) scheduling. In

many of today’s systems, the latter often only supports soft

scheduling deadlines. At HW level, IP subsystems need to be

integrated such that they can efficiently exchange both short-

latency control signals and high-bandwidth data-plane blocks.

Solutions exist, but need to be properly configured. However, at

the SW level, currently no support exists that provides (i)

efficient programmability, (ii) SW abstraction of all the different

HW features of these blocks, and (iii) interoperability of these

blocks. Starting points could be languages such as OpenCL and

OpenCV, which do provide some abstractions, but are not yet
sufficiently versatile.

Keywords—MPSoC; ASIP; imaging; IP integration; Software

The recent spectacular progress in semiconductor technologies
has enabled implementation of increasingly proficient
multiprocessor subsystems, and their integration in large Systems-
on-Chip (SoCs). A big stimulus has been created towards the
development of innovative subsystems. However, this has
introduced new silicon and system complexities, resulting in a
number of difficult design issues, such as:

 vastly increased validation complexity;

 interconnect scalability, while accounting for physical system
characteristics (leakage, wire latency, etc.);

 pressure on development and production budgets, shorter time-
to-market;

 programmability of accelerators; while making sure that
processors within all of the IP subsystems are optimally
utilized;

 Power consumption needs to be in the same ballpark as fixed-
function solutions.

This leads to multi-ASIP systems, with a low number of

processors, yet each processor being highly application-specific
and inherently very parallel in nature (e.g. 100s of SIMD vector
elements). The development of software such heterogeneous
programmable IP subsystems involves many stages such as:
application analysis and characterization, application

parallelization and partitioning, application scheduling and
mapping, and software compilation. In many cases, the hardware
configuration of IP subsystems is being driven from such
application analysis. And in such cases, the phases of application
development actually also encompass system macro-architecture
design, processor design, and hardware generation.

Similar aspects apply to many other IP subsystems as they are
currently being integrated in SoCs. For example, audio subsystems
need to support many audio coding standards and use cases [2].
Graphics engines are increasingly being used for video analytics
tasks, while rendering images and performing hard real-time
display post-processing. Software-defined radios in
communication systems need to scan multiple bands and multiple
protocols, and respond immediately to activity in any one of those
protocols.

The traditional approach to programming multi-core systems,
consisting of multiple IP subsystems has been to construct Kahn
Process Networks (KPNs), or similar networks. We argue that
these formalisms are not powerful enough to deal with the issues
of programming systems consisting of a limited number of truly
heterogeneous and inherently parallel processors.

OpenCL [3] is sometimes presented as a solution, offering
abstractions, custom devices, and a programming language for
accelerators. However, its programming language lacks generic
support for many types of ASIPs. OpenCL provides a means to
declare and handle buffers, yet does not support efficient buffers
access by ASIPs. The compute model assumes that the CPU is
synchronizing operation between other compute elements. This is
not desirable.

Other approaches, such as OpenGL and OpenCV are
specifically meant for certain application domains and therefore do
not provide an easy-to-use generic acceleration mechanism.

We present an analysis of the challenges when aiming to
achieve a generic way of utilizing and integrating IP subsystems,
consisting of such programmable accelerators.

ACKNOWLEDGMENT

This work is being performed in the scope of the ASAM
project [1] of the European ARTEMIS Research Program and has
been partly supported by the ARTEMIS Joint Under-taking under
grant no. 100265

REFERENCES

[1] L. Jóźwiak, M.M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J.

Madsen, E. Diken, D. Gangadharan, R. Jordans, S. Pomata, P. Pop, G.
Tuveri and L. Raffo, “ASAM: Automatic Architecture Synthesis and

Application Mapping”, DSD 2012 - 15th Euromicro Conference on
Digital System Design, pages 1-11, Cesme, Izmir, Turkey, 2012.

[2] P. van der Wolf and R. Derwig, “Modular SoC Integration with

Subsystems; The Audio Subsystem Case”, DATE’13

[3] A. Munshi and others, “The opencl specification,” Khronos OpenCL
Working Group, vol. 1, pp. l1–15, 2009.

978-3-9815370-0-0/DATE13/©2013 EDAA

