
Sensitivity Analysis for
Arbitrary Activation Patterns in Real-time Systems

Moritz Neukirchner, Sophie Quinton, Tobias Michaels, Philip Axer, Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze

Technische Universität Braunschweig
Braunschweig, Germany

neukirchner|quinton|michaels|axer|ernst@ida.ing.tu-bs.de

Abstract—Response time analysis, which determines whether
timing guarantees are satisfied for a given system, has matured to
industrial practice and is able to consider even complex activation
patterns modelled through arrival curves or minimum distance
functions. On the other side, sensitivity analysis, which deter-
mines bounds on parameter variations under which constraints
are still satisfied, is largely restricted to variation of single-valued
parameters as e.g. task periods.

In this paper we provide a sensitivity analysis to determine the
bounds on the admissible activation pattern of a task, modelled
through a minimum distance function. In an evaluation on a set of
synthetic testcases we show, that the proposed algorithm provides
significantly tighter bounds, than previous exact analyses, that
determine allowable parametrizations of activation patterns.

I. INTRODUCTION & RELATED WORK

Response time analysis [1], [2] and performance analy-
sis [3], [4] provide helpful techniques to determine whether
for a given real-time system all timing constraints are satisfied.
Use of such techniques is current industrial practice in the
design of real-time systems, as e.g. automotive systems.

However, these analyses only yield whether a system meets
all deadlines for a given configuration (i.e. set of parameters).
They provide no indication on how much parameters, as e.g.
task periods, may be changed without violating constraints.
This is the domain of sensitivity analysis. Sensitivity analysis
becomes relevant, whenever the specification is inaccurate.
This may be the case e.g. in early phases of a design process,
or for mixed-criticality systems, where the specification of
low-criticality components is not fully trusted. Sensitivity anal-
ysis determines borderline cases under which a configuration
still meets all constraints.

Analytical derivation of sensitivity bounds [5], [6], [7] is
hard and was only achieved under restrictions on the system
model (e.g. periodic tasks). Other approaches derive sensitivity
bounds for certain design parameters through search over the
parameter space (e.g. [2], [8], [9], [10]), with schedulability
tests or response time analysis as feasibility evaluation. The
search-based approaches come at higher computational com-
plexity than the analytical methods. A third approach is taken
by [11] which determines sensitivity bounds with an iterative
algorithm, which starts from an infeasible configuration and
consecutively adapts system parameters to make the configura-
tion feasible. The design of the algorithm avoids the complete
search of the parameter space. All of these approaches have
in common, that they address sensitivity analysis with respect

Fig. 1: Example of actual sensitivity bound

to single-valued parameters as e.g. execution times, processor
speed (common scaling factor), task periods or activation jitter.

However, when considering the activation pattern of a task
through standard event models as e.g. period and jitter, the
results may be overly conservative - even for exact analysis.
We shortly explain this deficiency. Arbitrary activation patterns
can be modelled with minimum distance functions δ(q), which
denote the minimum distance between any q consecutive
events. A dual representation to minimum distance functions
are arrival curves [3]. For illustration of the deficiency we
refer to figure 1. The original activation pattern specification
of a task may be given through an activation period P . The
corresponding minimum distance function is shown with black
dots in Fig. 1, i.e. δ(q) = (q−1)∗P . A periodic plus jitter event
model is expressed through δ(q) = max(0, (q−1)∗P −J). A
jitter sensitivity analysis would search for the maximum J , i.e.
the maximum shift of the function, that may be allowed. This
is shown as blue squares. A period sensitivity analysis would
search for the minimal allowable period, i.e. the minimal slope,
shown in green squares. Instead of these parametrizations
through standard event models, the actual minimally allowed
distances between subsequent events, as imposed through the
system constraints, may look as shown in red triangles. They
mark the actual sensitivity bound. Thus, although a sensitivity
analysis for parametrized activation patterns may be exact, in
general it is still conservative.

In this paper we aim to determine an arbitrary activation pat-
tern sensitivity bound, which does not rely on a parametriza-
tion, but explicitly yields the values of the minimum distance
function. Such arbitrary activation pattern sensitivity bounds
can be considered in performance analysis [3], [4] or be used
for monitoring as in [12].

The remainder of this paper is structured as follows. In
Sec. II we introduce the system model and in Sec. III we ex-
plain the response-time analysis which we base our sensitivity
analysis upon. In the main part in Sec. IV we introduce our
sensitivity analysis. We evaluate this analysis in Sec. V based
on a synthetic set of testcases and exact reference algorithms,978-3-9815370-0-0/DATE13/ c©2013 EDAA

Fig. 2: Example of δ and its corresponding η+

which work on parametrizations of activation patterns. We
conclude the paper in Sec. VI.

II. SYSTEM MODEL

We consider a uniprocessor system on which a set of k
tasks {τ1, . . . , τk} is executing. The processor is scheduled
according to a preemptive work-conserving scheduling policy.
The set Ii shall denote the set of tasks, which may preempt
the scheduling of task τi, i.e. Ii is the set of interferers.

A task is activated by an activating event and, when
scheduled by the processor, executes for at most its worst-case
execution time (WCET) Ci. We refer to each activation of a
task as instance. As event model we use minimum distance
functions [13].

Definition 1 (Minimum Distance Function) The minimum
distance function δ(q) is a pseudo super-additive1 function,
which returns a lower bound on the time interval between the
first and the last event of any sequence of q event occurrences.

Thus, a minimum distance function is an event model, which
describes the minimal time, in which q events may occur, e.g.
δ(3) = 10 denotes, that the first and the last event of any
sequence of three events are at least 10 time units apart. We de-
note the minimum distance function describing the activation
of task τi by δi. For notational simplicity we use bold font to
denote tuples, e.g. the tuple of all minimum distance functions
δ = 〈δ1, . . . , δk〉. At points we use a dual representation of
minimum distance functions – the maximum arrival functions,
which are well-known from Real-time Calculus [3].

Definition 2 (Maximum Arrival Function) The maximum
arrival function η+(∆t), returns an upper bound on the
number of events that can arrive within any half-open time
window [t, t+ ∆t).

An arrival curve returns the maximal number of events that
may occur in any time window of size ∆t, e.g. η+(10) = 3
denotes, that in any time interval of 10 time units at most
3 events may occur. The η+-function can be derived directly
from its corresponding δ-function through

η+(∆t) = max
n∈N+

{n : δ(n) < ∆t} (1)

An example of a δ function and its corresponding arrival curve
is given in figure 2.

To reason about sensitivity, each task τi is associated with
an arbitrary relative deadline Di, i.e. a constraint on its worst-
case response time (WCRT).

1With pseudo super-additive we denote the property of a function δ
such that ∀a, b ∈ N+ : δ(a+ b− 1) ≥ δ(a) + δ(b). It corresponds to the
property of “good” arrival functions in [14].

III. RESPONSE-TIME ANALYSIS

The considered class of preemptive, work-conserving sched-
ulers can be analyzed with the busy-window analysis (also
“busy-period” analysis). It allows to calculate an upper bound
on the time interval the processor is busy processing a task τi
and its interferers Ii [15]. This level-i busy-period was later
extended to arbitrary event models [13] and [16] introduced
the level-i q-event busy-time, which allows to reason about
the busy-time of a specific instance q of τi. Based on busy-
times one can calculate an upper bound on a task’s WCRT.
The sensitivity analysis, which we present in Sec. IV is built
on certain properties of the busy-window analysis. Therefore
we will review the details of the busy-window analysis.

The multiple-event busy-window (or multiple-event busy
time) is formally defined by [16] as

Definition 3 (Multiple-Event Busy-Window) The maximum
q-event busy-window Bi(q, δ) is given through the following
iterative formula, which is calculated until convergence.

Bi(q, δ) = q · Ci +
∑
j∈Ii

η+
j (Bi(q, δ)) · Cj (2)

The maximum q-event busy time Bi(q, δ) describes an upper
bound on the amount of time a resource requires to service q
activations of task τi, assuming that the processor is initially
idle. Note, that Bi(q, δ) does not depend on the activation
event model η+

i (and thus δi) of the analyzed task, but
only on the activation event models of its interferers η+

j
and the worst-case execution times of itself Ci and of its
interferers Cj , i.e. for any two activation pattern specifications
δ = 〈δ1, . . . , δi, . . . , δn〉, δ′ = 〈δ1, . . . , δ′i, . . . , δn〉 that differ
only in position i

Bi(q, δ) = Bi(q, δ
′) (3)

We use this property later in Sec. IV.
The calculation of the busy-window assumes that all q acti-

vations arrive “sufficiently early”, i.e. prior to the completion
of its preceding event (the (q − 1)-event busy-time), i.e.

δi(q) ≤ Bi(q − 1, δ) (4)

We will denote the number of instances of task τi in the
maximum busy-window as Qi, i.e. it is the latest activation
that comes sufficiently early

Qi = max
(
n : ∀q ∈ N+, q ≤ n : δi(q) ≤ Bi(q − 1, δ)

)
(5)

An example schedule depicting q-event busy-windows is
given in Fig. 3 for task τ3 with interferers τ1 and τ2. Two
activations come sufficiently early, to fall into the busy-
window, as δ3(3) > B3(2, δ), thus Qi = 2. The 1-event and
2-event busy-times are shown in the figure.

Based on the busy-window length one can derive bounds on
the response time of a task. The worst-case response time Ri
of a task τi is an upper bound on the time interval between any
activation of task τi and the corresponding completion time.
A task τi meets its deadline Di if its worst-case response time
does not exceed the deadline, i.e.

Di ≥ Ri (6)

Fig. 3: Example of busy-window

The worst-case response time of the q-th instance in a busy-
window is bounded by

Ri(q) = Bi(q, δ)− δi(q) (7)

The worst-case response time Ri can be found among the first
Qi busy-windows [15], [17].

Ri = max
q∈[1,Qi]

(Ri(q)) (8)

With this analysis technique it is possible to derive bounds
on the response time of a task, based on a specification of
all tasks’ activation patterns and their WCETs. In sensitivity
analysis we aim to derive the inverse, i.e. based on a specifi-
cation of constraints we aim to derive a minimum activation
pattern specification δi(q), for which all constraints still hold.
In contrast to previous approaches we do not attempt, to derive
a parametrization of δi(q) (e.g. through period and jitter) but to
explicitly derive a lower bound for all individual values of the
minimum distance function. Now, we address this problem.

IV. SENSITIVITY ANALYSIS OF ARBITRARY ACTIVATION
PATTERNS

In the sensitivity analysis of arbitrary activation patterns we
want to find minimal values for δi(q) of a given task τi, such
that the constraints of all tasks are still satisfied.

Our approach to determining minimal values of δi(q) is
by posing constraints on the allowed values, while these
constraints are based on the above described busy-window
analysis technique. We split the derivation of these constraints
into two parts, which we first address separately. In the first
part, we derive conditions such that a reduction of δi(q) does
not violate any constraints of task τi. In the second part we
consider the influence on other tasks and derive conditions,
under which a reduction of δi(q) does not cause violation
of constraints of any task τj 6= τi. We then compose these
conditions to derive an overall sensitivity bound.

A. Self-Influence Conditions

In this section, we solely regard the effects, that changing
the activation pattern δi of task τi has on satisfaction of the
deadline Di of that task, i.e. for now we neglect the influence
on other tasks. First, we derive an optimal upper bound on
the number of instances of τi that may appear in the busy-
window, i.e. we determine a sensitivity bound for Qi, which
we will denote with Q̄i. Then, based on this bound, we
construct constraints on δi(q), that guarantee that τi will meet
its deadline. We start with the definition of Q̄i.

Definition 4 (Sensitivity bound on number of instances)
The sensitivity bound Q̄i on the number of instances of task τi
that may appear in the busy-window is defined as

Q̄i = max(n : ∀p ∈ N+, p ≤ n
Di ≥ Bi(p, δ)−Bi(p− 1, δ)) (9)

Note, that Q̄i is independent of δi, as Bi(q, δ) is independent
of δi. As a consequence the sensitivity bound on the number
of instances can be calculated solely based on the minimum
distance functions of τi’s interferers, the worst-case execution
times and τi’s deadline.

In the following lemma we show, that for a given system
there exists an activation event model, such that the deadline
of task τi is satisfied and that the busy-window contains Q̄i
instances of τi. Furthermore, it shows that such an event model
does not exist for any value larger than Q̄i.

Lemma 1 (Sensitivity bound on number of instances)
Q̄i is the maximal value, such that for a given system
there exists a minimum distance function δi for task τi such
that its WCRT constraint Di is satisfied and the maximum
busy-window contains Q̄i instances of τi.

Proof: The proof is split into two parts. First, we show
that a minimum distance function δi exists, such that the
WCRT constraint is satisfied and the busy-window contains
Q̄i instances. Second, we show, that Q̄i is also the maximal
value that satisfies, this condition.

Assume, that task τi is activated with

∀q ∈ [1, Q̄i] : δi(q) = Bi(q − 1, δ) (10)
∀q > Q̄i : δi(q) =∞ (11)

i.e. all instances q ∈ [1, Q̄i] arrive just at the end of the busy-
window of its previous instance. All other instances q > Q̄i
never occur. Then, according to (4) the busy-window contains
Q̄i instances. The response time is given through (7), (8), thus

Ri = max
q∈[1,Q̄i]

(Bi(q, δ)−Bi(q − 1, δ)) (12)

with (9) we obtain

Di ≥ Ri = max
q∈[1,Q̄i]

(Bi(q, δ)−Bi(q − 1, δ)) (13)

and thus, the worst-case response time is satisfied.
We now regard the second part of the proof. In contradiction

to the initial assumption assume that Q̄i + 1 instances appear
in the busy-window and that the WCRT constraint is satisfied.

From the definition of Q̄i we know that Di ≥ Bi(j, δ) −
Bi(j − 1, δ) is not satisfied for any q > Q̄i, thus

Di < Bi(Q̄i + 1, δ)−Bi(Q̄i, δ) (14)

The (Q̄i + 1)-th instance shall satisfy Di, i.e.

Bi(Q̄i + 1, δ)− δi(Q̄i + 1) ≤ Di (15)

combining (14) and (15) yields

δi(Q̄i + 1) > Bi(Q̄i, δ) (16)

Fig. 4: Example for theorem 1

Thus, instance Q̄i+1 does not come sufficiently early (4) and
does not fall into the busy-window, which violates the initial
assumption.
Lemma 1 states, that for any system we can find a minimum
distance function δi of task τi such that this task’s worst-case
response time constraint is satisfied and the maximum busy-
window contains Q̄i instances of τi. Furthermore, it states,
that this is not possible for any busy-window containing more
than Q̄i instances. Thus, Q̄i is an optimal upper bound on the
number of instances that may appear in a busy-window of τi
without violating its deadline.

Based on the sensitivity bound on the number of instances
of a given task, we now construct a minimal δi, such that
the constraint Di is still satisfied. We first give an intuitive
example for the following theorem, before formalizing it.

We use the second instance of task τ3 from the previous ex-
ample to illustrate the idea. The 2-event busy-window of τ3 is
shown in Fig. 4. The absolute deadline of q = 2 is δ3(2)+D3.
Furthermore, the busy-window length is independent of δ3(2)
(see (3)) and was calculated to B3(2, δ). The slack is given
through δ3(2) +D3−B3(2, δ). Now, δ3(2) can be decreased,
until the slack is zero. Furthermore, from lemma 1 we know,
that at most Q̄i instances may appear in the busy-window.
Thus, this technique may only be applied to the first Q̄i
instances. All other instances may not come sufficiently early.
Now, we formalize this approach in theorem 1.

Theorem 1 For a given activation pattern specification δ =
〈δ1, . . . , δn〉 let a given system satisfy task τi’s constraint on
worst-case response time Di.

Then, Di is also satisfied for any δ̄i = 〈δ1, . . . , δ̄i, . . . , δn〉
that satisfies the following constraints

∀q ∈ N+, q > Q̄i : δ̄i(q) > Bi(Q̄i, δ) (17)
∀q ∈ N+, q ≤ Q̄i : δ̄i(q) ≥ Bi(q, δ)−Di (18)

Proof: From (3) we have

Bi(q, δ̄i) = Bi(q, δ) (19)

Substituting this in (17) yields

∀q ∈ N+, q > Q̄i : δ̄i(q) > Bi(Q̄i, δ̄i) (20)

Thus, taking into account the definition of “sufficiently
early” (4), we conclude that for δ̄i(q) the maximum busy-
window contains no more than Q̄i instances of task τi. Thus,
with lemma 1 we know that a minimum distance function δi
exists, under which the constraint Di is satisfied.

(18) ensures that all instances q ∈ [1, Q̄i] satisfy the dead-
line Di. A task’s response time is upper bounded by (7), (8).
Thus, for the case of Q̄i instances

Ri = max
q∈N+ | q≤Q̄i

(
Bi(q, δ̄i)− δ̄i(q)

)
(21)

Fig. 5: Derivation of Cross-Influence Constraints

With (18)

Ri ≤ max
q∈N+ | q≤Q̄i

(Di) = Di (22)

Theorem 1 shows, that we can decrease the activation event
model δi(q) of any task τi to a value of δ̄i(q) without violating
the constraints of that task. The bounds can be calculated with
knowledge of the worst-case busy-windows of the original
specification, i.e. no additional iterative calculation is required.
Note however, that influence on other tasks is not considered.
We will address this issue in the following section.

B. Cross-Influence Conditions
In this section we analyze the effects, that changing the

minimum distance function of a task τi has on another task τj’s
response time. Specifically, we aim to derive lower bounds on
δi such that the worst-case response constraint Dj of task τj
is still satisfied. For notational clarity we will refer to task τi
as analyzed task and to task τj as influenced task.

The general reasoning of the construction of the lower
bound on δi(q) is depicted in Fig. 5 on the example of task τ1
as analyzed task, which influences the second instance of
task τ3. In lemma 2, we first derive an implicit constraint on
the length of the busy-window B̂3(2) of the second instance
of the influenced task τ3. Based on this implicit constraint,
we derive the maximum number of instances of the analyzed
task, that may appear in the 2-event busy-window of τ3. We
will denote this maximal number of instances with n̄i,j,q
(here n̄1,3,2). In lemma 3 we show, that the busy-window
considering this maximal number of instances B3(2, δ, n̄1,3,2)
instead of η+

i (Bj(q, δ)) is smaller than the busy-window con-
straint B̂3(2). Finally, based on this number of instances n̄1,3,2,
we determine a bound on δ̄i(n̄i,j,q + 1) (here δ̄1(n̄1,3,2 + 1))
of the analyzed task τi. This is given in theorem 2.

We start with the implicit busy-window constraint B̂j(q).

Lemma 2 Task τj satisfies its worst-case response time con-
straint Dj , if and only if no instance q ∈ [1, Qj] has a busy
window larger than B̂j(q), where B̂j(q) is given through

B̂j(q) = Dj + δj(q) (23)

Proof: The lemma directly follows from (7) and (8).
From this lemma, we now derive a constraint on the

number of instances n̄i,j,q of the analyzed task τi that
may appear in the q-event busy-window of the influenced
task τj , i.e. n̄i,j,q shall be an upper bound on η+

i (Bj(q, δ)) or
n̄i,j,q ≥ η+

i (Bj(q, δ)).
The busy-window of the q-th instance of task τj for a

given activation pattern δ but considering n̄i,j,q instances of
task τi instead of η+

i (Bj(q, δ)) is given through the following

iterative formula, which is directly deduced from the busy-
window equation (2).

Bj(q, δ, n̄i,j,q) = q · Cj +
∑
l∈Ij\i

η+
l (Bj(q, δ, n̄i,j,q)) · Cl

+ n̄i,j,q · Ci (24)

Thus, we need to find the maximum value of n̄i,j,q such that
the busy-window constraint is satisfied, i.e. Bj(q, δ, n̄i,j,q) ≤
B̂j(q). We formalize this in the following lemma.

Lemma 3 For a given activation pattern specification δ let
a given system satisfy task τj’s constraint on worst-case
response time Dj .
n̄i,j,q is the maximum number of instances of task τi that

may appear in the q-event busy-window of task τj instead
of η+

i (Bj(q, δ)), such that the worst-case response time con-
straint Dj is still satisfied for the q-th instance of τj . n̄i,j,q is
given through

n̄i,j,q = max
n∈N+

(
n : Bj(q, δ, n) ≤ B̂j(q)

)
(25)

Proof: First we show, that the constraint Dj is still
satisfied for the q-th instance of τj if at most n̄i,j,q instances
of τi appear in the busy-window Bj(q, δ). Then, we show that
n̄i,j,q is maximal.

By definition Bj(q, δ, n̄i,j,q) is the q-event busy-window
of task τj considering n̄i,j,q instances of task τi instead of
η+
i (Bj(q, δ)). By the relation within the max term of (25) this

busy-window has to satisfy the busy-window constraint B̂j(q)
of the q-th instance of τj . With lemma 2 we conclude, that
the Dj is satisfied for the q-th instance of τj .

Maximality of n̄i,j,q follows from (25) and lemma 2.
To determine the complexity of the calculation of n̄i,j,q , note,
that n is in natural numbers. Furthermore, Bj(q, δ, n) can
always be lower bounded without iteration to q ·Cj+n·Ci and
is upper bounded by the constraint B̂j(q). Consequently, de-
termination of n̄i,j,q requires a limited number of candidates.

With lemma 3, we can determine the maximum number
of instances of the analyzed task, that may appear in any
given q-event busy-window of the influenced task. Note, that
B̂j(q) and also n̄i,j,q are independent of η+

i . Thus, we can
reason about adaptation of δi under consideration of other
tasks’ constraints. We express this in the following theorem.

Theorem 2 For a given activation pattern specification δ =
〈δ1, . . . , δn〉 let a given system satisfy task τj’s constraint on
worst-case response time Dj .

Then, Dj is also satisfied for any δ̄i = 〈δ1, . . . , δ̄i, . . . , δn〉
that satisfies the following constraints

∀q ∈ N+ : δ̄i(n̄i,j,q + 1) > Bj(q, δ, n̄i,j,q) (26)

Proof: Applying η̄+
i to both sides of (26) yields

η̄+
i (δ̄i(n̄i,j,q + 1)) > η̄+

i (Bj(q, δ, n̄i,j,q)) (27)

According to (1) we obtain

n̄i,j,q ≥ η̄+
i (Bj(q, δ, n̄i,j,q)) (28)

Algorithm 1 Sensitivity analysis for task τi
Input: Cl, Bl(q, δ) for all tasks τl ∈ {τp : τi ∈ Ip, τi} and activations

1: ∀q : δi(q) = 0
2: // self-influence
3: calculate Q̄i − eq. 9
4: for q do
5: if q ≤ Q̄i then
6: δi(q) = max (δi(q), Bi(q, δ)−Di)
7: else
8: δi(q) = max

(
δi(q), Bi(Q̄i, δ) + 1

)
9: // cross-influence

10: for τj : τi ∈ Ij do
11: for q do
12: calculate n̄i,j,q - eq. 25
13: δi(n̄i,j,q + 1) = max (δi(n̄i,j,q + 1), Bj(q, δ, n̄i,j,q) + 1)
14: // make δi super-additive
15: ∀a, b : δ(a+ b− 1) = max (δ(a+ b), δ(a) + δ(b))

With this and (2) and (24) we conclude that Bj(q, δ, n̄i,j,q) is
an upper bound for Bj(q, δ̄i), i.e.

Bj(q, δ, n̄i,j,q) ≥ Bj(q, δ̄i) (29)

With (26) and the definition of sufficiently early (4) the
theorem follows.

Theorem 2 allows to derive constraints on the minimum
distance function δi of a task τi based on the deadline Dj

of another task τj . Thus, in combination with theorem 1 we
have the means to calculate minimally allowed values for δi(q)
under consideration of all constraints. In the following section
we embed these constraints into a sensitivity analysis.

C. Overall analysis

In this section we consider the constraints on minimum
distance functions from the previous two sections and embed
them into a sensitivity analysis scheme.

The overall analysis is given in algorithm 1. As input, the
algorithm requires for the task under analysis τi and for all
influenced tasks τl ∈ {τp : τi ∈ Ip}, the worst-case execution
times and deadlines, and the busy-windows for an initial
activation pattern description, under which all constraints are
satisfied.

First all δi(q) are initialized to 0 (line 1) as starting point.
These values are increased throughout the algorithm according
to the constraints from theorems 1 and 2. Furthermore, the
maximum number of instances of τi that may occur in a busy-
window Q̄i is calculated (line 3). To account for the self-
influence for all considered instances, the constraint according
to theorem 1 is calculated, depending on, whether the instance
may occur within the busy-window (line 6) or may not fall into
the busy-window (line 8). To consider the cross-influence, we
iterate over all tasks and calculate for all instances, the number
of allowed instances of τi (line 12) and assign the constraint
on δi(n̄i,j,q + 1) according to theorem 2. In the end, we make
the function pseudo super-additive again (line 15), as required
by def. 1. Note, that although the algorithm iterates over all
q, minimum distance functions are practically used only on a
limited interval. Iterations over q (lines 4, 11) can be limited
to such relevant intervals to bound runtimes.

This completes the approach to arbitrary activation pattern
sensitivity under consideration of worst-case response time
constraints. We have first derived conditions for δi(q) under
which the analyzed task itself does not violate its constraint

Fig. 6: Quality metric w.r.t. the two reference algorithms

and then considered the influence on other tasks. Finally,
we have combined the constraints to an overall sensitivity
analysis. In the next section we evaluate the presented analysis
with synthetic testcases and two exact parametrized analyses.

V. EVALUATION

In order to evaluate the performance of the proposed
sensitivity analysis, we compare our algorithm based on a
synthetic set of testcases with two exact sensitivity analyses,
that operate on parametrized activation patterns rather, than
arbitrary activation patterns.

The first reference algorithm performs a binary search over
activation jitter, i.e. the maximum allowed activation jitter
of the analyzed task is determined. The second reference
algorithm performs the same binary search over the activation
period of the analyzed task.

The testcases, consist of a set of 5, 10, 15, 20, 25 or 30 tasks
on a processor under static priority preemptive scheduling. All
tasks are activated periodically with period from a uniform
distribution in the interval [100, 5000] and an activation
jitter from a uniform distribution in [0, 5*period]. WCETs
are generated with UUniFast [18] to achieve a utilization of
0.7. Deadlines are derived from the WCRTs of the initial
system specification such that the constraint is chosen from
uniform distribution in the interval [1.3*WCRT, 2.5*WCRT].
The sensitivity analysis is performed for the highest priority
task to obtain a maximum number of constraints. We have
determined the sensitivity bound on δi for q ∈ [1, 20]. For
each number of tasks we have analyzed 100 different systems.

Results are as anticipated in figure 1. The determined
arbitrary activation pattern sensitivity bounds are below the
parametrized bounds for all testcases and values of q. Instead
of showing such sensitivity bounds for individual testcases, we
quantify the improvement over all testcases. For quantification
of the improvement we introduce a quality metric, which we
base on the relative difference to the reference sensitivity
bound, i.e. let δ̄ref be the activation pattern determined by
the reference algorithm and δ̄arb be the sensitivity bound
determined by the proposed algorithm. The relative difference
is ∆(q) =

δ̄ref (q)−δ̄arb(q)

δ̄ref (q)
. Then, the quality metric is the mean

relative difference over the interval [1, qmax], i.e.

λ = meanq∈[1,qmax]∆(q) (30)

Figure 6 shows the mean quality metric for the testcases
from the different parameter sets, i.e. the different numbers of
tasks. The values were obtained w.r.t. each of the two reference
algorithms. We see, that the proposed algorithm outperforms
either reference algorithm significantly, although the initial
system specification is strictly periodic with jitter. On average,
the determined values of the minimum distance functions are
∼55% below those, obtained by the reference algorithms,

despite the fact that the reference algorithms are exact. This
improvement originates solely from the fact, that the proposed
algorithm does not rely on a parametrization of the activation
pattern, but determines the allowed values of δi(q) for each q
individually. Runtimes of the proposed algorithm are tractable.
For the testcases the analysis required between 0.03s and 356s
on an Intel Core i3@2,4GHz processor with 3GB of RAM.

VI. CONCLUSION

In this paper we have presented a novel approach to
activation pattern sensitivity analysis under consideration of
worst-case response time constraints. Instead of searching for
a maximally allowed parametrization of an activation pattern,
as previous approaches, our approach determines an arbitrary
minimum distance function as sensitivity bound. The correct-
ness of these bounds is formally proven and in an extensive
set of testcases, we have shown, that the obtained sensitivity
bounds are significantly more accurate than previous exact ap-
proaches, that work on parametrizations of activation patterns.

REFERENCES

[1] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, pp. 117 – 134, 1994.

[2] R. Davis and A. Burns, “Robust priority assignment for fixed priority
real-time systems,” in Real-Time Systems Symp. (RTSS), 2007.

[3] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Symp. on Circuits and Systems
(ISCAS), 2000.

[4] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, pp. 148–166, 2005.

[5] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” Proc. of
Real Time Systems Symp. (RTSS), pp. 166 –171, 1989.

[6] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time systems,”
in Real-Time Systems Symp. (RTSS), 1991.

[7] E. Bini, M. D. Natale, and G. Buttazzo, “Sensitivity analysis for fixed-
priority real-time systems,” Real-Time Syst., vol. 39, pp. 5–30, 2007.

[8] A. Hamann, R. Racu, and R. Ernst, “A formal approach to robust-
ness maximization of complex heterogeneous embedded systems,” in
Int’l. Conf. on Hardware/Software Codesing and System Synthesis
(CODES+ISSS), 2006.

[9] S. Punnekkat, R. Davis, and A. Burns, “Sensitivity analysis of real-time
task sets,” Lecture Notes In Computer Science, vol. 1345, pp. 72–82,
1997.

[10] R. Racu, A. Hamann, and R. Ernst, “Sensitivity analysis of complex
embedded real-time systems,” Real-Time Systems, vol. 39, pp. 31–72,
2008.

[11] F. Zhang, A. Burns, and S. Baruah, “Sensitivity analysis of arbitrary
deadline real-time systems with edf scheduling,” Real-Time Systems,
vol. 47, pp. 224–252, 2011.

[12] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst,
“Monitoring arbitrary activation patterns in real-time systems,” in Proc.
of IEEE Real-Time Systems Symposium (RTSS), Dec 2012.

[13] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, Technical University of Braunschweig, De-
partment of Electrical Engineering and Information Technology, 2004.

[14] J. Y. L. Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Verlag, 2001.

[15] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbi-
trary deadlines,” in Real-Time Systems Symposium, 1990. Proceedings.,
11th. IEEE, 1990, pp. 201–209.

[16] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing accurate event
models for the analysis of heterogeneous multiprocessor systems,” in
Proc. 6th Int’l. Conf. on Hardware Software Codesign and System
Synthesis (CODES-ISSS), 2008.

[17] S. Schliecker, “Performance analysis of multiprocessor real-time sys-
tems with shared resources,” Ph.D. dissertation, Technische Universität
Braunschweig, Braunschweig, Germany, 2011.

[18] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, pp. 129–154, 2005.

