
Parameterized Area-Efficient Multi-standard Turbo Decoder
Purushotham Murugappa, Amer Baghdadi, Michel Jézéquel

Institut Mines-Telecom; Telecom Bretagne; Lab-STICC CNRS UMR 6285
Electronics Department, Technopôle Brest Iroise 29238 Brest France

Email: {firstname.surname}@telecom-bretagne.eu

Abstract—Emerging wireless digital communication standards specify
a large variety of channel coding options, each suitable for specific
application needs. In this context, several recent efforts are being
conducted to propose flexible channel decoder implementations. However,
the need of optimal solutions in terms of performance, area, and power
consumption is increasing and cannot be neglected against flexibility.
In this paper we present a novel parameterized architecture for multi-
standard Turbo decoding which illustrates how flexibility, architecture
efficiency, and rapid design time can be combined. The proposed
architecture supports both single-binary Turbo codes (SBTC) of 3GPP-
LTE and double-binary Turbo codes (DBTC) of WiMAX and DVB-RCS
standards. It achieves, in both modes, a high architecture efficiency of
4.37 bits/cycle/iteration/mm2. A major contribution of this work concerns
the rapid design time allowed by the well established design concept and
tools of application-specific instruction-set processors (ASIPs). Using such
a tool, the paper illustrates the possibility to design application-specific
parameterized cores, removing the need of the program memory and the
related instruction decoder.

I. INTRODUCTION

Flexibility has become one of the major design considerations
over the last years in many application domains. Digital communica-
tion domain is very representative of this trend where many flexible
designs have been recently proposed for the challenging Turbo
decoding application. For this application, there is a large variety of
coding options specified in existing and future digital communication
standards, besides the increasing throughput requirement (Table I).

Standard Codes Rates States Block size Throughput
(bits) (Mbps)

WiMAX DBTC 1/2, 2/3, 3/4, 5/6 8 .. 4800 .. 75
DVB-RCS DBTC 1/3 - 6/7 8 .. 1728 .. 2
3GPP-LTE SBTC 1/3 - 0.95 8 .. 6144 .. 150

TABLE I. SELECTION OF WIRELESS COMMUNICATION STANDARDS
SPECIFYING TURBO CODES

In this context, many recent works have been proposed targeting
flexible, yet high throughput, implementations of Turbo decoders
[1][2][3][4][5]. The flexibility varies from supporting different modes
of a single communication standard to the support of multi-standards
multi-mode applications. Other implementations have even increased
the target flexibility to the support of different channel coding
techniques.

However, the real contribution while targeting the flexibility
requirement concerns the achieved architecture efficiency in terms of
performance/area. In fact, this efficiency is a key differentiator, as if
it is not considered, flexibility and throughput can be simply reached
by instantiating and duplicating dedicated cores for each standard. To
that end, many algorithm, architecture, and technology optimization
techniques are investigated in order to combine flexibility and high
architecture efficiency. Parallelism techniques, which are necessary
to reach the increasing throughput requirements, are analyzed and
classified with respect to their area efficiency and parallelism de-
grees in [1][6]. Regarding the architecture model, the conventional
parameterized architecture model can enable to increase the flexibility

support of the hardware implementation through a careful control
unit design which takes into consideration several input parameters.
However, such an architecture model implies long design time as no
well structured design methodology, with respect to the flexibility
requirement, is available. On the other hand, recent efforts have
targeted the use of Application-Specific Instruction-set Processor
models (ASIP). Such an architecture model enables the designer
to freely tune the flexibility/performance trade-off as required by
the considered application. Furthermore, the well established design
methodology and the mature available tools enable short design time.

In this paper, we use the ASIP design methodology and tools
to implement a novel parameterized core for multi-standard Turbo
decoding which illustrates how flexibility, architecture efficiency,
and rapid design time can be combined. The proposed architecture
(namely TDecASIP) demonstrates the possibility to achieve a high ar-
chitecture efficiency (4.37 bits/cycle/iteration/mm2) while using such
an approach by selecting the appropriate parallelism and optimization
techniques and by removing the need of the program memory and
the related instruction decoder. The target flexibility is set to cover
both single-binary Turbo codes (SBTC) of 3GPP-LTE and double-
binary Turbo codes (DBTC) of WiMAX and DVB-RCS standards.
The rest of the paper is organized as follows. Section II gives a brief
introduction on the decoding algorithm of Turbo codes. Section III
describes the architecture of the proposed parameterized core. The
achieved results are summarized and compared along with few recent
related works in Section IV. Finally the paper concludes with Section
V.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

α(1)

β(3)

Received frame

Forward
recursion

α β
Backward
recursion

32
transitions

SISO
Decoder1

SISO
Decoder2

S0, S1

Turbo decoder

Hard
decision

∏–1 ∏ ∏

Channel LLRs

P0, P1

P0’, P1’

10
{S0,S1}k-1

01

00

11

{S0,S1}k {S0,S1}k+1

𝑍𝑘
𝑛.𝑒𝑥𝑡

𝑍𝑘
𝑛.𝑒𝑥𝑡

Fig. 1. Turbo codes decoder structure and an 8-states DBTC trellis

II. TURBO DECODING

The typical Turbo decoder structure consists of two Soft Input
Soft Output (SISO) component decoders exchanging extrinsic infor-
mation via an interleaving (Π) and deinterleaving (Π−1) functions
as illustrated in Fig. 1. The SISO decoders often implement the
hardware-efficient Max-Log-MAP algorithm [7]. In order to explain
briefly the underlined computations, let us consider the 8-state DBTC
code of WiMAX standard, represented by its trellis in Fig. 1. For each
received double binary symbol S0,S1k, the SISO decoder computes
first the branch metrics (γk(s′, s)) which represent the probability of

978-3-9815370-0-0/DATE13/ c©2013 EDAA

a transition to occur between two trellis states (s′: starting state, s:
ending state). These branch metrics can be decomposed, as defined
by the following expressions, in an intrinsic part (γintrx

k (s′, s))
due to the systematic information (γsysx

k (s′, s)) and the a priori
information (γn.aprx

k (s′, s)), besides a redundancy part due to the
parity information (γpary

k (s′, s)).

γk(s
′, s) = γintrx

k
(s′, s) + γ

pary
k

(s′, s)

∀(x, y = 00, 01, 10, 11)
(1)

γintrx
k

(s′, s) = γsysx
k

(s′, s) + γn.aprx
k

(s′, s)

∀(x = 00, 01, 10, 11)
(2)

where γn.aprx
k (s′, s) is the normalized a priori information of the kth

symbol, or the normalized extrinsic information (Zn.ext
k), sent by the

other decoder component (expression given below). Furthermore, the
systematic and the parity information in these expressions represent
the symbol Log-Likelihood-Ratios (LLRs) which can be obtained
by direct addition and subtraction operations between the received
channel bit LLRs (S0, S1, P0, P1, P0’, P1’).

Then the SISO decoder runs the forward and backward recursion
over the trellis (Fig. 1).The forward state metrics αk(s) of the kth

symbol are computed recursively using those of the (k−1)th symbol
and the branch metrics of the corresponding trellis section. Similarly
for the backward state metrics βk(s) which corresponds however to
the backward recursion (traversing the trellis in the reverse direction).

αk(s) = max
s′

(αk−1(s) + γk(s
′
, s))

∀(s′, s = 0, 1, ..7)
(3)

βk(s) = max
s′

(βk+1(s) + γk(s
′
, s))

∀(s′, s = 0, 1, ..7)
(4)

Finally, the extrinsic information of the kth symbol is computed for
all possible decisions (00, 01, 10, 11) using the forward state metrics,
the backward state metrics, and the extrinsic part of the branch metrics
as formulated in the following expressions:

Zapos
k

(d(s′, s) = x) = max
(s′,s)/d(s′,s)=x

(αk−1(s) + γk(s
′, s) + βk(s))

∀(x = 00, 01, 10, 11)
(5)

Zext
k (d(s′, s) = x) = Zapos

k
(d(s′, s) = x)− γintx

k
(s′, s)

∀(x = 00, 01, 10, 11)
(6)

The extrinsic information can be normalized by subtracting the mini-
mum value in order to reduce the related storage and communication
requirements, thus only three extrinsic information values should be
exchanged for each symbol.

Zn.ext
k (d(s′, s) = x) = Zext

k (d(s′, s) = x)−min(Zext
k (d(s′, s) = x))

∀(x = 00, 01, 10, 11)
(7)

Executing one forward-backward recursion on all symbols of the
received frame in the natural order completes one half iteration. A
second half iteration should be executed in the interleaved order to
complete one full Turbo decoding iteration. Once all the iterations
are completed (usually 6-7 iterations), the Turbo decoder produces a
hard decision for each symbol Zhard dec.

k ∈ (00, 01, 10, 11).

For SBTC, the use of the trellis compression (Radix-4) [8]
represents an efficient parallelism technique and allows for efficient
resource sharing with a DBTC SISO decoder as two single binary

trellis sections (two bits) can be merged into one double binary trellis
section.

III. PROPOSED PARAMETERIZED ARCHITECTURE

In this section we summarize first the design motivations behind
the architectural choices we made during the design stage, followed
by the description of the proposed parameterized core and memory
organization.

W1

W2

WL

Time

S
u

b
b

lo
ck

0

… … … … …

T
D

e
cA

S
IP

0

W1

W2

WL

S
u

b
b

lo
ck

1

T
D

e
cA

S
IP

1

Iteration 1

…

…

…

Backward recursion (β)

Forward recursion (α)

& Extrinsic generation

Boundary α metrics

Exchange inside TDecASIP

Boundary α metrics

Exchange btw. TDecASIPs

(via the α- β network)

Boundary β metrics

Exchange inside TDecASIP

(between iterations)

Boundary β metrics

Exchange btw. TDecASIPs

(via the α- β network)

Iteration 2

… … … … …

… … … … …

… … … … …

βinit

βinit

αinit

αinit

Processing repeated twice for the

two half iterations by TDecASIP 0 & 1

Fig. 2. Windowing and backward-forward schedule

A. Design motivations and design choices
The motivations behind the design choices that were made are

as follows. In order to achieve the target throughput in the range
of hundreds Mbps, a sub-block parallelism degree of 2 is adopted.
In fact, such parallelism degree (which can be also increased to 4)
allows for conflict-free memory accesses in both WiMAX and LTE
standards for all specified frame length. Each sub-block is further
divided into L windows of length W . This reduces the depth of the
storage memory required for storage of previous state metrics to W
(as required by the equation (4)).

Each TDecASIP uses two recursion units and employs Backward-
Forward schedule for window processing. The first recursion unit
(processing in the backward direction of the trellis) works on window
j while the second recursion unit (processing in the forward direction
of the trellis) works on window j − 1 at the same time (as shown
in Fig. 2). This enables to achieve the throughput equivalent to
butterfly schedule (as in TurbASIP design) but by using backward-
forward schedule which further enables use of hardware interleave
address generators for extrinsic memory addressing. In the backward
recursion, at the end of processing of the jth window, the boundary
state metrics are stored in an external (BoundaryState) memory. These
state metrics are later used as initial states for the window (j − 1) in
the subsequent iteration. In TDecASIP, the maximum window size is
considered to be W=64 symbols.

Half iterations are performed in serial order, i.e. all processing
cores perform first half iteration by reading the systematic and
extrinsic information sequentially from memories, followed by the
second half iteration where the systematic and extrinsic memories
are read in interleaved order. The generated extrinsic data are written
at the same location as it was read from. In both of these half iteration
cycles the parity memory is always read sequentially. This type of
scheduling presents the following advantages:

• Only one copy of systematic information bits are needed
to be stored. This reduces the number of memory banks
required and the configuration network complexity.

• Only sequential counter and interleaved address generator
are needed for addressing the memories while the shuffled
decoding needs in addition a deinterleaved address sequence.
Given the adopted low sub-block parallelism degree, this
serial decoding reduces the memory access complexity
as only low number of multiplexers would be sufficient
(read/write exchange network). WiMAX interleavers support
sub-blocking of 2 and 4 while LTE interleavers support sub-
blocking of at least 2 and 4 [5] (with a maximum of 64).

• Small number of memory banks also results in less address
decoding logic and hence reduced total memory area, result-
ing in area efficient decoding core.

Based on the above design motivations and choices, we propose the
two core Turbo decoder architecture shown in Fig. 3. Each core (TDe-
cASIP) processes a sub-block of the input frame and interconnected
by two 80-bit ring buses to enable state metric exchanges across sub-
blocks. As β state metrics are quantized to 10 bits, 80-bit (for 8 states)
wide bus is needed to exchange the boundary state metrics between
processors. Each core has direct access to configuration, CrossMetric,
BoundaryState and input Parity memories. The input Systematic and
Extrinsic memory banks are connected to the cores through a simple
read/write exchange network as illustrated in Fig. 3.

(1536x12)

S1

(1536x5)

Input Systematic mem.

(1536x20)

Input Parity mem.

Odd
in SBTC mode

P1’ P0’ P1 P0

Extrinsic mem.

(1536x12)

Loc Extr2 Extr1 Extr0
in DBTC mode

in SBTC mode

ExtrEven

S0

(1536x5)

Even
in SBTC mode

S1

(1536x5)

Input Systematic mem.

Odd
in SBTC mode

S0

(1536x5)

Even
in SBTC mode

S0

S1

Extr.

S0

S1

Extr.

CrossMetric

memory

(64x128)

BoundaryState

memory

(24x80)

Config

memory

(24x16)

CrossMetric

memory

(64x128)

BoundaryState

memory

(24x80)

Config

memory

(24x16)

80 80

Last window

boundary

state metrics

α

First window

boundary

state metrics

β

Last window boundary

state metrics α

TDecASIP1

(sub-block1)

TDecASIP0

(sub-block0)

First window boundary

state metrics β

Read/Write

Exchange network

(1536x20)

Input Parity mem.

P1’ P0’ P1 P0

ExtrOdd

(1536x12)

Extrinsic mem.

(1536x12)

Loc Extr2 Extr1 Extr0
in DBTC mode

in SBTC mode

ExtrEvenExtrOdd

Fig. 3. Overview and memory organization of the proposed 2-TDecASIP
Turbo decoder architecture

B. TDecASIP decoder architecture
Fig. 4 details the proposed TDecASIP architecture. The design

consists of 8 pipeline stages, of which the first 3 stages are dedicated
for the data fetch from the memories and for the control of the
pipeline. Since the number of flexible parameters is small, their values
are fetched from the configuration memory by the ConfigFetch stage.
These parameters consist of the following:
• Mode: LTE or DVB/WiMAX.
• The number of iterations to be executed.
• Normal window size (W), size of the last window (WL) and

the number of windows (L).
• Extrinsic address generation initialization values: these val-

ues are required to configure the address generation logic in
WiMAX/DVB or LTE modes [5].

1) Finite state machine for pipeline control: One of the main
motivations of this work concerns the investigation of the possibility
to design parameterized cores using the available ASIP design ap-
proach. Such possibility can potentially lead to a higher architecture
efficiency by simplifying the instruction decoding logic and removing
the program memory. Furthermore, it should lead for an increased
energy efficiency as there are no program memory accesses in this
case. Finally, such an approach still keeps the benefit of the short
design cycle enabled by the well established ASIP design tools.

In the proposed modified ASIP design flow for parameterized
cores design, the instruction program memory is used as a configura-
tion (config) memory, where the configuration parameters are stored.
Rather than defining specialized instructions, the corresponding finite
state machine (FSM) is directly described in LISA (Language for
Instruction Set Architectures) [9]. The current state of the FSM is
treated as an instruction. This approach can be effective when the
application exhibits a reduced number of flexible parameters and the
corresponding processing presents a reduced number of control states.
The target application in this study (flexible Turbo decoding) is a
good example with 6 states (as shown in Fig.4) and few flexible
parameters that do not change during the decoding process. This
FSM is implemented in the OperandFetch pipeline stage to generate
appropriate control signals to activate or deactivate the appropriate
stages of the pipeline (Fig.4).

As soon as the start signal is asserted, the processor starts with the
Initialize state, initializing the registers to the default values and read-
ing the configuration parameters mentioned above. At the end of the
initialization, the FSM reaches S1 state generating appropriate signals
for the backward recursion execution. If the processor is executing
the first half iteration, the generated addresses for systematic and
extrinsic memories are sequential otherwise interleaved addresses are
generated. The addresses for parity memories are always sequential.
All FSM transitions in Fig. 4 occur when the window boundary is
reached. At the end of the window processing, if the number of
windows L = 1 then the forward recursion is executed for the window
currently processed else the control is passed to S2 state. In S2
state both forward recursion for Wcurr−1 and backward recursion
for Wcurr window are executed in parallel by two dedicated state
metrics processing units as shown in Figure 4. Since CrossMetric
memory is read and written simultaneously by two different execution
units, Crossmetric memory bank is chosen to be dual port memory.

When the backward recursion unit completes the processing of
all L windows, the forward recursion unit would still be executing
WL−1. In case WL < WR, i.e. the Lth window size is less than WR,
a wait state S3 is introduced (corresponding to WR-WL clock cycles)
so that the forward recursion unit can complete the execution of the
(L − 1)th window before transition to state S4. The S4 state only
generates signals to activate forward recursion of the last window.
Once the forward recursion of the last window (WL) is complete,
5 clock cycles wait state S5 is inserted to ensure all the control
data are flushed out of the pipeline before starting the next half
iteration. During the last half iteration, hard decisions are made on
the aposteriori LLRs.

2) Pipeline architecture: The LLRtoSymbol pipeline stage con-
verts the fetched systematic and parity bit LLRs to symbol LLRs. If
the processor is executing the first half iteration, the least significant
10 bits (P1,P0) of the parity data fetched are used, else the most sig-
nificant 10 bits (P1’,P0’) are used for processing. The BackwardBM
pipeline stage computes the branch metrics γk(s′, s) for the backward

Control and
Address Generation

OperandFetch

Interleaved
address gen

Sequential
address gen

FSM for

pipeline control

Config

memory

(24x16)

ConfigFetch

LLRtoSymbol

BackwardBM

BackwardSM

ForwardBM

ForwardSM_Extr

ExtrinsicGen

S1

(1536x5)

Input Systematic mem.

Odd
in SBTC mode

S0

(1536x5)

Even
in SBTC mode

(1536x20)

P1’ P0’ P1 P0

(1536x12)

Extrinsic

mem.

(1536x12)

Loc Extr2 Extr1 Extr0
in DBTC mode

in SBTC mode

ExtrEvenExtrOdd

Config read

LLR to Symbol
Unit+

x2 x2

-

+-

rd@

rd@

rd@

S1, S0

Extrinsic

(P1’, P0’) or (P1, P0)

Connection

to memory

banks of

sub-block1

�����, �����, ����	, ����
 ������, ������ �
����, �
����

previous β state metrics

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

S0 S1 S2 S3 S4 S5 S6 S7

connections based on the Trellis definition

00

01

10

11

BoundaryState

memory

(24x80)

��,�,	,…,��

80

48

�
����, �
����, �����
(00,01,10,11)

Forward
Branch Metric Unit

+
x8 x8

-

80

, ����� (00,01,10,11)�
����, �
����

previous α state metrics

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

+

+

+

+
MAX

S0 S1 S2 S3 S4 S5 S6 S7

connections based on the Trellis definition

00

01

10

11

��,�,	,…,��

β state metrics

MAX

S0 S1 S2 S3 S4 S5 S6 S7

MAX MAX MAX

+ + + + + + + +00

+ + + + + + + +01

+ + + + + + + +10

+ + + + + + + +11

Interleaved
address gen

Sequential
address gen

Extrinsic write address generationMagnitude correction

Symbol to bit
conversion

Subtract
intrinsic

Normalize
with Min

Subtract
intrinsic

Hard
Decision

�����
(00,01,10,11)

�����.���(�0, �1)

wr@

ExtrOdd ExtrEven

(in SBTC mode)

Loc Extr2 Extr1 Extr0

(in DBTC mode) To the write port of the Extrinsic memory

(through the Read/Write Exchange network)

� + (!", !)

��
#��� ��
#��� ��
#��� ��
#���

CrossMetric

memory

(64x128)

48

Backward
Branch Metric Unit

+
x10 x10

-

Initialize

(S0)

Backward

recursion

(S1)

Forward

recursion

(S4)

Wait for

Pipeline

data flush

(S5)

Wait for end

of Fw recursion

(S3)

Forward &

Backward

recursions

(S2)

L > 1

Start the Next

half iteration

Wcurr= L & WL<WR

start

L=1

Wcurr=0

Wcurr< L

Note: transitions occur when the processed window boundary is reached

Wcurr= L & WL=WR

FSM

Input Parity mem.

TDecASIP0

Fig. 4. Detailed pipeline architecture and FSM of the proposed TDecASIP parametrized core

recursion using extrinsic, systematic, and parity symbol LLRs as
described by the equation (1).

Then the pipeline stage BackwardSM computes the 8 backward
state metrics βk(s) corresponding to the received symbol k as defined
in equation (4). To that end, the computations related to the 32 trellis
transitions (refer Fig.1) are done in parallel using 32 adder nodes
and 8 maximum operators as illustrated in Fig. 4. The computed 8
backward state metrics βk(s) are buffered in the CrossMetric memory
as they are needed to compute the aposteriori information Zapos

k in the
ForwardSM Extr stage. In addition, the CrossMetric memory buffers
the γintr

k (s′, s) and γpar
k (s′, s) of the processed window so they can

be used directly in the ForwardBM pipeline stage for the computation
of the branch metrics γk(s′, s) in the forward recursion (avoiding
external memory accesses and double-ported input memories). State
metrics are quantized to 10 bits while the intrinsic LLRs γintr

i need
an 8 bits quantization.

The ForwardSM Extr pipeline stage includes all the required
hardware units (Fig. 4) to compute the forward state metrics αk(s)
as defined in equation (3) and to complete the computation of the 4
aposteriori LLRs Zapos

k of the symbol k after fetching the βk(s) from
the CrossMetric memory. Overflows are allowed in the state metric
calculations (α(s), β(s)) and the magnitude correction unit of the
ExtrinsicGen pipeline stage implements the modulo normalization (as
done in [10][1]). Finally, the magnitude corrected aposteriori Zapos

k

and the intrinsic γintrx
k LLRs are used to generate the normalized

extrinsic (for DBTC or SBTC modes) and the hard decision.

C. Memory organisation

The memory organization of the proposed architecture is illus-
trated in Fig.3. With negligible performance loss, the channel LLRs
can be quantized to 5 bits and the normalized extrinsic information to
7 bits. As radix-4 is adopted in SBTC, systematic LLRs are stored in
two memory banks, and similarly for extrinsic LLRs. This memory
organization and the corresponding efficient address generation are
allowed by the QPP (quadratic permutation polynomial) interleaver
adopted in LTE standard which maps even addresses to even addresses
and odd to odd. The total depth of these memories allow to store up
to 6144 LLRs, which corresponds to the maximum specified LTE
frame length. As the parity LLRs are always read in sequence, the
consecutive parity LLRs information bits are combined and stored in
one memory bank as shown in Fig.3.

IV. RESULTS AND DISCUSSIONS

The proposed parameterized core was modeled with Synopsys
Processor Designer tool and the corresponding VHDL description was
generated and synthesized targeting 65nm general purpose CMOS
technology (worst case 0.9v and 125C). Table II summarizes the
memory partitions and the post-synthesis logic and memory area
results obtained for a single core. All the memories used are single
port (sp) memories except for the CrossMetric and extrinsic memories
which are double port (dp) memories. The total logic area, including
the interleaver, is 0.065 mm2 while the memory area for one processor
is 0.15 mm2. The total area (post-synthesis) for the two core Turbo
decoder design presented in this paper is 0.437 mm2 for a clock
frequency of 510 MHz. The error rate performance of the hardware
implementation has negligible degradation (less than 0.1 dB) when
compared to the floating point C-simulations when using BPSK
modulation over an additive white gaussian noise (AWGN) channel
(Fig. 5). If the frame length is N bits and the window size is W
symbols, then the throughput of the proposed Turbo decoder is given

by:

Throughput =
Numprocs ×N × fclk

((
dNsym/We
Numprocs

+ 1)×W +Npip)× (2×Niter)

(8)

For the presented architecture: Numprocs = 2 processors, the maxi-
mum clock frequency is fclk = 510MHz, considering the largest LTE
frame size Nsym = 3072 symbols or N = 6144 bits and Niter = 6.5
iterations, the throughput obtained is Throughput = 150 Mbps.

Design unit Area
(um2)

ConfigFetch 191
OperandFetch 6586
LLRtoSymbol 957
BackwardBM 1905
BackwardSM 10038
ForwardBM 2480
ForwardSM Extr 17847
ExtrinsicGen 5006
RegisterFile 13695
MemoryInterface 6683
Total logic area 65390
Total mem area 153478
Total area 218868

(a) Synthesis results

Memory width
(bits)

depth #
banks

type

Systematic 5 1536 2 sp
Parity 20 1536 1 sp
Extrinsic 12 1536 2 dp
CrossMetric 128 64 1 dp
BoundaryState 80 24 1 sp
Config 16 24 1 sp

(b) Memory partitions

TABLE II. AREA UTILIZATION PER TDECASIP IN THE 2-TDECASIP
ARCHITECTURE, WITH CMOS 65NM TARGET TECHNOLOGY

In order to evaluate the effectiveness of the obtained results and to
be able to compare with state-of-the-art implementations, we define
the Architecture efficiency (AE) metric as follows:

AE =
Throughput×Niter

AreaNorm × fclk
(9)

Its unit of measure is bits/cycle/iteration/mm2 and it represents
the number of decoded bits per clock cycle per iteration per mm2

that the proposed iterative channel decoder implementation is able to
deliver. A high architecture efficiency indicates an optimized design
which exploits efficiently its hardware resources during its execution
time. An interesting point in the above expression of the AE
concerns the normalization of the throughput achieved with respect
to the considered clock frequency (fclk) which increases the fairness
when comparisons are done between different decoding architectures
running at different clock frequencies. Published results in this context
consider either the maximum achievable clock frequency by the
proposed architecture or a lower operational clock frequency which
is sufficient to achieve the target throughput. Thus, normalizing the
presented throughput by the considered clock frequency enables to
better exhibit the efficiency of the proposed architectural choices.
Towards the same objective, the above expression of the AE normal-
izes the throughput by the considered number of decoding iterations
(Niter) as the published results can use slightly different values
which impact the overall throughput. In most of these works, the
same low complexity decoding algorithms, with identical convergence
speed, are used. Similarly, the AE expression uses a normalized
area measure (AreaNorm) as the published decoders are often based
on different technology nodes (e.g. 180nm, 130nm, 65nm, etc.). In
addition, when the published design area is given post-place and route
a downscaling factor of 2 is applied to obtain a reasonable estimate
of the post-synthesis area. This factor is not very accurate as it
depends to many parameters (technology node, CAD tools, operating
conditions, etc.), but it gives a reasonable idea as it corresponds

This work [2] [3] [4]
Standard supported LTE, WiMAX LTE, WiMAX LTE LTE

LTE modes supported # 188 188 188 188
WiMAX modes supported # 17 17 - -

Technology (nm) 65 130 90 65
Core area (mm2) 0.438 0.65 10.7a 2.1 7.7a

AreaNorm @65nm (mm2) 0.438 0.65 1.335 1.1 3.85
Throughput (Mbps) 150 @6.5iter 300 @6.5iter 187 @8iter 284 @5iter 2150 @6iter

Parallel MAPs # 2 4 8 16 32
fclk (MHz) 510 250 200 450

AE (bits/cycle/iter/mm2) 4.37 5.88 4.48 6.49 7.45
a Post place&route

TABLE III. RESULTS AND COMPARISON WITH WITH FEW RECENT RELATED WORKS

to the usually (or even worst case) observed ratio. Considering
this definition, the proposed 2 processor Turbo decoder achieves an
architecture efficiency of 4.37 bits/cycle/iteration/mm2. Furthermore,
the proposed architecture is scalable and can be extended to 4
processing cores, since both LTE and WiMAX interleavers support
sub-blocking level of 4 with conflict-free memory accesses. In this
case, the memory area of one processing core decoder becomes
0.097mm2 which results in a total area occupancy of 0.65mm2. The
architecture efficiency in this case is 5.88 bits/cycle/iteration/mm2.
This further illustrates the area efficiency of the sub-block parallelism,
where the throughput is doubled while the occupied area is increased
only by 1.47 times (rather than doubled). This is due to the fact
that Systematic, Parity, Extrinsic, and BoundaryState memory require-
ments remain unchanged. The achieved results of the proposed design
are summarized and compared along with few recent related works in
Table III. The cited three implementations [2][3][4] use a conventional
parametrized design approach with almost similar internal computa-
tion, interleaving, and storage optimization techniques. However, each
of them has selected a different sub-blocking parallelism level (8, 16,
and 32). The increased architecture efficiency with the sub-blocking
parallelism degree is coherent with the above discussed results of
the proposed 2- and 4-TDecASIP architectures. The 4-TDecASIP
architecture achieves even a slightly better architecture efficiency than
the one presented in [2] which supports both Turbo modes (DBTC
and SBTC) and uses 8 parallel MAP decoders. The LTE-dedicated
implementations presented in [3] and [4] exploit the available higher
sub-blocking parallelism degrees in this standard (parallel interleaving
with conflict-free memory accesses). Results comparison illustrates
how the proposed architecture achieves a high architecture efficiency
while using such an ASIP-based parameterized core approach by
selecting the appropriate parallelism and optimization techniques.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Eb/N0 [dB]

10
-3

10
-2

10
-1

10
-4

10
-5

10
-6

B
E

R

C-simula�on (floa�ng point)

Hardware measured

Fig. 5. Error rate performance comparison between the hardware implemen-
tation and the floating point simulation for WiMAX frame size 1920 bits

V. CONCLUSION

In this paper, we illustrated how flexibility, architecture efficiency,
and rapid design time can be combined when using an ASIP de-
sign methodology and tools to implement a novel parameterized
core for multi-standard Turbo decoding. The proposed architecture
demonstrates the possibility to achieve a high architecture efficiency
while using such an approach by selecting the appropriate paral-
lelism and optimization techniques and by removing the need of the
program memory and the related instruction decoder. The presented
two core Turbo decoder achieves a high architecture efficiency of
4.37 bits/cycle/iteration/mm2 and meets the 150 Mbps maximum
targeted throughput of the LTE standard. The proposed architecture is
scalable and the architecture efficiency increases with the sub-block
parallelism degree (5.88 bits/cycle/iteration/mm2 with a four core
Turbo decoder architecture). The target flexibility was set to cover
SBTC of 3GPP-LTE and DBTC of WiMAX/DVB-RCS standards.

REFERENCES

[1] O. Muller, A. Baghdadi, and M. Jezequel, “From Parallelism Levels to
a Multi-ASIP Architecture for Turbo Decoding,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 17, no. 1, pp. 92 –102, 2009.

[2] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder
for mobile WiMAX and 3GPP-LTE,” in Proc. of the IEEE Custom
Integrated Circuits Conference (CICC), 2009, pp. 487 –490.

[3] A. Ahmed, M. Awais, A. Rehman, M. Maurizio, and G. Masera,
“A High Throughput Turbo Decoder VLSI Architecture for 3GPP
LTE Standard,” in Proc. of the IEEE 14th International Multitopic
Conference (INMIC), 2011, pp. 340–346.

[4] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s Turbo
Code Decoder for LTE Advanced Base Station Applications,” in Proc.
of the 7th International Symposium on Turbo Codes (ISTC), 2012.

[5] Y. Sun, Y. Zhu, M. Goel, and J. Cavallaro, “Configurable and scalable
high throughput turbo decoder architecture for multiple 4G wireless
standards,” in Proc. of the Inter. Conf. on Application-Specific Systems,
Architectures and Processors (ASAP), 2008, pp. 209 –214.

[6] O. Muller, A. Baghdadi, and M. Jezequel, “Parallelism Efficiency in
Convolutional Turbo Decoding,” EURASIP Journal on Advances in
Signal Processing, 2010.

[7] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-Optimal
Maximum A Posteriori Algorithms Suitable for Turbo Decoding,”
European Transactions on Telecommunications (ETT), vol. 8, no. 2,
pp. 119–125, 1997.

[8] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wire-
less,” in Proc. of the IEEE International Solid-State Circuits Conference
(ISSCC), vol. 1, 2003, pp. 150–484.

[9] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and
H. Meyr, “A methodology for the design of application specific in-
struction set processors (ASIP) using the machine description language
LISA,” in Proc. of ICCAD, 2001, pp. 625–630.

[10] A. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Trans. on Comm., vol. 37, no. 11, pp. 1220 –1222, nov 1989.

