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Abstract—In this paper we propose a QR-decomposition
hardware implementation that processes complex calculations in
the logarithmic number system. Thus, low complexity numeric
format converters are installed, using nonuniform piecewise and
multiplier-less function approximation. The proposed algorithm
is simulated with several different configurations in a downlink
precoding environment for 4×4 and 8×8 multi-antenna wireless
communication systems. In addition, the results are compared to
default CORDIC-based architectures.

In a second step, HDL implementation as well as logical and
physical CMOS synthesis are performed. The comparison to
actual references highlight our approach as highly efficient in
terms of hardware complexity and accuracy.

Index Terms—QR-Decomposition, Nonuniform function ap-
proximation, LNS

I. INTRODUCTION

The QR-decomposition (QRD) is an essential algorithm
in order to solve efficiently a system of linear equations.
In the context of wireless communication, the QRD has a
significant impact on several tasks. Especially in multi-antenna
systems, the QRD of the channel matrix is a prerequisite e.g.
for the symbol detection at the receiver side [1]. Another
important application is the precoding, at which the channel
equalization task is transferred to the transmitter in order to
reduce the complexity and the power usage of the receivers.
For this transmitter-side pre-equalization, different approaches
are known. This contribution comprises QRD processing for
a Tomlinson-Harashima precoding (THP) in a multi-antenna
system [2].

In this paper, a QRD algorithm is introduced that is based
on calculations in the logarithmic number system (LNS) [3].
Its major advantage refers to the simplification of several al-
gebraic operations and elementary functions by processing the
corresponding exponential concatenations. Logarithmic (LOG)
and anti-logarithmic (ALOG) converters are used, enabling
the number system transformation between LNS and fixed-
point number system (FPNS). As this requires a complex
function calculation, it is realized by regression-based inter-
polation. In order to minimize processing time and hardware
complexity, nonuniform and multiplier-less piecewise function
approximation (NPA) is used [4]. Several NPA-based LOG and
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Fig. 1. Example of the proposed QR-Decomposition processing applied to a
3× 3 complex valued matrix. In a first step the imaginary values are rotated
to zero and applied both to H and the unitary matrix Q. Next, this is applied
to the real values.

ALOG converters with different approximation accuracies are
investigated, as this will directly affect both timing and chip
area of a corresponding hardware implementation.

The following two Sections provide an overview about
most common QRD algorithms as well as the LNS and
its converters. Section IV is primarily concerned with the
hardware architecture. Next, the results of simulation and
CMOS design are presented before the most important aspects
are summarized in the last Section.

II. QR DECOMPOSITION

Concerning hardware efficient QRD design, there are in
general three different methods that must be distinguished:
the Householder transformation, the Gram-Schmidt process
and Givens rotation (sometimes also called Jacobi rotation)
[5]. For a hardware implementation, the Givens rotation is
mostly favored, as the Householder transformation cannot be
parallelized and the Gram-Schmidt algorithm is numerically
unstable. Furthermore, the Gram-Schmidt process requires
square-root operations as well as the numerical more stable
modified Gram-Schmidt [5]. On the other hand, the Givens
rotation allows a parallel computational structure. Also the
well-known CORDIC algorithm [6] can be used to avoid
crucial algebraic calculations like division or inverse compu-
tation. Besides, CORDIC-based approaches require only low
hardware complexity, as they are based on iterative result
refinement by accumulating microrotation steps.

Fig. 1 briefly demonstrates the processing steps to decom-
pose the complex 3×3 matrix H in the right triangular matrix
R. First, the imaginary parts of the first column are eliminated
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with three Givens rotations (one rotation per column). With
two further Givens rotations the real parts of the second and
third elements of the first column are eliminated. As shown
in Fig. 1, this procedure will be repeated several times such
that the matrix finally results in a right triangular matrix R
with real-valued main diagonal elements. All executed Givens
rotations on H are additionally applied to the unitary matrix
Q, which is initialized with an identity matrix.

The Givens rotation itself is performed by the multiplication
of the Givens matrix

G =

[
c −s
s c

]
(1)

with the corresponding rows of R and Q. c and s denote the
(co-)sine values that are calculated by

c =
x√

x2 + y2
and (2)

s = − y√
x2 + y2

. (3)

A more detailed description of the QRD and the Givens
rotation can be found in [5].

III. LOGARITHMIC NUMBER SYSTEM

As described previously, LNS simplifies the calculation
effort of several algebraic operations and elementary functions
by processing the corresponding exponential concatenation.
However, some elementary operations like addition and sub-
traction cannot be performed in LNS by trivial means. Thus,
numeric format transformation is a popular solution for this is-
sue, even though this requires complex function calculation. In
the scope of digital signal processing, a fundamental approach
for correspondent converter modules has been proposed by
Mitchell [7] in 1962. His algorithm is based on a single straight
linear approximation log2(x+1) ≈ x and 2x−1 ≈ x for LOG
and ALOG, which allows number system transformation by
shift-based value normalizing, but achieves bad accuracy in
many cases. Thus, minimizing the approximation error is a
major concern to improve this idea.

A. Numeral system

In contrast to FPNS that depicts a value N by a sign S, a
value offset O and a radix point r

N = (−1)S ·O · 2−r , (4)

LNS represents a value by the sign bit S, a zero bit Z, an
exponent E and a logarithmic mantissa L. A popular numeral
representation is given by Detrey et al. [3] for LNS, where
the fractions are concatenated similar to default floating-point
numeral systems. Thus, the numeral system we use in this
paper specifies a value N by

N = (1− Z) · (−1)S · 2−E · 2L . (5)

In order to simplify the (anti-)logarithmic conversion, nor-
malized logarithmic mantissa and fixed-point offset values are
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Fig. 2. Architecture of LOG and ALOG converter for number system
transformation.

used as described above. Thus, the transformations can be
expressed as

L = log2(On + 1); On = O · 2m; 0 ≤ On < 1 (6)

and

O = 1 + (2Ln − 1); Ln = L ·m; 0 ≤ Ln < 1 , (7)

with On and Ln as the normalized values and m as the
shift coefficient. Both modifications keep the resulting values
in suitable ranges. However, additional computation effort is
necessary in order to determine Ln and On. Because both
values are modified by 2m multiplications, this is easily
designable in hardware by shift operators. The increase by
one can be simply considered inside the shift block of the
ALOG unit. The entire structure of LOG and ALOG is given
in Fig 2.

B. Converter design

For efficient computation of the converter functions
log2(x + 1) and 2x − 1, we propose NPA-based hardware
implementation, as it has proven to be a powerful solution
for function approximation [4]. Its main idea refers to linear
regression based function course emulation, reducing compu-
tation time and latency of elementary functions at the cost of
accuracy [8]. In general, linear equations are expressible as

f̃(x) = α0x+ β0 , (8)

where x denotes the input data, f̃(x) the approximation of the
original function f(x) and α0 and β0 the gradient and offset,
respectively. For NPA, the original function is split up into
several sub-functions of variable input range each (see Fig.
3). In order to enable quick access to each sub-function, only
a restricted segmentation of the original function is allowed.
Thus, each sub-function segment must fulfill

seg(k) = seg(k − 1) +
B−A

2hk
, (9)

with A, B as start and end point of the function, seg as sub-
function start point, k as segment index (seg(0) = A) and
hk ∈ N+ as the interval exponent of the kth segment. In
addition, the input range of the original function is set to

B−A = 2hmax . (10)
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Fig. 3. Example of nonuniform multiplier-less piecewise function approxi-
mation.

These constraints enable the selection of each segment only
by taking the most significant bits (MSB) of x into account.
Note, that hk may differ for each segment which may cause
a varying number of MSB that must be considered.

For further calculation decrease, multiplier-less linear equa-
tions are used in this scope. In detail, only a limited set of
partial products of a common tree-multiplier is regarded here
[9]. This reduces the gradient calculation effort to shift and
add operations, the total number of which is specified by the
quantization factor (QF). Thus, NPA can be expressed

f̃(x) =

l−1∑
j=0

±


2λ0,j

2λ1,j

...
2λk−1,j

x+ β

 · κ(x) (11)

with λi,j as the exponent of the actual partial product, β as
vector of offsets and k, l determining the total number of
segments and partial products, respectively. The κ vector is
responsible for the selection of the actual valid linear equation

κ(x) =


(1, 0, ..., 0)T ; A ≤ x < seg(1)

(0, 1, ..., 0)T ; seg(1) ≤ x < seg(2)
...

(0, 0, ..., 1)T ; seg(k − 1) ≤ x < B

. (12)

A graphical example of the NPA-based approximation
scheme is given in Fig. 3.

IV. ARCHITECTURE

In order to achieve best results in terms of low complexity
implementation, a hardwired hardware structure is chosen
[10]. The arithmetic calculations are performed in FPNS and
LNS, as this allows the simplification of all operations to
additions, subtractions or shifts, but requires the previously
described converter units. 16 and 18 bit sized data paths
are used, as described in detail later on (see Sec.V-B). The
architecture consists of a memory block as well as of a control
and data path unit. As only a total number of 64 memory
slots is required for complex 4 × 4 matrices, a register array
implementation is chosen. Note, that only LNS-based values
are stored in the memory as this is the default numeric format
and improves the overall QRD calculation performance.
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Fig. 4. Data path of LNS-based QRD with a) GR1 and b) GR2 and x > y.
The solid, dotted and dashed lines depict the data flow, the control signal and
interim results, respectively. x′n and y′n denote the unrotated inputs as well
as xn and yn are the resulting outputs.

A. Control unit

The control unit possesses an input/output(IO)-port module,
which is used to load and store external values to the memory.
Further, a finite state machine (FSM) is located here handling
the global processing of the QRD algorithm. Address decoding
related to the current FSM state is performed, in the same
way as described in Fig. 1. Also a control signal denoting the
calculation of s, c and r =

√
x2 + y2 (GR1) or its application

within Givens rotation processing (GR2) is generated here.
In order to keep the address decoding task as simple as

possible, it is directly derivable from the current FSM state.
Thus, the FSM is implemented as counter with a variable
increment.

B. Data path

The data path processing can be separated into the GR1 and
GR2 calculation mode. Both modes are realized by a straight
forward implementation of the Givens-Rotation, similar to the
algorithm mentioned in Sec. II. In order to keep the values in
convenient ranges and to save one addition (see Fig. 4a), GR1
processing is transformed to

r = x
√
1 + y

x
2
;x > y ∨ r = y

√
1 + x

y
2 ; y ≥ x

c = 1√
1+ y

x
2

;x > y ∨ c =
x
y√

1+ x
y

2
; y ≥ x

s =
y
x√

1+ y
x

2
;x > y ∨ s = 1√

1+ x
y

2
; y ≥ x

. (13)

As mentioned above, the LNS is used as default numeric
format. However, for simple additions and subtractions, which
must also be considered, LOG and ALOG units are installed.

The GR1 calculation starts with calculating the quotients of
the input operands. By regarding the exponent of the result,
the smaller value can be selected. Next, squaring is performed
by a single shift. For the addition, the value is converted to
FPNS. Because of the introduced processing modifications, the
incrementation effort simplifies to a single bit flip. The square-
root operation is achieved by LOG conversion followed by a
shift. Finally, the requested variables r, c and s are achieved by



TABLE I
APPROXIMATION RESULTS OF THE THREE DIFFERENT LNS

CONFIGURATIONS COMPARED TO DEFAULT CORDIC PERFORMANCE.

Configuration CORDIC† LNSI LNSII LNSIII
Latency m 4 4 4
Additions GR1 2m 7 7 7
Additions GR2 2m 12 12 12
Segments LOG - 7 65 643

Segments ALOG - 7 67 665
†m denotes the number of microrotations

multiplication and division that are implemented as subtracters
and adders, respectively. Note, that the operand selection must
be taken into account at this step.

For GR2 mode, the processing starts with the calculation of
the four vector rotation summands by LNS-based addition. As
these values must be added or subtracted for vector rotation,
FPNS transformation is again required. In a last step, LOG
conversion is performed in order to write back the results in
LNS. An architectural overview of the data path is given in
Fig. 4.

In order to achieve convenient results in terms of low
complexity, time-sharing is applied [11]. Thus, several adder
units inside the data path are merged. GR1 is processed in two
cycles, inserting a pipeline stage after the ALOG conversion.
Unused adders are disabled by operand isolation [12]. For
GR2, the four summands are calculated first, transformed into
FPNS and stored in pipeline registers, for which two cycles are
required. In a third cycle, the values are summed and converted
back into LNS. In order to speed-up QRD processing and to
avoid divisions by zero, the Z flag is investigated before data
path calculations are started. In GR1 mode, the entire row
processing is skipped if y is zero. For GR2, no calculation is
performed if both x and y are zero.

V. RESULTS

A. Automatic converter approximation

The converter approximation is performed automatically,
considering diverse design constraints. Thus, the QF, an ave-
rage accuracy and size of data path must be specified. Based
on these parameters, a linear equation is defined and its
approximation quality to the corresponding (sub-)function is
estimated. In detail, the quantized gradient α as well as its
offset β are estimated by comparing them to the default linear
approximation. If the specified average accuracy constrained
is violated, bisection is performed. Due to (10), both resulting
sub-functions fulfill the segment equation (9). All remaining
sub-sections are investigated straight forward from the lower
border A to the upper border B. After the function approxi-
mation is completed for all sub-functions, the resulting linear
equations are mapped to verilog code. In detail, parameters
are extracted that are mapped automatically to corresponding
hardware elements. So e.g. for segment selection, multiplexer
units are used and the multiplier quantization is realized by
adder and subtracter units.
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For LOG and ALOG function approximation, QF is set to
one. Moreover, three different configurations LNSI , LNSII
and LNSIII are investigated that possess an equal exponent
length (E = 5). The offset O and the mantissa L varies, due
to the overall data path size. Thus, LNSI is realized with an
overall data path size of 16 bit while LNSII and LNSIII are
realized with 18 bit, which refer to L = 9, Q3.12 and L = 11,
Q3.14, respectively. In addition, approximation accuracies for
the converter functions of 0.01, 0.001 and 0.0001 are chosen
for LNSI , LNSII and LNSIII , respectively. Note, that the
accuracies are adjusted to the Q.15 format.

For delay evaluation, the longest sequence of traversed
adders from data input to output is considered, as these
modules have a major impact on the delay. Thus, each LNS
configuration has a delay equal to a CORDIC-based data path
with four iteration steps. In terms of overall adder complexity,
GR1 and GR2 outperform CORDIC designs as they require
only four and six iterations, respectively. An overview is
given in Tab. I. As these results only represent a rough
timing analysis, more precise evaluation is performed in the
following.

B. Performance Evaluation

For performance evaluation of the proposed QRD design, a
wireless multi-user MISO (MU-MISO) communication system
is simulated. It consists of a single base station with NB
antennas and NM = NB decentralized non-cooperative single-
antenna mobile stations. The vector of the data symbols
with quadrature amplitude modulation (QAM) is given by
d = [d1, . . . , dNB

]T , accordingly the received symbols are
defined by y = [y1, . . . , yNM

]T . For the considered downlink
transmission scenario, the base station sends data to the mo-
biles. For a fair comparison of the simulation results, a perfect
knowledge of the downlink channel matrix H ∈ CNM×NB in
the base station is assumed. In this contribution, a Rayleigh
multipath channel model is applied where the channel entries
of H are normalized independently and identically distributed
zero-mean complex Gaussian random variables. At the mobile
stations the received signal is added to the noise vector
n ∈ CNM×1 of complex Gaussian independently and iden-
tically distributed samples with variance σ2

n. Generally, for
this system the transmission equation reads as

y = Hs+ n . (14)

In order to decrease the computational effort at the receiver,
pre-equalization at the transmitter is applied. Therefore, in
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Fig. 6. Uncodes BER performance at the receivers side of the three different LNS-based QRD realizations. The CORDIC is simulated in floating-point,
where m denotes the number of micro-rotations.

this contribution the Zero-Forcing THP (ZF-THP) is used,
which contains the proposed LNS based QRD. The structure
for the downlink THP is shown in Fig. 5. The data d is
precoded in the base station so that the transmitted data s
is produced. The unitary feedforward filter matrix F obtains
spatial causality and the feedback filter matrix (L − INB

)1

eliminates the interferences. A modulo device (MOD) is used
to map the values into fundamental Voronoi region which
depends on the order of the chosen QAM. This will be
revoked by another MOD device in the mobiles. The required
filter matrices in Fig. 5 can calculated by a QRD of HH,
which is the conjugate transpose of the channel matrix. For a
system with NM = NB antennas this results in HH = QR .
Then, the feedforward filter matrix is defined by F = QV,
where V = diag{diag−1{R}} consists of the diagonal matrix
elements of R. The lower left feedback filter matrix is obtained
by L = HQV. The scalar β is used to fulfill the power

1INB
denotes the NB ×NB identity matrix.

constraint and is defined as

β =

√
NB

tr{QVVHQH}
. (15)

The Eb/N0-ratio is defined as Eb/N0 = 1/(log2(M)σ2
n) for

a fair comparison of different M -QAM modulations.
The evaluation is performed for LNSI , LNSII and LNSIII

with 16-QAM and 64-QAM modulation schemes as well
as 4 × 4 and 8 × 8 multi-antenna scenarios. The resulting
uncoded Bit Error Rates (BER) over Eb/N0 are compared to
ideal and CORDIC-based QRD designs. As it turns out, the
LNSI , LNSII and LNSIII reach better accuracy nearly in all
investigated scenarios than the floating-point CORDIC designs
with six, eight and ten iteration steps, respectively. A detailed
overview is given in Fig. 6.

C. IC Implementation

In order to achieve a detailed evaluation, the proposed LNS-
based QRD designs LNSI and LNSIII are implemented in



TABLE II
IC POST-ROUTE SYNTHESIS RESULTS OF LNSI AND LNSIII FOR A 4× 4 MIMO SYSTEM COMPARED TO ACTUAL REFERENCES.

Reference Configuration Algorithm
Technology Frequency Area Power Throughput

[nm] [MHz] [kGE] [mW] [MQRDs/s]
This work LNSI Givens rotation 130 145 17.93 5.68 0.51
This work LNSIII Givens rotation 130 129 22.38 5.73 0.45
[13] CORDIC Givens rotation 180 272 - 105 0.71
[14] CORDIC Givens rotation 180 100 111 319 25
[15] CORDIC modified Gram-Schmidt 180 166 48.7 - 2.08
[16] CORDIC Givens rotation 130 270 36 - 6.76

CMOS for a 4 × 4 MIMO system. Logical and physical
synthesis is performed, considering timing back-annotation
as well as parasitic effects. As target technology the UMC-
Faraday 130 nm process is chosen. In order to enable a
fair complexity comparison, kilo gate equivalents (kGE) are
regarded. LNSI and LNSIII reach maximum frequencies
of 145MHz and 129MHz and kGEs of 17.93 and 22.38,
respectively. Evaluating the power consumption, our approach
achieves 5.68µW and 5.73µW. A detailed overview also
taking actual references into account is given in Tab. II. An
important aspect that must be discussed is the throughput
performance of our work. Thus, actual references as e.g. given
in [14] obtain significantly better QRD processing results.
This is explainable by the implementation style that we
chose in this first approach in order to generally highlight
advantages of LNS-based QRD processing. Thus, our proposal
could be used in mobile communication applications with
relaxed timing conditions. In order to speed-up the QRD of
out approach, hardware implementation techniques, such as
pipelining or replication [11] must be installed, which will
evidently increase the throughput. So this has to be a major
concern of future work.

VI. CONCLUSION

In this paper a QR-decomposition module based on lo-
garithmic number system calculation is introduced. Its main
advantage refers to the simplification of complex calcula-
tions to additions, subtractions or shifts. For number format
conversion, low complexity transformation units are installed
that use nonuniform and multiplier-less piecewise function
approximation. Simple equation transformation of the Givens
rotation is performed in order to keep all calculations in a
convenient range. For simulation, three different converter
approximations have been considered. The comparison with
default CORDIC-based designs proved this approach to be
more efficient regarding the total number of adders. The IC
implementation achieved good results in terms of complexity
and power consumption. For future work, the throughput must
be raised as only a comparatively low performance is obtained.
However, this is solvable e.g. by the application of well-known
hardware implementation techniques.
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