AVICA: An Access-time Variation Insensitive L1
Cache Architecture

Seokin Hong and Soontae Kim
Department of Computer Science
Korea Advanced Institute of Science and Technology
{seokin, kims} @kaist.ac.kr

Abstract—Ever scaling process technology increases variations
in transistors. The process variations cause large fluctuations in
the access times of SRAM cells. Caches made of those SRAM
cells cannot be accessed within the target clock cycle time,
which reduces yield of processors. To combat these access time
failures in caches, many schemes have been proposed, which are,
however, limited in their coverage and do not scale well at high
failure rates. We propose a new L1 cache architecture (AVICA)
employing asymmetric pipelining and pseudo multi-banking.
Asymmetric pipelining eliminates all access time failures in L1
caches. Pseudo multi-banking minimizes the performance impact
of asymmetric pipelining. For further performance improvement,
architectural techniques are proposed. Our experimental results
show that our proposed L1 cache architecture incurs less than 1%
performance hit compared to the conventional cache architecture
with no access time failure. Our proposed architecture is not
sensitive to access time failure rates and has low overheads
compared to the previously proposed competitive schemes.

I. INTRODUCTION

Performance, density and energy efficiency of micropro-
cessors have been improved following Moores law for past
decades. However, as we approach a nanotechnology era, we
are facing reliability problems. Process variations, mainly due
to random-dopant fluctuations (RDF) make microprocessors
more unreliable by varying their latencies, and by increasing
their power consumption [1]. SRAM structures are usually
implemented with minimum feature size transistors to reduce
their area and power consumption, which makes them more
vulnerable to process variations [2].

Due to process variation in SRAM cells, caches made of
those SRAM cells face three kinds of failure: read failure,
write failure, and access time failure. Among them, the access
time failures are the most dominant, especially in severe
process variation environments as shown in Fig. 1. An access
time failure occurs when the cell access time, which is defined
as the time needed to discharge the bitline of a cell for a read
operation, exceeds the maximum tolerable limit.

Several techniques have been proposed to address the access
time failures in caches. Variable latency cache architecture is
studied in [3], [4]. A wordline boosting technique is proposed
in [5]. Error Correcting Code (ECC) and disabling/redundancy
based techniques [6], [7], [8], [9] can be used to tolerate the
access time failures as well as the read and write failures. All
of these techniques, however, are limited by their coverage at
high failure rates.

978-3-9815370-0-0/DATE13/ © 2013 EDAA

> 0.005
= 0.004 B Access time failure
€ 0.003
2 0.002 O Write failure
[
& 0.001

0 O Read failure

20 30 40
O",, (mV)
Fig. 1. The failure probability of 6T-SRAM cell [2]

In this paper, we propose a new L1 cache architecture, called
AVICA, which is insensitive to the access time failure rates.
AVICA employs two design concepts: asymmetric pipelining
and pseudo multi-banking. Asymmetric pipelining makes the
L1 caches free of access time failures by allowing cache
pipeline stages to have asymmetric cycles; the cell access stage
takes two cycles for eliminating access time failures, while the
other stages take one cycle. Pseudo multi-banking gets back
the cache bandwidth loss due to asymmetric pipelining. Unlike
conventional multi-banking, pseudo multi-banking accepts a
single memory access per cycle while it allows multiple
memory accesses to different banks at the same time, which
greatly simplifies our multi-bank design. In addition, we add
small buffers to store recently accessed data. On hits in the
buffers, we can avoid bank conflicts and obtain requested data
earlier. Conventional issue queue is modified to utilize this
shorter access latency.

Our experimental results show that AVICA with the optimal
bank configurations incurs performance penalties of less than
3% on average, compared to conventional cache architecture
with no access time failures. With additional buffers, the
performance hit reduces to less than 1% on average.

The rest of this paper is organized as follows. We discuss
related work in the next section. Section 3 discusses the
motivation of our approach. Section 4 explains our proposed
cache architecture. Section 5 introduces additional architec-
tural supports for further improvements. Experimental results
based on cycle-accurate simulations are given in section 6.
Section 7 concludes this paper.

II. RELATED WORK

SRAM cell design: The impact of variations can be miti-
gated using wider transistors. Doubling transistor channel area
enables 30% reduction in Vt variations [2]. However, wider
transistors consume more static power and more dynamic
energy in switching channels. Novel topologies like 8T-, 10T-,
and ST SRAM cell are proposed to mitigate stability failure.

TABLE I
COMPARISON OF COMPETITIVE SCHEMES

AVICA VL- Wordline | DECTED | ZC
cache boosting [7]
(3] [5]
Area overhead(%) 4 21 4.5 68 16
Performance overhead(%) | 1 3.6 1 1 1
Power overhead(%) 3 9.7 9.8 51 16
Target cell failure rate > 0.003 0.003 0.003 0.001 0.001
Addressable failure model | access access | access all all
time time time

All these topologies increase the array complexity and the area
cost. Moreover, they cannot tolerate access time failures which
are the problem addressed in this paper.

Error correction code: The SECDED (Single-error correc-
tion, double-error detection) is widely used to protect memory
against transient errors. However, they are not practical in
tolerating high failure rates. While multi-bit error correction
codes (e.g. DECTED, and QECPED) can tolerate high failure
rates, they are not applicable to L1 caches due to significant
area, latency and power overheads [10]. Kim et al. proposed
2D error coding to tolerate multi-bit errors with low area
overhead [10]. However, it has large correction latency and
thus is not applicable to L1 caches.

Disabling and Redundancy: Disabling and redundancy
based techniques are proposed to enhance stability, especially
at low voltage mode. Agarwal et al. [6] proposed a block
remapping technique. Faulty blocks are remapped to the
neighboring functional blocks. Wilkerson et al. [8] proposed a
word-level disabling technique. Two consecutive faulty blocks
in a cache set can be combined to form a functional block.
ZerehCache [7] provides a spare line to a group of cache lines,
such that each word in the spare line can substitute one faulty
word in the group. These techniques require considerable
amount of extra memory structures or complex interconnection
network.

Latency-aware architecture: Yan Pan et al. proposed a
selective wordline voltage boosting. By boosting the voltage
on wordlines of slow cache lines, access time failures can
be tolerated [5]. This technique is effective under medium
level variations. At severe variations, it is required to boost
the voltage on the most wordlines. In addition, It has limited
capability of speeding up slow SRAM cell access; SRAM cell
access latency is reduced by 18% as the wordline voltage
is increased from 0.9V to 1.3V. Moreover, the increase in
wordline voltage reduces the lifetime of the memory cell [3].
Variable latency cache (VL-cache) architectures are proposed
in [3], [4]. In these techniques, the access latency of each
cache line is stored in a buffer. Depending on the latency
information, it accesses the cache lines at different speeds. The
slow cache access reduces the cache bandwidth and increases
the hit latency. Thus, the performance overhead depends on
the frequency of slow cache access. At severe variations, it
is expected to access all cache lines slowly, which results in
considerable performance loss.

Summary: As discussed above, none of the previously
proposed schemes can handle access time failures effectively
and efficiently at severe variations as summarized in Table I.

mbw1 @mbw0.5 mlat3mlat4 Olats
o INT FP INT FP 1 INT FP INT FP
c 1
@ 0.9 0.9
= 0.8 0.8
307 0.7
0.6 0.6
W) S S S N S S)
> & & @ > & B @ > & & @ > & & @
A OO OO
Instruction Cache Data Cache Instruction Cache Data Cache
Fig. 2. Performance impacts of bandwidth reduction (left) and latency

increase (right); "bw1” indicates that the bandwidth is one word and one
fetch group per a cycle for data and instruction caches, respectively, while
”lat3” indicates hit latency of three cycles

III. MOTIVATION: HIT LATENCY TOLERANCE

Our motivation comes from an important observation about
the performance impact of the hit latency and the bandwidth
of L1 caches. Due to the low latency and the high bandwidth
of L1 caches, the processor can minimize memory access
time and enhance performance. In case of the out-of-order
superscalar processors, however, a small increase in the hit
latency of L1 caches slightly affects performance. This is
because out-of-order execution and accurate branch prediction
provide hit latency tolerance [11], [12]. The out-of-order
execution allows ready instructions, which are independent
from a long-latency load instruction, to be executed without
stalls. Thus, even if the hit latency of L1 data cache increases
by one or two cycles, its performance impact is small. The
L1 instruction cache is typically pipelined so that its long hit
latency can be overlapped if branch predictions are accurate.
Since the branch prediction accuracies of modern processors
are very high, more than 96% for SPEC 2006 benchmarks in
the intel i7 [13], the performance is not much affected by the
increase in the hit latency of L1 instruction cache.

We studied the performance impact of the hit latency and
bandwidth of L1 caches in two architecture configurations:
4-way and 2-way out-of-order processors. The detailed exper-
imental environments are presented in section 6. Fig. 2 shows
normalized average IPC for each configuration. Firstly, we
vary cache bandwidth while the hit latency is fixed at 3 cycles.
Performance loss is significant when bandwidth is reduced to
half. The reduced instruction cache bandwidth results in more
than 18% and 11% performance losses in 2-way and 4-way
processors, respectively. The 4-way processor is much more
affected by data cache bandwidth reduction. It suffers from
almost 30% performance loss for the integer benchmarks with
reduced bandwidth. Next, we vary the hit latency of caches
from 3 to 5 cycles while bandwidth is fixed at one word per
cycle for data cache (one fetch group per cycle for instruction
cache). As the hit latency increases, both 2-way and 4-way
processor experience slight performance loss. Even with two-
cycle increase in the hit latency, the performance loss is less
than 6% for both processors. One cycle increase in the hit
latency results in less than 1.2% performance loss.

The hit latency tolerance motivates us to design a novel
cache architecture to combat against cache access time varia-
tions. We increase hit latencies of the L1 caches to eliminate
cache access time failures without sacrificing cache access
bandwidth by engineering the L1 caches.

stall

Fig. 3. Operational example of asymmetric pipelining (left) and asymmetric
pipelining with pseudo multi-banking (right)

IV. PROPOSED ACCESS TIME VARIATION INSENSITIVE L1
CACHE ARCHITECTURE

Our proposed cache architecture (AVICA) employs two
design concepts: asymmetric pipelining and pseudo multi-
banking. Asymmetric pipelining eliminates all access time
failures. However, it reduces the effective cache bandwidth.
Pseudo multi-banking makes it possible to get back the lost
cache bandwidth.

A. Eliminating access time failures with Asymmetric Pipelin-
ing

Cache accesses require multiple cycles in modern high-
performance processors [14]. This is mainly because bitline
and wordline delays of caches do not scale well with new
technology generations [14]. Since multi-cycle cache accesses
significantly reduce cache bandwidth and, consequently, over-
all performance, caches are typically pipelined. In this paper,
we assume that the L1 caches have three pipeline stages;
address decode (AD), cell access (CA) and data out (DO).

Due to the within-die variation, each pipeline stage of
caches can be faster or slower than the design target. In order
to take into account this problem, we propose an asymmetric
pipelining. Unlike the conventional cache pipelining, the
access latency of CA stage is longer than the other stages in the
asymmetric pipelining as shown in Fig. 3 (left) (i.e., two clock
cycles for CA stage while one clock cycle for the other stages).
Since we give enough timing margin to CA stage, access
time failures do not occur assuming the slowest cell access
takes two cycles. In other words, our asymmetrically pipelined
caches are not affected by access time failure rates. AD and
DO stages also experience latency variations. However, they
are less vulnerable to process variation because there is a
large number of transistors on a critical path in these stages;
positive and negative variations in speed of the transistors
cancel each other. Moreover, the total number of transistors
in these stages is much smaller than that of CA stage. Thus,
upsizing transistors efficiently tolerates latency variation in
these stages.

The access latency of CA stage in the asymmetrically
pipelined cache is two cycles and it is not pipelined into two
stages. Since two cache accesses cannot reside in CA stage at
the same time, one stall cycle is inserted after a cache access
is initiated, which reduces the effective cache bandwidth.

B. Restoring bandwidth through Pseudo Multi-banking

Asymmetric pipelining decreases cache bandwidth, which
can result in significant performance degradation. In order to

overcome this limitation of asymmetric pipelining, we employ
a low cost multi-banking technique called pseudo multi-
banking. Cache banking has been widely used for designing
high bandwidth (multi-banking) [15] or power-optimized (sub-
banking) [16] caches. In the high bandwidth caches, multiple
memory accesses are accepted and distributed to multiple
banks while a single bank (or sub-bank) is activated to service
a single memory access in the power-optimized caches. Note
that the primary objective of employing pseudo multi-banking
is to restore bandwidth, not to enhance bandwidth. Thus, un-
like conventional multi-banking, pseudo multi-banking accepts
a single memory access per cycle. But, it allows multiple
memory accesses to reside in different banks at the same
time, which makes it possible to overlap two long-latency cell
accesses. Consequently, as shown in Fig. 3 (right), CA stage
(takes two cycles) can have two accesses at the same time if
they go to different banks, which restores the bandwidth loss.
If the two consecutive memory accesses go to the same bank,
then one stall cycle is still required due to a bank conflict.

C. Implementation

An overall cache architecture with asymmetric pipelining
and pseudo multi-banking, shown in Fig. 4 (a), is not much
different from the conventional cache architecture, which
results in low additional implementation cost. For address
decoding, a single address decoder is employed because at
most one address decoding is required in a cycle. The complex
crossbar networks in input and output ports, which is the
most expensive components in the conventional multi-banked
cache [15], are not required. In addition, a cell array of
the conventional cache is typically partitioned into multiple
subarrays or subbanks to reduce the cell access time and power
consumption [14], [16]. Only differences are that we need to
select a bank to be accessed, detect bank conflicts, and control
wordline and bitline precharging circuit of each bank indepen-
dently. To this end, we employ three additional components:
a bank selector, a comparator and a few AND gates. A bank
selector determines a bank number from a memory address. In
order to detect bank conflicts, we compare the previous bank
number, stored in a pipeline register, with the bank number
of current memory access. If a bank conflict is detected, we
prevent the current memory access from traversing down the
pipeline stages. To this end, the clock signal is ANDed with
the bank select signal and bank conflict signal, which allows
only the pipeline register of the selected bank to latch new
decoded wordline value and bitline precharging signal when
bank conflicts do not happen.

Two dimensional interleaving: Due to bank conflicts, the
bandwidth gain of pseudo multi-banking will be reduced.
In order to minimize the bank conflicts in pseudo multi-
banking, we exploit line-interleaving and word-interleaving
simultaneously. The data array is horizontally divided into
banks and each bank is vertically subdivided into small sub-
arrays, called mini-banks. Each mini-bank can be activated
independently so that only a single mini-bank containing the
desired data can be accessed at a time. We place consecutive

Bank Conflict

Bank Detector Pipeline register
Selector P : -
clk D—>D—+ «
H
Decoder . Mm:l- an . &Output
: : : Driver
Mini-bank |
AD CA DO
(a) Overall architecture
Fig. 4.

cache lines in different banks and place consecutive words of
each cache line in different mini-banks. Through two dimen-
sional interleaving, we can efficiently reduce bank conflicts
because memory accesses typically show spatial locality. Note
that word-interleaving is costly in the conventional multi-
banked cache due to the need for tag replication in each bank
to allow simultaneous cache accesses [15]. In contrast, the cost
for word-interleaving is not required in pseudo multi-banked
cache because it accepts a single memory access per cycle.

Fig. 4(b) illustrates two dimensional interleaving with the
layout of an example array. The data array is divided into two
banks and each bank is subdivided into four mini-banks. In this
example, we assume that three cache lines (A, B and C) are
consecutive. Thus, A and B are stored in different banks, and
B and C are stored in different banks. Each cache line consists
of eight words (e.g. A0 ~ A7 for line A) being interleaved
among multiple mini-banks.

The tag array is not banked but it is implemented with
upsized transistors. Since the tag array consumes much lower
area than the data array (around 3~4% of a 32KB 4-way set-
associative cache), upsizing the transistors of the tag array
incurs low area and power overheads.

V. ARCHITECTURAL ADDITIONS FOR FURTHER
IMPROVEMENT

Through asymmetric pipelining and pseudo multi-banking,
AVICA becomes free of the process variation-induced access
time failures. However, some benchmarks, especially integer
benchmarks, show nontrivial performance hits as will be
shown in section 6. Thus, there is still a room for improve-
ments in those benchmarks. To this end, we present several
architectural additions in this section.

A. Minimizing bank conflicts

Branch target instruction buffer: In AVICA I-cache (L1
instruction cache), sequential instruction flow does not incur
bank conflicts due to word-level interleaving. However, when
a taken branch changes the instruction fetch flow, the current
and next fetch groups may happen to be in the same mini-
bank, which leads to bank conflicts. In order to minimize
bank conflicts in AVICA I-cache, we employ a branch target
instruction buffer (BTIB), which is illustrated in Fig. 5(a).
BTIB is a tiny fully associative cache which stores recently
accessed instructions incurring bank conflicts and located

Bank_sel
Bank e Mini-bank

Bank_conflict
precharge

Pi;;éline register Clk

Data
/tag Bus

Address
Bus

Decoder Pre-decoder

(b) Layout of an example array with 2 banks. In this example, each bank
has 4 mini-bank

Implementation of AVICA

at branch targets. Each entry of BTIB contains two fields:
fetch address (ADDR) and branch target instructions (BTI).
Branch target address is stored in the ADDR field and the
target instructions (four instructions for 4-way superscalar
processors) are stored in the BTI field. BTIB is accessed at
AD stage of the cache pipeline. When a hit in BTIB occurs,
instructions stored in the BTI field are sent to the instruction
fetch queue while CA stage of the cache pipeline is skipped.
Thus, the current fetch request does not incur a bank conflict.
Consequently, next fetch request is also free of a bank conflict.
Branch target instructions can be stored in BTB rather than
using BTIB [13]. However, it is not efficient in terms of
area and power consumption because the performance hit of
AVICA I-cache becomes ignorable with a small number of
BTIB entries as will be shown in section 6.

Word buffer: For AVICA D-cache (the L1 data cache),
consecutive memory references to the same word (e.g. load
byte) go to the same mini-bank, which leads to bank conflicts.
We denote this kind of bank conflict as a same word conflict.
Note that applications frequently use sub-word data types
(e.g. the size of “int” data type is still 32-bit wide in many
64-bit complier including Solaris, Linux, FreeBSD, etc.). To
overcome this limitation, we employ a word buffer (WB). WB
stores recently accessed data words. The AVICA D-cache and
WB are accessed simultaneously. If a load hits in WB, the
requested data is obtained from WB, not from the AVICA
D-cache. Thus, the current cache access does not incur a
bank conflict and the next cache access is also free of a bank
conflict. On a miss in WB, the data obtained from the AVICA
D-cache is stored in WB. The store instructions write data to
both the AVICA D-cache and WB to keep coherence between
them.

Re-
name

| Fetch | DEC Issue

RF |EXE|MEM| wB |

Stall

I-cache
——»{ Addr.

(a) Branch target instruction buffer <+— AVICA
IR B Data ——p| D-cache

: : Memory with

pc| [ADDR[BTTJi| | AvIcA Address | wa

I-cache
Bank —
conflict

Emny

BTIB hit lolietch
Queue

To ROB or
Forwarding

(b) An entry of variable hit- path

latency-aware Issue queue

Fig. 5. Architecture pipeline with Branch Target Instruction Buffer (BTIB),
Word Buffer (WB) and Variable Hit-latency-aware Issue Queue (VHIQ);
Structure of WB is identical with that of BTIB

B. Compensating increase in hit latency

Variable hit latency-aware issue queue: Even though the
out-of-order processors generally show hit latency tolerance,
some benchmarks, especially integer benchmarks, experience
noticeable performance degradation in AVICA D-cache. To al-
leviate this limitation, we introduce variable hit latency-aware
issue queue (VHIQ) which cooperates with WB. WB consists
of a small number of entries and implemented with upsized
transistors. Thus, it is faster than AVICA D-cache and is hardly
affected by process variation; we assume that the access time
of WB is three cycles while that of the AVICA D-cache is
four cycles. If a memory reference hits in WB, the requested
data can be obtained from WB in three cycles, not four cycles.
Meanwhile, in out-of-order superscalar architecture, dependent
instructions on loads are issued speculatively assuming the
loads will have specified fixed latency [17]. Thus, in order to
effectively exploit the fast accessible WB, we need to notify
the issue queue that a load instruction hits in WB so that
dependent instructions on the load can be issued earlier.

Fig. 5(b) shows one entry of a conventional issue
queue [18]. When a load is issued, it sets the counter to four,
which is the hit latency of AVICA D-cache. Four cycles later,
the counter will expire and wake up the dependent instructions.
Therefore, issuing the dependent instructions can be advanced
by clearing the counter value. When a load instruction hits
in WB, the clear signal of its issue queue entry is activated.
After clearing counter value, the destination field of the load
instruction’s issue queue entry is broadcasted on the result tag
bus to wake up dependent instructions. Modification to the
conventional issue queue is minimal.

VI. EVALUATION
A. Experimental Environment

We carry out architectural experiments using an execution-
driven simulator MASE [19]. Detailed architecture parameters
are given in Table II; In this paper, the baseline archi-
tecture is 4-way superscalar out-of-order processor. We use
seven floating point and ten integer benchmarks from SPEC
CPU2006 suit. For all benchmarks, we fast-forward 10 billion
instructions and perform cycle-accurate simulation for next
1 billion instructions. To evaluate the power and latency of
AVICA caches and additional buffers, we use CACTI 6.5.

TABLE I
ARCHITECTURAL CONFIGURATION OF SIMULATED PROCESSOR

Configuration

4-way out-of-order [2-way out-of-order |
4/4/4 2/2/2

Issue queue (32), ROB | Issue queue (16), ROB
(96), LSQ (32) (48), LSQ (16)

Int Add /Mult (4/1), FP | Int Add/Mult (2/1), FP
Add/Mult (4/1) Add/Mult (2/1)

32KB, 4-way, 64B line, 3 | 32KB, 4-way, 32B line, 3

cycles (4 cycles for asym- | cycles (4 cycles for asym-

metric pipelining) metric pipelining)
2MB, 8-way, 64B line, 12 | 512KB, 8-way, 32 B line,

Parameter }

Fetch/issue/commit
Window size

Function units

L1 I-cache/D-cache

Unified L2 cache

cycles 12 cycles

Memory 150 cycles for the first | 80 cycles for the first
chunk chunk

BTB 2048 entry, 4-way

Branch Predictor comb. of bimodal and 2-level global

TLB ITLB (16-set, 4-way), DTLB (32-set, 4-way), 4KB

page size, 30 cycle penalty

B. Performance results

Fig. 6 compares the performance impacts of asymmetric
pipelining with several configurations. Each bar in the fig-
ure shows the performance degradation with respect to the
baseline cache architecture (hit latency is three cycles). For
the instruction cache, without pseudo multi-banking, asym-
metric pipelining incurs significant performance degradation
(more than 10% on average) as shown in Fig. 6 (top). With
perfect banking (no bank conflict), however, its performance
loss becomes lower than 1.1% on average. Through pseudo
multi-banking with the (2,8) bank configuration (2 bank, 8
mini-bank), which is an optimal configuration for AVICA I-
cache, performance loss becomes lower than 1.9% and 1.2%,
on average, for the integer and floating point benchmarks,
respectively, which is almost comparable to that of perfect
banking.

The results for the data cache show similar behaviors to
those for the instruction cache as shown in Fig. 6 (bottom).
With (4,4) bank configuration, which is an optimal config-
uration for AVICA D-cache, it experiences average 3% and
1.4% performance degradation for the integer and floating
point benchmarks, respectively, while it shows 20% perfor-
mance degradation, on average, without pseudo multi-banking.
The integer benchmarks are generally more sensitive to the
bandwidth loss and increase in hit latency than the floating
point benchmarks. The bzip2, gobmk, and sjeng benchmarks
experience more than 3.6% performance degradation even

BNo banking ®No bank conflict B(2,8) ®(2,8)+BTIB2 0 (2,8)+BTIB4

20% 9%

29%

21%

BNo banking mNo bank conflict m(4,4)

Normalized performance loss

Fig. 6.

m(4,4)+WB1

20% 10% . 10%

0(4,4)+WB4 0O(4,4)+WB1+VHIQ

Performance overhead; instruction cache (top) and data cache (bottom); a legend (a,b): a - the number of bank, b - the number of mini-bank

— M [

ZC DECTED Row-Redundancy
with AVICA

ZC DECTED Row-Redundancy
Without AVICA

Fig. 7. Area overhead of the competitive techniques with and without AVICA
for tolerating a cell failure rate of 0.001

with perfect banking. This is because these benchmarks show
relatively high IPCs and have a large number of instructions
which depend on the load instructions (data dependency).

For AVICA I-cache, BTIB nullifies the performance over-
heads incurred by bank conflicts, especially for the banking-
unfriendly benchmarks such as hmmer and xalancbmk. With
four-entry BTIB (BTIB4), performance impact of pseudo
multi-banking approaches that of perfect banking across al-
most benchmarks. The performance overhead becomes less
than 1% on average for both the integer and floating-point
benchmarks.

For AVICA D-cache, even if WB noticeably reduces perfor-
mance loss for some benchmarks such as bzip2 and h264ref, it
is not so effective when used alone. Cooperation of WB and
VHIQ significantly improves performance; the performance
degradation becomes less than average 1% for both the integer
and floating point benchmarks with one entry-WB (WB1).

C. Implementation costs and limitations

As we discussed in section 4, AVICA add a small number
of additional costs to the conventional L1 cache architecture.
Main additional components are some circuitry for detecting
bank conflicts and controlling pipeline registers of cache banks
independently. Their area and power costs are very small.
We employ additional buffers: BTIB and WB. As we have
seen above, performance hits become ignorable with a small
number of entries for these buffers. The area overhead of the
additional buffers is less than 0.2% of the L1 caches. Major
overhead of our architecture comes from upsized transistors
of the tag array. Area and power overheads are less than 4%
and 3%, respectively, which are obtained by our CACTI sim-
ulation. In this evaluation we do not take into account the area
and power overhead of AD and DO stages, which are protected
by using upsized transistors as we discussed in section 4. We
note that the impact of this overhead would be the same with
all competitive techniques. The implementation overheads of
AVICA and competitive techniques are summarized in Table I.

AVICA targets only access time failures, therefore it has to
be used together with other schemes targeting the read and
write failures. Since AVICA eliminates all the access time
failures, which is most dominant, other schemes will be able
to handle the read and write failures more effectively with
lower cost as shown in Fig. 7.

VII. CONCLUSION

Variations due to imprecise process technology results in
large deviations of SRAM cell access times in caches. To
address this problem, we proposed a novel L1 cache archi-
tecture (AVICA) which is insensitive to access time failure

rates. AVICA achieves its goal with two design concepts:
asymmetric pipelining and pseudo multi-banking. Asymmetric
pipelining eliminates all access time failures. Pseudo multi-
banking gets back the access bandwidth loss resulting from
asymmetric pipelining. In addition, we employ additional
small buffers and extend the issue queue. Experimental results
demonstrate that the performance impact of AVICA is less
than 1% on average. Most important feature of our pro-
posed architecture is its insensitivity to access time failure
rates, which will be more important in future processors
with severe process variations.

ACKNOWLEDGMENT

This research was supported by the National Research
Foundation of Korea (NRF) grants funded by the Ministry
of Education, Science and Technology (2011-0005378, 2012-
0000980) and by the Ministry of Knowledge and Economics
(10041313).

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” leee Micro, vol. 25,
no. 6, pp. 10-16, 2005.

[2] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of SRAM array for yield enhancement
in nanoscaled CMOS,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 12, pp. 1859-1880.

[3] M. Mutyam, F. Wang, R. Krishnan, V. Narayanan, M. Kandemir, Y. Xie,
and M. J. Irwin, “Process-Variation-Aware Adaptive Cache Architecture
and Management,” IEEE Transactions on Computers, vol. 58, no. 7, Jul.
2009.

[4] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, “Yield-Aware
Cache Architectures,” in MICRO 39.

[5]1 Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung, “Selective
wordline voltage boosting for caches to manage yield under process
variations,” in DAC ’09.

[6] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technolo-
gies,” IEEE Transactions on VLSI Systems, vol. 13, no. 1, pp. 27-38,
2005.

[71 A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “ZerehCache: armoring
cache architectures in high defect density technologies,” in MICRO 42.

[8] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off Cache Capacity for Reliability to Enable Low
Voltage Operation,” in ISCA '08.

[9] T. Mahmood and S. Kim, “Fine-Grained Fault Tolerance for Process

Variation-Aware Caches,” in ISVLSI ’10.

J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit Error

Tolerant Caches Using Two-Dimensional Error Coding,” in MICRO 40.

T. M. Austin and G. S. Sohi, “Zero-cycle loads: microarchitecture

support for reducing load latency,” in MICRO 28.

S. T. Srinivasan and A. R. Lebeck, “Load latency tolerance in dynami-

cally scheduled processors,” in MICRO 31.

J. Hennessy and D. Patternson, Computer Architecture: A quantitative

Approach, 5th ed., Sep. 2011.

A. Agarwal, K. Roy, and T. N. Vijaykumar, “Exploring High Bandwidth

Pipelined Cache Architecture for Scaled Technology,” in DATE ’03.

J. Rivers, G. Tyson, E. Davidson, and T. Austin, “On high-bandwidth

data cache design for multi-issue processors,” in MICRO 30.

K. Ghose and M. B. Kamble, “Reducing power in superscalar processor

caches using subbanking, multiple line buffers and bit-line segmenta-

tion,” in ISLPED ’99.

R. Kessler, “The Alpha 21264 microprocessor,” Micro, IEEE, vol. 19,

no. 2, pp. 24-36, 1999.

D. Emnst and T. Austin, “Efficient dynamic scheduling through tag

elimination,” in ISCA ’02.

E. Lason, S. Chatterjee, and T. Austin, “MASE: A Novel Infrastructure

for Detailed Microarchitectural Modeling,” in ISPASS "01.

[10]
[11]
[12]
(13]
[14]
[15]

[16]

(17]
[18]

[19]

