
Energy Optimization with Worst-Case Deadline

Guarantee for Pipelined Multiprocessor Systems

Gang Chen

TU Munich, Germany

cheng@in.tum.de

Kai Huang

TU Munich, Germany

huangk@in.tum.de

Christian Buckl

fortiss GmbH, Germany

buckl@fortiss.org

Alois Knoll

TU Munich, Germany

knoll@in.tum.de

Abstract—Pipelined computing is a promising paradigm for
embedded system design. Designing the scheduling policy for a
pipelined system is however more involved. In this paper, we
study the problem of the energy minimization for coarse-grained
pipelined systems under hard real-time constraints and propose
a method based on an inverse use of the pay-burst-only-once
principle. We formulate the problem by means of the resource
demands of individual pipeline stages and solve it by quadratic
programming. Our approach is scalable w.r.t the number of the
pipeline stages. Simulation results using real-life applications as
well as commercialized processors are presented to demonstrate
the effectiveness of our method.

I. INTRODUCTION

Pipelined computing is a promising paradigm for embedded

system design, which can in principle provide high per-

formance and low energy consumption [1]. For instance, a

streaming application can be split into a sequence of func-

tional blocks that are computed by a pipeline of processors

where clock/power-gating techniques can be applied to achieve

energy efficiency.

Designing the scheduling policy for the pipeline stages

under the requirements of both energy efficiency and timing

guarantee is however non-trivial. In general, energy efficiency

and timing guarantee are conflict objectives, i.e., techniques

that reduce the energy consumption of the system will usually

pay the price of longer execution time, and vice versa. Previous

work on this topic either requires precise timing information

of the system [15], [14], [12] or tackles only soft real-

time requirements [6], [1]. In the context of hard real-time

systems, seldom work has been published that can handle non-

deterministic workloads.

This paper studies the energy-minimization problem of

coarse-grained pipelined systems under hard real-time require-

ments. We consider a streaming application that is split into

a sequence of coarse-grained functional blocks which are

mapped to a pipeline architecture for processing. The workload

of the streaming application is abstracted as an event stream

and the event arrivals of the stream are modeled as the arrival

curves in interval domain [7]. The event stream has an end-

to-end deadline requirement, i.e., the time by which any event

in the stream travels through the pipeline should be no longer

than this required deadline. The objective is thereby to find

the optimal scheduling policies for individual stages of the

pipeline with minimal energy consumption while the deadline

requirement of the event stream is guaranteed.

Intuitively, the problem can be solved by partitioning the

end-to-end deadline into sub-deadlines for individual pipeline

stages and optimizing the overall energy consumption based on

the partitioned sub-deadlines. However, any partition strategy

based on the end-to-end deadline and the follow-up opti-

mization method will suffer from counting multiple times of

the burst of the event stream, which will inevitably over-

estimate the needed resource for each pipeline stage and lead

to poor energy saving. A motivation example in Section IV

will demonstrate this drawback in details. Therefore, more

sophisticated method is needed to tackle this problem.

Our idea to solve this problem lies in an inverse use of the

known pay-burst-only-once principle [7]. Rather than directly

partitioning the end-to-end deadline, we compute for the entire

pipeline one service curve which serves as a constraint for the

minimal resource demand. The energy minimization problem

is then formulated with respect to the individual resource de-

mands of pipeline stages and is solved with standard quadratic

programming. For simplicity, we consider power-gating energy

minimization and use periodic dynamic power management to

reduce the leakage power, i.e., to periodically turn on and off

the processors of the pipeline. Note that the basic idea can

also be applied to clock-gating energy reduction. With this

approach, we can not only guarantee the overall end-to-end

deadline requirement but also retrieve the pay-burst-only-once

phenomena, resulting in a significant reduction of the energy

consumption. In addition, our method is scalable with respect

to the number of the pipeline stages. The contributions of this

paper are summarized as follows:

• A new method is developed to solve the energy-

minimization problem for pipelined multi-processor em-

bedded systems by inversely using the pay-burst-only-

once principle.

• We derive a formulation of the minimization problem

based on the needed resource of individual stages of the

pipeline architecture and a transformation of the formu-

lation to a standard quadratic programming problem with

box constraints.

• A two-phase heuristic is developed to solve the formu-

lated problem and a formal proof is provided to show

the correctness of our approach, i.e., guarantee on the

end-to-end deadline requirement.

• We conduct simulation using real-life applications as

978-3-9815370-0-0/DATE13/ c©2013 EDAA

well as commercialized processors to demonstrate the

effectiveness of our method.

The rest of the paper is organized as follows: Section II

reviews related work in the literature. Section III presents basic

models and the definition of the studied problem. Section IV

presents the motivation example and Section V describes the

proposed approach. Experimental evaluation is presented in

Section VI and Section VII concludes the paper.

II. RELATED WORK

Energy optimization for pipelined multiprocessor systems is

an interesting topic where numbers of techniques have been

proposed in the literature. For instance, approaches based on

control theory [1] and runtime workload prediction [6] are

proposed, targeting energy minimization under soft real-time

constraints. There are also methods [15], [14], [12] for hard

real-time systems. But these methods require precise timing

information of task arrivals, e.g., periodic arrivals. However, in

practice, this precise timing information of task arrivals might

not be known in advance, since arrival time of tasks depends

on many nonfunctional factors, e.g., environmental impacts.

There are also many works on hard real-time systems but

allowing non-deterministic task arrivals. By using the arrival

curve model [7] to abstract task arrivals into time interval do-

main, techniques based on dynamic frequency scaling [8], [10]

and dynamic power management [5], [4] have been recently

proposed for uni-processor systems. Nevertheless, how to cope

with multiple processors is not yet clear. In this paper, we

present an approach to derive energy-efficient scheduling with

hard real-time constraints for pipelined multiprocessor systems

using the arrival curve model.

III. MODELS AND PROBLEM DEFINITION

A. Hardware Model

We consider the system with pipeline architecture showed

in Fig. 1(a). Each processor in the pipelined system has three

power consumption modes, namely active, standby, and sleep

modes, as shown in Fig. 1(b). To serve events, the processor

must be in the active mode with power consumption Pa.

When there is no event to process, the processor can switch

to sleep mode with lower power consumption Pσ . However,

mode-switching from sleep mode to active mode will cause

additional energy and latency penalty, respectively denoted as

Esw,on and tsw,on. To prevent the processor from frequent

mode switches, the processor can stay at standby mode with

power consumption Ps, which is less than Pa but more than

Pσ , i.e. Pa > Ps > Pσ. Moreover, the mode-switch from

active (standby) mode to sleep mode will cause energy and

time overhead, respectively denoted by Esw,sleep and tsw,sleep.

B. Task Model

This paper considers streaming applications that can be split

into a sequence of tasks. As shown in Fig. 1(a), a H.263 de-

coder is represented as four tasks (i.e., PD1, deQ, IDCT, MC)

implemented in a pipeline fashion [9]. To model the workload

of the application, the concept of arrival curve α(∆) =

Processor1

PD1 FIFO

Processor2

deQ FIFO

Processor3

IDCT FIFO

Processor4

MC

(a) H.263 decoder on pipeline hardware architecture

t
active (Pa)

sleep (Pσ)
standby

(Ps)

Ton Toff Ton

(b) Power model of a processor

Fig. 1. System model

[αu(∆), αl(∆)], originated from Network Calculus [7], is

adopted. αu(∆) and αl(∆) provides the upper and lower

bounds on the number of arrival events for the stream S in any

time interval ∆. Analogous to arrival curves that provide an

abstract event stream model, a tuple β(∆) = [βu(∆), βl(∆)]
defines an abstract resource model which provides an upper

and lower bounds on the available resources in any time

interval ∆. Note that arrival curves are event-based and service

curves are based on amount of computation time. Suppose that

the execution time of an event is c, the transformation of the

service curves can be done by β̄l = ⌊βl

c
⌋ and β̄u = ⌊βu

c
⌋.

With these definitions, a processor with lower service curve

β̄Gl(∆) is said to satisfy the deadline D for the event stream

specified by αu(∆), if the following condition holds.

β̄Gl(∆) ≥ αu(∆−D), ∀∆ ≥ 0 (1)

C. Problem Statement

This paper considers periodic power management [4] that

periodically turns on and off a processor. In each period T =
Ton+Toff , switch the processor to active (standby) mode for

Ton time units, following by Toff time units in sleep mode,

as shown in Fig. 1(b). Given a time interval L, where L ≫
T and L

T
is an integer. Suppose that γ(L) is the number of

events of event stream S served in L. If all the served events

finish within L, the energy consumption E(L, Ton, Toff) by
applying this periodic scheme is

E(L, Ton, Toff) =
L

Ton + Toff

(Esw,on + Esw,sleep)

+
L · Ton

Ton + Toff

Ps +
L · Toff

Ton + Toff

Pσ

+c · γ(L)(Pa − Ps)

=
L · Esw

Ton + Toff

+
L · Ton(Ps − Pσ)

Ton + Toff

+L · Pσ + c · γ(L)(Pa − Ps)

where Esw is Esw,on + Esw,sleep for brevity. Given a suffi-

ciently large L, without changing the scheduling policy, the

minimization of energy consumption E(L, Ton, Toff) of a

single processor is to find Toff and Ton such that the average

idle power consumption P (Ton, Toff) is minimized.

P (Ton, Toff)
def

=

L·Esw

Ton+Toff
+ L·Ton·(Ps−Pσ)

Ton+Toff

L

=
Esw + Ton · (Ps − Pσ)

Ton + Toff

(2)

Based on (2), the energy minimization problem of am-stage

pipeline can be formulated as minimizing following function:

P (~Ton, ~Toff) =

m
∑

i

Ei
sw + T i

on · (P i
s − P i

σ)

T i
on + T i

off

(3)

where ~Ton = [T 1
on T 2

on . . . Tm
on] and ~Toff =

[T 1
off T 2

off . . . Tm
off]. Now we can define the problem that

we studied as follows:

Given pipelined platform with m stages, an event

stream S processed by this pipeline, and an end-

to-end deadline requirement D, we are to find a

set of periodic power managements characterized

by ~Ton and ~Toff that minimize the average idle

power consumption P defined in Eqn. (3), while

guaranteeing that the worst-case end-to-end delay

does not exceed D.

IV. MOTIVATION EXAMPLE

This section presents a motivation example, where an event

stream passes through a 2-stage pipeline with a deadline

requirement D. For simplicity, arrival curves in the leaky-

bucket form and service curves in rate-latency form [7] are

used. In this representation, an arrival curve is modeled as

α(∆) = b + r · ∆, where b is the burst and r is the

leaky rate. Correspondingly, a service curve is modeled as

β(∆) = R · (∆ − T), where R is service rate and T is

the delay. A graphical illustration of the example is shown

in Fig. 2, where D = 20, b = 5, r = 0.5, and R1 = R2 = 1.
We first inspect the strategy of partitioning the end-to-end

deadline and using the partitioned sub-deadlines for the two

pipeline stages. For simplicity, we split the D equally, i.e.,

D/2 for each stage. As shown in Fig. 2, given D/2 deadline

requirement for the first pipeline stage, we obtain the maximal

T1 = D
2 − b

R1

= 5, corresponding to the minimal service

demand β1 = ∆−5. To derive the minimal β2 for the second

stage of the pipeline is more involved. We need the output

arrival curve α′ from the first stage. According to [7], α′(∆) =
b+ r ·T1+ r ·∆. Now again with a deadline requirement D/2
for α′, we have T2 = D

2 − b+r·T1

R1

= 2.5.

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 ∆

α

D1 = 10

α′

D2 = 10

β1

β2

βTl

D = 20

T = 15

T2 = 2.5

T1 = 5

Fig. 2. Motivation example.

Lets take a close look at this solution. According to the

concatenation theorem βR1,T1
⊗ βR2,T2

= βmin(R1,R2),T1+T2
,

we get a concatenated service curve β = ∆ − (T1 + T2) =

∆ − 7.5. With this concatenated service curve, the maximal

overall end-to-end deadline for β1 and β2 is 12.5 which is far

too stricter than D. This example indicates that the obtained

β1 and β2 based on partitioning the end-to-end deadline is too

pessimistic.

The reason for the pessimism comes from paying the

burst b/R1 for the second stage of the pipeline as well as

the additional delay r·T1

R2

from the first stage, as the pay-

burst-only-once principle points out. These effects will be

accumulated for every stage of the pipeline, leading to even

more pessimistic results, as the number of the pipeline stages

increases. In addition, computing the resource demand of each

stage requires the lower bound of the output arrival curve

from the previous stage. Computing this output curve requires

numerical min-plus convolution which will incur considerable

computational and memory overheads. In conclusion, the

strategy based on partitioning the end-to-end deadline is not

a viable approach, in particular for the cases of pipelined

systems with many stages.

On the other hand, one can first derive the total server

demand βTl, in this case T = 15. Any partition based on

this T will result in smaller but valid service curves for each

pipeline stage, as we can always retrieve the original end-to-

end deadline by means of the pay-burst-only-once principle.

For example, by an equal partition of T , both T1 and T2 are

7.5 and D is still preserved. This brings the basic idea of our

approach that will be presented in the next section.

V. PROPOSED APPROACH

Our approach lies in an inverse use of the pay-burst-only-

once principle, as mentioned in the previous section. Rather

than directly partitioning the end-to-end deadline, we compute

one service curve for the entire pipeline which serves as

a constraint for the minimal resource demand. The energy

minimization problem is then formulated with respect to the

resource demands for individual pipeline stages. To solve

this minimization problem, the formulation is transformed

into a quadratic programming form and solved by a 2-phase

heuristic.

Without loss of generality, a pipelined system with m
heterogeneous stages (m ≥ 2) is considered. The processor of
the i stage can provide minimal βGl

i service. Since periodic

power management is considered, the minimal service βGl
i can

be modeled as an T i
on and T i

off pair:

βGl
i (∆) = (T i

on

⌈ ∆− T i
off

T i
on + T i

off

⌉

)⊗∆ (4)

In addition, to obtain a tightened lower bound of service curve

of the entire pipeline, we restrict T i
on as a multiple of the worst

case execution time ci, i.e., T
i
on = ni ci, ni ∈ N+.

A. Problem Formulation

Before presenting the formulation, we first state a few bases.

By defining Ki =
T i
on

T i
on+T i

off

, we have the following two

lemmas.

Lem. 1: β̄Gl
i (∆) ≥ Ki

ci
(∆− T i

off − ci)

Proof:

β̄
Gl
i (∆) ≥

⌊T i
on

⌈ ∆−T i
off

T i
on+T i

off

⌉

ci

⌋

⊗

⌊

∆

ci

⌋

≥ ni(
∆− T i

off

T i
on + T i

off

)⊗
1

ci
(∆− ci)

≥
Ki

ci
(∆− T

i
off − ci)

Lem. 2:
m
⊗

i=1

β̄i
Gl ≥

m

min
i=1

(Ki

ci
)
(

∆−
m
∑

i=1

(T i
off + ci)

)

Proof: It can be directly derived from the definition of

min-plus convolution [7] and Lem. 1.

With Lem. 2, we state below theorem.

Thm. 1: Assuming an event stream modeled with arrival

curve α is processed by an m-stage pipeline and the lower

service curve of each pipeline stage is defined by a T i
on and

T i
off pair, the pipelined system satisfies an end-to-end deadline

D, if the following condition holds:
m

min
i=1

(
Ki

ci
)
(

∆−
m
∑

i=1

(T i
off + ci)

)

≥ αu(∆−D) (5)

Proof: In Lem. 2, the right hand side of inequality is

a lower bound of
m
⊗

i=1

β̄i
Gl

which is the concatenated service

curve of the pipeline. With
m
⊗

i=1

β̄i
Gl ≥ αu(∆−D), the end-to-

end delay of the pipeline is no more than D, according to the

pay-burst-only-once principle. Therefore, the theorem holds.

The left hand side of the inequality Eqn. (5) can be

considered as a bounded-delay function bdf(∆, ρ0, b0) =
max(0, ρ0(∆ − b0)) with slope ρ0 = minmi=1(

Ki

ci
) and

bounded-delay b0 =
∑m

i=1(T
i
off + ci). For the stream S

with deadline D, a set of minimum bounded-delay functions

bdfmin(∆, ρ, b) can be derived by varying b (See Section V-B).
Therefore, we should find a solution of [~K, ~Toff] such that the

resulting bounded-delay function bdf(∆, ρ0, b0) is no less than

minimum bounded-delay functions bdfmin(∆, ρ, b). Therefore,
we can formulate our optimization problem as following:

minimize
~K, ~Toff

P (~K, ~Toff)

subject to
m

min
i=1

(
Ki

ci
) ≥ ρ

m
∑

i=1

(T i
off + ci) ≤ b

0 ≤ Ki ≤ 1, i = 1, . . . ,m

T i
off ≥ 0, i = 1, . . . ,m

(6)

where ~K = [K1 . . . Kn]. P (~K, ~Toff) is obtained as follows

by conducting a transformation Ki =
T i
on

T i
on+T i

off

to (3).

P (~K, ~Toff) =

m
∑

i

(
Ei

sw (1−Ki)

T i
off

+ (P i
s − P i

σ)Ki)

The advantage of the formulation (6) is two-fold. First of

all, the service curves of individual pipeline stages are the

variables of the optimization problem, which on the one hand

overcomes the problem of paying burst multiple times, on

the other hand avoids the costly
⊗

computation during the

optimization. Second, this formulation allows us to use more

efficient method to analyze the problem, which will be present

in the following sections.

B. Quadratic Programming Transformation

How to solve the minimization problem (6) is not obvious.

The constraints b and ρ indeed are not fixed values. In

addition, these two constraints are correlated. For a fixed b,
the minimum bounded-delay function bdfmin(∆, ρ, b) can be

determined by computing ρ:

ρ = inf {ρ : bdf(∆, ρ, b) ≥ αu(∆−D), ∀∆ ≥ 0} (7)

In this paper, we conduct the optimization by varying b and

computing ρ for every possible b. For a fixed b, we can

transform (6) into a quadratic programming problem with box

constraints(QPB), as stated in the following lemma.

Lem. 3: The minimization problem in (6) can be trans-

formed as the following quadratic programming problem with

box constraints:
minimize

~x=[x1 ... xm]
~xTQ~x

subject to 0 ≤ xi ≤
√

Ei
sw(1− ρ ci), i = 1, . . . ,m.

(8)

where Q = A−B, A is m×m matrix of ones and B is m×m

diagonal matrix with ith diagonal element
(b−

∑m
j=1

cj)(P
i
s−P i

σ)

Ei
sw

.

Denote ~x∗ as the optimal solution for the QPB problem in

(8), then the optimization solution for (6) can be obtained

with Ki = 1− (x∗

i)
2

Ei
sw

and T i
off =

x∗

i∑
m
j=1

x∗

j

(b−∑m
j=1 cj)

Proof: With Cauchy-Buniakowski-Schwartz’s inequality,

we can get that:
m
∑

i=1

T i
off ·

m
∑

i=1

Ei
sw(1−Ki)

T i
off

≥ (
m
∑

i=1

√

Ei
sw(1− ki))

2

The minimum value of
∑m

i=1
Ei

sw(1−Ki)

T i
off

can be obtained at

(
∑m

i=1

√
Ei

sw(1−ki))
2

b−
∑

m
j=1

cj
when the following equation holds.

T i
off =

√

Ei
sw(1−Ki)

∑m
j=1

√

Ej
sw(1−Kj)

(b−
m
∑

j=1

cj)

Then optimization formulation in (6) can be formulated as:

minimize
K1,K2,...,Km

(
∑m

i=1

√

Ei
sw(1−Ki))

2

b−∑m
j=1 cj

+

m
∑

i=1

(P i
s − P i

σ)Ki

subject to ρ ci ≤ Ki ≤ 1, i = 1, . . . ,m

By defining xi =
√

Ei
sw(1−Ki), formulation (6) can be

transformed as the QPB problem in (8).

Note that there is a feasible region for b. To guarantee

all the resulting T i
off ≥ 0, the bound-delay b should not

be less than
∑m

i=1 ci. According to (5), the maximum slope

ρ of bound-delay function will not exceed 1
maxm

i=1
ci
. Cor-

respondingly, we derive the minimum bound-delay function

bdfmin(∆, 1
maxm

i=1
ci
, b). By inverting (7), we can derive the

maximum delay bu by (9), which can guarantee that all the

resulting Ki will not exceed 1. In summary, the feasible region

of b ∈ [bl, bu] can be bounded as follows:

bu = sup {d : bdf(∆,
1

maxmi=1 ci
, d) ≥ αu(∆−D), ∀∆ ≥ 0}

bl =

m
∑

i=1

ci (9)

C. Two-Phase Heuristic

With above information, we can now present the overall

algorithm to the energy minimization problem defined in Sec-

tion III-C. Basically, bounded-delay b is scanned by step ǫ
within the range [bl, bh]. For each b, we first solve the sub-

problem (8) with a QPB solver. Then, the obtained solution

is repaired to fulfill further constraints (will explain later on).

The pseudo code of the algorithm is depicted in Algo. 1.

Algorithm 1 PBOOA

Input: αu, bl, bh, ǫ, and Pmin = ∞
Output: ~Kopt, ~Toff, opt

1: for b = bl to bh with step ǫ do

2: compute ρ by Eqn. (7);

3: obtain ~K and ~Toff by solving (8);

4: repair ~K and ~Toff ;

5: if P (~K, ~Toff) < Pmin then

6: ~Kopt ← ~K ; ~Toff, opt ← ~Toff ;

7: Pmin ← P (~Kopt, ~Toff, opt);
8: end if

9: end for

To solve the sub-problem (Line 3 in Algo. 1), we apply

existing QPB solver. According to [2], when Q is positive

semi-definite, QPB is solvable in polynomial time. Otherwise,

QPB can be seen as the non-convex quadratic programming

problem which is NP-Hard. Nevertheless, there are approxi-

mation schemes [3] that can efficiently solve the non-convex

QPB and there are many excellent off-the-shelf software pack-

ages [2] available. In this paper, state-of-the-art finite B&B

algorithm [2] is applied to solve our QPB problem.

Algorithm 2 Repair Scheme

Input: solution of QPB problem:[~K, ~Toff]

Output: [~K
′

, ~T
′

off]
1: compute the stage set: S1 = {pi|T i

off < tisw};
2: repair [K

′

, T
′

off] of the stage p ∈ S1 as [1, 0];
3: compute the loss Q =

∑

pi∈S1
T i
off ;

4: reassign Q to stage p with maximum power savings;

5: compute Ton and the stage set: S2 = {pi|T i
off ≥ tisw};

6: for each stage p ∈ S2 do

7: if Ton < c then

8: T
′

on ← c ;T
′

off ← Toff ;

9: else

10: T
′

on ← ⌊Ton

c
⌋ c ;T ′

off ← T
′

on

K
− T

′

on;

11: if T
′

off < tsw then

12: T
′

on ← ⌈Ton

c
⌉ c ;T ′

off ← Toff ;

13: end if

14: end if

15: end for

After obtaining a pair of ~K and ~Toff , the repair phase

(Line 4 in Algo. 1) is conducted to fulfill further constraints.

This repair scheme is represented in Algo. 2. First of all, the

resulting T i
off of pipeline stage i may be smaller than tisw. In

the case that T i
off < tisw, turning off the processor of stage i

is not possible. Therefore, the solution for stage i is repaired
by [K

′

i , T
i′

off] = [1, 0], stage i is on all the time (Line 2

in Algo. 2). However, this repair step will lead to the loss

of sleep time Q (Line 3 in Algo. 2). We try to assign the

loss Q to each stage by Toff = Toff +Q and compute their

power savings by comparing with the previous solution. Then

assign Q to the stage with maximum power saving (Line 4

in Algo. 2). Second, the resulting T i
on may not be a multiple

of ci, which is one of our basic requirement. The repair steps

are conducted to make T i
on to be a multiple of ci (Line 5–

Line 15 in Algo. 2). It is worth noting that the repair phase

we conduct can still guarantee the repaired solution to satisfy

the constraints.

VI. PERFORMANCE EVALUATIONS

In this section, we demonstrate the effectiveness of our

approach. We compare our approach (PBOOA) with deadline

partition approach (DPA), where DPA partitions the end-to-end

deadline into sub-deadlines for individual pipeline stages and

optimizes the overall energy consumption by using the scheme

in [4] to minimize the energy consumption of individual

pipeline stages. The simulation is implemented in Matlab

using RTC-toolbox [13] and the finite B&B algorithm [2] is

used to solve QPB. All results are obtained from a 2.83GHz

processor with 4GB memory.

A. Simulation Setup

The H.263 decoder shown in Fig. 1(a) is used as the test

application. The execution time of each subtask in H.263

decoder application can be found in [9]. The event stream

is specified by the PJD model. The activation period of the

application is 300ms with a end-to-end constraint of 600ms.

Regarding to processors for the pipeline architecture, we

consider Marvell PXA270 processor and source its power

profile from [11]. Standby power Ps and sleep power Pσ

are respectively 0.260Watt and 0.0154Watt with considering

switching time overhead tsw and energy overhead Esw as

0.067 sec and 10.19mJ, respectively.

B. Simulation Result

We first evaluate how the power consumptions of the two

approaches change as the jitter varies. Cases of 2-stage and

3-stage pipeline architectures with homogeneous PXA270

processors are evaluated. We vary the jitter of the stream

from 0 to 840ms. The simulation results are shown in Fig. 3.

From figures, we can make the following observations: (1)

PBOOA always outperforms DPA for both pipeline architec-

tures. PBOOA on average can achieve 16.8% and 20.09%

normalized power savings w.r.t DPA on 2-stage and 3-stage

pipeline architectures, respectively; (2) PBOOA can achieve

more power savings on 3-stage pipeline than 2-stage pipeline

0 200 400 600 800
0.1

0.15

0.2

0.25

0.3
A

ve
ra

ge
 Id

le
 P

ow
er

 (W
at

t)

Jitter (msec)

0 200 400 600 800
0.11

0.14

0.17

0.2

0.23

N
om

al
iz

ed
 P

ow
er

 S
av

in
gs

(N
P

S
)

DPA
PBOOA
NPS

(a) 2-stage:(PD1,deQ)→P1,(IDCT,MC)→P2

0 200 400 600 800
0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 Id
le

 P
ow

er
 (W

at
t)

Jitter (msec)

0 200 400 600 800
0.16

0.18

0.2

0.22

0.24

N
om

al
iz

ed
 P

ow
er

 S
av

in
gs

(N
P

S
)

DPA
PBOOA
NPS

(b) 3-stage:(PD1,deQ)→P1,IDCT→P2,MC→P3

Fig. 3. Power consumption of PBOOA and DPA on 2-stage and 3-stage
homogeneous pipelined system with varying jitter

for different jitter setting. The reason is that DPA on 3-stage

pipeline pays burst for more times than 2-stage platform,

which leads to PBOOA can achieve more power savings

on 3-stage pipeline; (3) The power consumptions of both

approaches increase as the jitter increases, since the bigger

jitter requires the longer Ton to guarantee the worst-case end-

to-end deadline.

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Stage Num

P
o
w

e
r

(W
a
tt
)

2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

10
3

10
4

C
o
m

p
u
ta

tio
n
 T

im
e
 (

M
in

)

Power(PBOOA)
Power(DPA)
Computation Time(PBOOA)
Computation Time(DPA)

Fig. 4. Computation time and power computation for heterogeneous pipelined
system

Second, we demonstrate the scalability of our approach.

We test our approach by up to 9-stage heterogeneous pipeline

with jitter of 300ms. Power profile of processors are randomly

generated, while the range is set according to PXA270 pro-

cessor. Fig. 4 shows the power consumption and computation

overhead on different pipelines. From this figure, we can have

below observations: (1) The DPA approach is time consuming.

For the case of 3-stage pipeline, DPA takes almost four hours,

which is 65 times longer than PBOOA on the same pipeline.

In addition, the 4-stage case needs 15 times more computing

time than the 3-stage case. When core number exceeds 4,

deadline partition approach fails to provide a result due to

expiration of time budget. (2) PBOOA is considerably fast.

The 2-stage takes about three minutes. Even with the case

of 9-stage pipeline, PBOOA needs 2.5 times more computing

time than the 2-stage case.

VII. CONCLUSION

This paper presents a new approach to minimize the en-

ergy consumption of pipelined systems. Our approach can

tackle streaming applications with non-deterministic workload

arrivals under hard real-time constraints. This approach can not

only guarantee the original end-to-end deadline requirement

but also retrieve the pay-burst-only-once phenomena, resulting

in a significant reduction in both the energy consumption and

computing overhead. Moreover, our approach is scalable with

respect to the number of pipelined stages. Regarding to future

work, it is an interesting problem to combine our approach

with the consideration of the mapping of the application.

ACKNOWLEDGMENT

This work has been partly funded by German BMBF
projects ECU (grant number: 13N11936) and Car2X (grant
number: 13N11933).

REFERENCES

[1] S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, and L. Benini. A
control theoretic approach to energy-efficient pipelined computation in
mpsocs. ACM Transactions on Embedded Computing Systems, 2007.

[2] J. Chen and S. Burer. Globally solving nonconvex quadratic program-
ming problems via completely positive programming. Mathematical

Programming Computation, 2012.
[3] M. Fu, Z.-Q. Luo, and Y. Ye. Approximation algorithms for quadratic

programming. Journal of Combinatorial Optimization, 1998.
[4] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. Buttazzo. Periodic

power management schemes for real-time event streams. In CDC, 2009.
[5] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. Buttazzo. Applying

real-time interface and calculus for dynamic power management in hard
real-time systems. Real-Time Systems, 2011.

[6] H. Javaid, M. Shafique, S. Parameswaran, and J. Henkel. Low-power
adaptive pipelined mpsocs for multimedia: An h.264 video encoder case
study. In DAC, 2011.

[7] J. Le Boudec and P. Thiran. Network Calculus: A Theory of Determin-

istic Queuing Systems for the Internet. Springer, 2001.
[8] S. Maxiaguine, A. Chakraborty and L. Thiele. Dvs for buffer-constrained

architectures with predictable qos-energy tradeoffs. In CODES+ISSS,
2005.

[9] H. Oh and S. Ha. Hardware-software cosynthesis of multi-mode multi-
task embedded systems with real-time constraints. In CODES+ISSS,
2002.

[10] S. Perathoner, K. Lampka, N. Stoimenov, L. Thiele, and J.-J. Chen.
Combining optimistic and pessimistic dvs scheduling: An adaptive
scheme and analysis. In ICCAD, 2010.

[11] Marvell PXA270.
http://www.marvell.com/application-processors.

[12] K. Srinivasan and K. S. Chatha. Integer linear programming and heuris-
tic techniques for system-level low power scheduling on multiprocessor
architectures under throughput constraints. Integration,the VLSI Journal,
2007.

[13] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[14] R. Xu, R. Melhem, and D. Mosse. Energy-aware scheduling for
streaming applications on chip multiprocessors. In RTSS, 2007.

[15] Y. Yu and V. Prasanna. Power-aware resource allocation for independent
tasks in heterogeneous real-time systems. In ICPADS, 2002.

