Runtime Verification of Nonlinear Analog Circuits Using
Incremental Time-Augmented RRT Algorithm

Seyed Nematollah Ahmadyan,

Jayanand Asok Kumar,

Shobha Vasudevan

Coordinated Science Lab, Electrical and Computer Engineerning Department,
University of Illinois at Urbana-Champaign,
{ahmadya2, jasukk2, shohbav}@illinois.edu

Abstract—Because of complexity of analog circuits, their verification
presents many challenges. We propose a runtime verification algorithm
to verify design properties of nonlinear analog circuits. Our algorithm is
based on performing exploratory simulations in the state-time space using
the Time-augmented Rapidly Exploring Random Tree (TRRT) algorithm.
The proposed runtime verification methodology consists of i) incremental
construction of the TRRT to explore the state-time space and ii) use of
an incremental online monitoring algorithm to check whether or not the
incremented TRRT satisfies or violates specification properties at each
iteration. In comparison to the Monte Carlo simulations, for providing the
same state-space coverage, we utilize a logarithmic order of memory and
time.

1. INTRODUCTION

Verifying nonlinear analog circuits is a major challenge and an
ongoing topic of intensive research. Formal verification methods ex-
haustively analyze all possible behaviors of the circuit statically. They
present a very daunting computational challenge in the domain of
analog circuits. A less rigorous, but more practically viable, alternative
is runtime verification and monitoring of properties. In runtime veri-
fication, a property monitor checks whether a finite set of simulation
traces would satisfy or violate a given property specification [13].

Current approaches for runtime verification are inefficient. Runtime
verification has two components: the generation of traces and behavior
(simulation) and checking and monitoring of properties against the sim-
ulated traces. Existing approaches (See [18]) for runtime verification
generate transient traces of the system using Monte Carlo simulation
and monitor properties against these traces.

In this paper, we introduce a technique for runtime verification that
is based on the Rapidly Exploring Random Tree (RRT) algorithm [10].
Our technique simulates the state-space of a nonlinear analog circuit in
a manner different from Monte Carlo simulations. The RRT is a tree
data structure that grows rapidly by performing exploratory simulations
of system behavior. We use the incremental nature of RRT growth
patterns to monitor properties of interest incrementally. Hence, our
RRT-based runtime verification framework provides a novel simulation
as well as property-checking and monitoring methodology. Previously,
RRTs have been extensively used in robotic motion planning [9] and
reasoning [8], safety falsification [14][1] and test generation [2][12].

In order to adapt traditional RRTs to runtime monitoring of analog
circuits, we introduce the Time-augmented RRT (TRRT) algorithm.
RRT, being a tree data structure, spans the state-space and does not
contain loops and cycles. This makes the RRT unsuitable for checking
properties like oscillation that need to traverse a cyclic path in the
state-space. The RRT explores the entire state-space uniformly without
any bias towards a particular dimension. Thus the growth along the
time dimension might be very small for a large state-space with many
dimensions. We address these issues in TRRT data structure. We
augment the state-space of an analog circuit with the time dimension,
providing a state-time space for the time-augmented RRT to grow.
The state-time space adds the time dimension to the n—dimensional
state-space vector. In order to ensure forward progress in time, we
introduce a sampling bias in the time dimension, without violating the
probabilistic completeness property of the time-augmented RRT.

Our runtime verification technique based on TRRTs works as
follows. Design specification properties are provided to describe the
temporal and logical behavioral model of the analog signals. Given
initial state(s) and input parameters of a system (including uncertainty
and variation parameters), our algorithm randomly samples the state-
time space of the circuit and expands the TRRT toward the new samples
through simulation. The TRRT is constructed incrementally starting
from the specified initial state. At every incremental iteration, an edge
corresponding to a single simulation trace from the previous (initial)

978-3-9815370-0-0/DATE13/ (© 2013 EDAA

state to the next (final) state is added to the tree. As a result, the
constructed TRRT consists of many randomized simulation traces as
edges. At every iteration, our monitoring algorithm checks the newly
added edge against given properties for violation. The properties we
check include both analog properties, meaning input/output properties
that do not involve previous state information, and temporal properties,
i.e., properties that are stateful. We use the STL/PSL properties [13],
with a few modifications for TRRT-based checking. We define the
operator Norm for computing distance the between vectors as well as
the jitter property in a manner that is not amendable to Monte Carlo
simulation, but is verifiable with TRRTs.

Our technique has many benefits over state-of-the-art approaches
for runtime verification. First, ours is more efficient. A major source
of inefficiency in Monte Carlo simulations is the overlapping of
simulation traces. For a given circuit, a majority of the simulation traces
browse the same path in the state-space during runtime. Therefore,
they share the same path and overlap with each other. Repeated
simulation of the same path in the circuit does not provide any new
information, and result in poor performance. However, the TRRT-
based method incrementally grows the TRRT in the state-time space.
TRRT is persistently aware of the state-space all the time. TRRT,
being a tree data structure, always grows toward unique samples in
the state-space such that two traces never coincide. In TRRT the
direction of the growth is always toward a state as yet unexplored and
every simulation trace is unique. At every iteration, the tree traverses
and covers more of the state-space. Consequently, TRRT does not
allow repeated sampling of the same sequence of nodes and prohibits
overlapping of traces in the state-space. Since we conceptually arrange
Monte Carlo’s linear simulation traces in a tree data structure, we
have an average logarithmic efficiency in simulation performance and
memory to achieve the same state-space coverage as Monte Carlo.

Second, our monitoring algorithm proceeds incrementally. For most
cases, we only have to check the incremented edge to the TRRT to
decide whether a property has been violated. Thus, our incremental
monitoring algorithm using TRRT is more efficient than monitoring
the entire trace [8].

Finally, by using TRRTSs, we efficiently verify properties that require
a comparison between entire trace. Such properties include jitter and
deviation. Monte Carlo simulations, as they simulate only one trace
at a time and possess no knowledge of the state-space, are not well
suited to checking those properties. On the other hand, the TRRT can
maintain information and verify multiple traces simultaneously because
of its step-by-step growing data structure.

We model circuit states and inputs as continuous finite variables
without discretizing them. We use SPICE to simulate circuit behavior.
Our methodology accurately models the continuous-time behavior of
analog circuits.

Our main contributions are as follows.

o We propose an incremental property checking and runtime mon-
itoring algorithm for nonlinear analog circuits that utilizes TRRT
to verify design specification properties. Our algorithm is incre-
mental in nature and more efficient than previous strategies for
runtime verification.

o We introduce a time-augmented rapidly-exploring random tree
(TRRT) algorithm. TRRT has an augmented time dimension and
a biased sampling algorithm in that dimension. TRRT provides
the same coverage as Monte Carlo, while utilizes the logarithmic
order memory and time. TRRT prohibits simulation trace overlap.

« We define the semantics for our property specification language.

To demonstrate the effectiveness of the proposed approach, we



applied our technique in several case studies. We first used our
methodology on a tunnel diode circuit as a proof of concept. Then
we showed the scalability and practicality of our technique by using
it to verify a PLL circuit.

Rest of this paper is organized as follows. Preliminaries are presented
in Section II. In Section III we define the syntax and semantics of our
property specification language. We describe our runtime monitoring
algorithm in Section IV. We conclude in Section VI.

II. PRELIMINARIES AND BACKGROUND
A. Models for nonlinear analog circuits

Modern circuit simulators such as SPICE, use ordinary differential
equations to model nonlinear analog circuits. It is possible to extract
those equations by applying modified nodal analysis (MNA) to the
circuit netlist. Therefore, the transient response of an analog circuit is

modeled as:
f(x(t),%(t),u(t)) =0 (1)

where ¢ € [0,00) and f is a nonlinear function. Let S C R™ denote
the continuous state-space of the circuit. Let U C R™ denote the input
space of the circuit. x denotes the state variables, and u denotes the
input variables of the circuit. x(¢) denotes the state of the circuit at
time ¢. The initial state of the circuit is x(0).

The circuit’s trace in the time interval [t1, 2] is the path taken by
the circuit from state x(¢1) to state x(¢2). Given the circuit’s input
at time interval [¢1,t2] and state of the circuit at time ¢o, SPICE can
compute the circuit’s trace by simulating the circuit using the following
equation.

t
x(t) = x(t1) + »_ f(x(t),u(t") A @
B. Rapidly-exploring Random Ti2es

Our algorithm is based on the Rapidly-exploring Random Tree (RRT)
algorithm [9]. The RRT algorithm is basically a tree data structure
designed to explore as rapidly state space as possible. The root of the
tree is the initial state in the state space S. The tree is incrementally
grown by adding an edge between an existing node and a new point
(i.e., state) selected from the state space. The selection of these new
points determines the manner in which the tree grows in the state
space. Typically, these new points are selected at random by uniformly
sampling the state space.

Let G be the RRT data structure. Each node of G corresponds to a
state in S, i.e. a unique set of values assigned to the state variables x.
Each edge represent a trajectory (Equation 2) of the system from initial
condition x for a given assignment of values to the input variables u.
For every new generated state gsqmpie, the RRT algorithm will find a
closest state, gnear, and will determine which trajectory (Equation 1
) for any u € U will brings node gnear closer to the sampled state.
The closest state is determined based on Euclidean distance between
two states. RRT expands from gpeqr towards gnew. Figure 1 shows the
growth of the RRT tree toward a given sample node. The RRT rapidly
visits unexplored regions of the state space [9] and as the number of
samples approaches infinity, the RRT provably covers the entire state
space [9].

q

a near

root

Fig. 1: Growth of RRT by adding a new node sampled from the state
space.

III. ANALOG PROPERTY SPECIFICATION

We use a property specification language based on STL/PSL to
define our properties [13][7][11]. We use a subset of the operators
defined in STL/PSL, and define a few of our own to suit the RRT
verification framework. As in PSL, the analog layer is used to describe
the properties of continuous variables and vectors, and temporal layer
is used to reason about the temporal behavior of the circuit.

We define the Norm operator for both the analog and temporal
layers. We also express the jitter property in a manner that is conducive
to RRT-based verification. We describe the syntax and semantics of
all the operators we use in both layers. The rest of this section
describes the syntax and semantics of the analog and temporal layers
of properties.

A. Syntax

1) Syntax of the analog layer: The grammar for the analog syntax
is as follows.

¢ ::= var|const|f(¢,..., ) 3)

var is a continuous finite variable, and can be a single-dimensional
vector, much as x; denotes to a single waveform in simulation, or can
be any subset of the circuit’s state vector, like < i, , Tiy, ..., Ti , >,
where the index set {i1,...,%,/} is specified by the user. const is a
finite constant. Finally, f can be any of the following functions:

« Shift

o Binary operators, including {4+, —, x, /}'

« Norm

The semantics of the above functions are described in Section III-B1.

2) Syntax of the temporal layer: We define the temporal layer to
reason about time. Let ¢ be an atomic proposition. For every state
(sub)vector x, we associate a time instance of the form x(¢) where
t € T. Set T is the set of all possible times, and it is defined as
T := {z|r = k x At,k € Z'} where At is the minimum discrete
time resolution. The time interval is an array of x(¢) with a variable ¢.
Time intervals can be fixed, like ¢ € [30,40], or can be relative, like
t € [t,t+ 300]. In both cases, we write them as ¢ € [t;, t;]. Moreover
since we monitor the behavior of the system for a finite time interval,
temporal modalities are bounded to intervals of the form [z, j], where
0<i<j <Tmaz, andi,j € T where Trnaz = sup(T) = kmaaz X At.

Similar to [13], we define the temporal layer as follows.

¢ = plola:b] x dla:b] [notp|pep
| eventuallyla:b] ¢ | ¢ untilla:b] ¢ |Ja: bl(p)

v is a propositional variable; the comparison operator * includes
{<,<,>,>,=,#}. The logical operator e includes logical and, or,
xor, xnor, nand and nor. The semantics of the above functions and
operators are defined in Section III-B2.

We use the notation ¢ for analog and ¢ for temporal formulas.

B. Semantics

1) Semantics of analog layer: The semantics of the analog layer
are defined as the function of f over the state (sub)vector ¢. f can be
any of the following functions:

o Shift: Shift is defined as changing the index of time dimen-
sion of a variable along the same trace on the simulation, i.e.,
shift(¢, const)[t] = ¢(t + const).

. Binary function? f: (61, 62)[t] = f(61[t], éalt]).

o Norm(¢, p), Norm(¢1, ¢2): returns the p-norm of ¢, or the L>-
norm for computing the distance between ¢; and ¢2, assuming
both propositions have the same dimension. Norm is used to
measure the distance of the state-vector against another vector

or a constant. L?-norm is defined as Norm(z,y) := ||z — y|| =

£/ Z?/zl (wi; — yi;)?, and the p-norm, assuming p > 1, is defined
/ 1

as Norm(z, p) = ||zllp = (325, [@4; ") 7.

2) Semantics of the temporal layer: For the temporal layer, we
mostly use the same semantics proposed in [13], with some modifica-
tions as follows. Comparison operator * includes {<, <, >, > = #}.
To reason about equivalence in the analog domain, we use the notation
x(t) = y(t') to indicate that ||z(t) — y(t')]| < e. Equivalence
operator is satisfied if and only if for any given ¢ € [¢;, t;], state x(¢)
remains within e-envelope around y(t') for any given ¢’ € [t},¢}]. The
following definition easily expands to <, >, and #.

'With the exception that % is well-defined if and only if 0 & ¢2.
2For simplicity, we use the notation o for the binary function f. Therefore,

(p1 0 @2)[t] = ¢1[t] © P2[t].



The logical operator e includes logical and, or, xor, xnor, nand &
nor. The semantics of not are defined as M |= (noty) iff M [~ .
Similarly, M |= (p1 and ¢2) iff M = ¢1 and M = ¢ and so on.
M is the circuit’s simulation abstraction provided by the RRT G.

The semantics of Until are defined in [13]. The Eventually operator
can be defined using Until as follows. The temporal modalities ) (even-
tually, sometimes in the future) and [J (always, from now on forever)
are derived as follows: ¢ = true until ¢ and Op = —O—¢. By
combining the above, we obtain the infinitely often p = OO and the
eventually forever p = QUp.

Jitter is an undesired deviation from true periodicity of an assumed
periodic original signal. The basic jitter operator (J(z,t)) will
compute the deviation in time using

(a(t) —(t—f))-

J(f,z,t) maim(m(t) —x(t—f))—

T 0<t<T
For periodic signals, the above definition is equivalent to a maximum
deviation of state vector z(t) from other state vectors at the same period
(including other states at time ¢,¢ — f,t — 2f,...). We use that idea
to create a recursive J operator model for computing jitter in RRT
later in Section IV-B. We also extend the jitter operator to compute
the deviation of non-periodic signals.

min
OStST’nLﬂ/T

IV. TRRT-BASED RUNTIME VERIFICATION ALGORITHM

Our goal is to verify that an analog circuit M satisfies a property
®. A summary of the steps (Figure 2) in our TRRT-based runtime
verification algorithm is as follows.

1) We construct a TRRT G (Section II.B) to represent a set of
feasible traces of the analog circuit M. We construct G by
initializing it to a known operating point of the circuit and then
growing it step by step.

2) In each step, we employ a monitor to check whether the property
® is violated by any of the traces represented by the TRRT G.

3) If the monitor does not detect a violation, we grow the TRRT by
one more step. We repeat this process iteratively until a violation
is detected or a user-specified limit on the number of steps is
reached.

GircuitM ——( Initialize TRRTG )

( Increment TRRT G

}T

No

Property ® —-[ Check Incremented G(M) |= ®

if @ is violated or
TRRT is finished

Fig. 2: Flowchart of TRRT-based runtime monitoring algorithm

In each step of our algorithm, we grow the TRRT G by adding a
single edge to the tree (Section II.B). Each edge in G corresponds to
a single transient circuit simulation of length At. For several types
of properties, our monitor can detect a violation by checking only the
newly added edge of the TRRT. Therefore, for those types of properties,
our algorithm is highly efficient since it can perform verification in an
incremental manner.

With each step, the TRRT grows. TRRT will quickly explore and
provide a high coverage of the reachable state-time space of the circuit
M [2]. Therefore, we can have more confidence in the verification
results that we obtain using our algorithm than the verification results
obtained from random Monte Carlo simulations. State-time space is
the circuit’s state-space augmented with a dimension corresponding to
time.

Algorithm 1 shows our TRRT-based runtime monitoring algorithm.
The inputs to our algorithm are i) the circuit M, ii) the initial state of
M, and iii) the properties ¢ to be verified on M.

We now describe the steps of our algorithm in detail.

Algorithm 1 TRRT-based runtime monitoring algorithm

Data: circuit M, initial state x(0), properties ¢
G = Initialize TRRT(x(0)) ;
InitializeMonitor(y) ;
for i < 1 to K do
Gsanp1e = UniformSampling(S) ;
Gsamp1e[n] = rand([% X rand(0, Tnax)], Thax) ;
Gnear = FindNearestNodeInTree(S, gsanpie) ;
u(t) = GenerateNewInput(S) ;
Gnew = Simulate(M, gnear, u(t), At) ;
G.expand(gnev);
Monitor(G, gnew, ¥)
if G [~ ¢ then

‘ return violation ;

end

end

A. Constructing the TRRT for the circuit

This section describes how we extended the TRRT algorithm for
runtime verification of analog circuits.

In real-world circuits, a state might be revisited during circuit
operation. Oscillation circuits are very good examples of that scenario.
Traditional TRRTs are tree data structures that span the state-space,
and therefore do not contain any cycles. Such TRRTs cannot be used
for verifying oscillation properties. In order to address that issue, we
modify TRRTs to include a notion of time as well.

For a circuit with n state variables, we construct a TRRT G of
n + 1 dimensions corresponding to the state-time space of the circuit.
State-time space is the n-dimensional state-space augmented with a
dimension corresponding to time. Each node in the tree G is an n+ 1-
dimensional vector denoted by < z1,x2,...,ZTn,t > that corresponds
to an n-dimensional state vector < xi,%2,...,T, > and a time
variable . Let ¢ be a point in the state-time space of circuit M. We
use the notation ¢[z] to indicate the state vector and g[¢t] to indicate
the time variable of gq.

Each edge in the TRRT G denotes a transient simulation of the
circuit. We annotate each edge of G with the simulation time stamp
t and the inputs to the circuit at that time wu(t). We use a discrete
time step At for simulating each edge of the TRRT. Therefore, in the
process of constructing the TRRT, we discretize the behavior of the
circuit. We choose At to be small enough such that we do not discard
the relevant behavior of the circuit. The minimum time step A¢ should
satisfy the Nyquist criterion ﬁ > 2 fnax, Where frax is the maximum
operating frequency of the circuit [3].

To build the TRRT G, we first select an initial state as the root of the
tree G. Our algorithm performs standard DC operating point analysis
over M and sets the computed operating point as the initial state of
the circuit. Alternatively, we allow the user to specify the initial state
of the circuit.

In our algorithm, we grow the TRRT in a step-by-step manner. In
each step, we obtain a point gsampre by randomly sampling the state-
time space of M. We then grow the TRRT towards the point gsampie as
follows. We first find the closest node (in terms of Euclidean distance)
t0 Gsampie i the TRRT G, namely gnear. As in the classical TRRT
algorithm (Section II.B), we determine the best possible trace from
Gnear toward g@samp1e and generate an input u(t) to the circuit to follow
that trace. We simulate the circuit M from state gnear for simulation
time At using input u(t), and determine the resulting state gnew. We
then add gnev as the new reached state to the TRRT G.

The transient circuit simulation always progresses in time. We wish
to model that in the TRRT growth as well. In order to achieve that
while growing the TRRT, we filter out the candidates for the closest
node that have a time annotation higher than that of gsampie. In other
WwoOrds, gsampie[t] > Gnear[t]. Therefore, we ensure that the time notation
of the parent node in G is always smaller than that of its children. As a
result, our TRRT correctly models the progression of time in simulation
traces of the circuit.

The classical TRRT algorithm tries to explore the entire space
uniformly with no bias towards any particular dimension. Therefore,
if there are many circuit state variables, the TRRT’s growth in the
time dimension may be very small. Consequently, it may take a large
number of growth steps before the TRRT contains long simulation
traces. Therefore, we modify the classical TRRT algorithm to improve



the efficiency of our methodology. We modify the classical TRRT
algorithm by introducing a small bias towards the time dimension.
We ensure that the bias does not alter the probabilistic completeness
property of the TRRT.

Let Thax be the maximum simulation time specified by the user. We
bias our random number generator by adding a probabilistic offset
to the time variable. The default random generator for gsampie is
Gsamp1e[t] = rand(0, Thax). Function rand(a,b) uniformly samples a
number in the interval (a,b). We wish to shift the time bias as i,
the number of iterations, increases. Therefore, we use the following
probabilistic offset to bias the time: ; x rand(0, Thax). That bias does
not violate the probabilistic completeness property of TRRTs, since
limg oo £ X rand(0, Tpax) = 0.

With our bias, we calculate the time index of each new sample as

Goamprolt] = rand([% « £and(0, Toar)], Thex) @)

where £ is the maximum number of iterations and ¢ is the current
iteration of the algorithm. The ¢ index in each node corresponds to the
time variable.

We use the notation G; to indicate the TRRT G at the *” iteration
of the algorithm. After adding a new edge to the G;_1, the monitoring
algorithm Monitor checks the incremented tree G; against the property
.

B. TRRT-based incremental monitoring algorithm

The monitoring algorithm Monitor first parses the analog property
® (Section III) into a parser tree P. The parser breaks down the
formula into smaller sub-formulas. Each sub-formula can be an analog
or temporal formula as described in Section III. The parser performs
that procedure recursively until all the sub-formulas are atomic propo-
sitions. An atomic proposition is a formula that is either true or false
and cannot be broken down into simpler sub-formulas. Every leaf in
P corresponds to an atomic proposition.

Monitor starts by checking the atomic propositions in the leaves
of the parser tree P. For every atomic proposition ¢, the monitoring
algorithm marks every node g in TRRT G such that ¢ = ¢. Algorithms
2 and 3 describe how Monitor checks analog and temporal properties,
respectively. The algorithm then moves from the leaves of P upwards
to the top formula (i.e., the root of P), checking every sub-formula
stored in [P. Monitor terminates when the root of [P is reached.

If the atomic proposition is an analog formula, Monitor employs
Algorithm 2 to evaluate it. The evaluation of an analog formula
involves computations using scalar data. These computations do not
involve sequences in time. The algorithm marks every node in G in
which the proposition evaluates to true.

The shift function can be implemented by traversing the TRRT G
backward in a trace from a leaf toward the root of the tree. The
TRRT consists of a set of simulation traces that are continuous in time.
Therefore, a path from any node to the root of the tree is a complete
reversed simulation trace of the circuit. Hence, traversing the tree
backward through each node’s parents is the same as moving backward
in simulation. Similarly, the maxSibling and minSibling functions,
which we use later in jitter computation, traverse the TRRT among
siblings of each node (instead of parents) and would return a sibling
with the maximum or minimum value. The basic operators and norm
functions are computed according to the semantics in Section III-B.
Finally, the algorithm moves on to the next leaf in the parser tree.

Since most of analog and temporal properties are associated with
a single node, by adding a new node, we don’t have to check the
entire TRRT G to verify those properties. In most cases, verification
of satisfaction and violation can be deduced by only checking the last
node gnew against the incremented tree. As a result, because of the
iterative construction of TRRT algorithm 2 can be performed at O(1)
for most operators. The shift operator is an exception with the worst-
case complexity of traversing the tree from a leaf to the node, which
is O(log n).

In order to verify a formula with temporal operators, Monitor
employs Algorithm 3. This algorithm analyze sequences of nodes in
G, each of which corresponds to a transient simulation in the circuit.
An interval in which the proposition is defined is specified in the
proposition. At every iteration, the algorithm checks whether G satisfies
or violates the temporal formula for traces that lie within that interval.

Algorithm 2 Analog checking algorithm Monitor(G, gnew, ¢ )

Data: Analog Formula ¢, TRRT G, new node gney
switch ¢ do
case const

‘ return const ;

case f(¢1,...,Pn)

for i < 1 to n do
‘ Check(¢;) ;

end

switch f do

case Shift

Qparent = Qnew>

while Parent(gparent ) [t] # ¢2 do
‘ Gparent = Parent(gparent) :

end

case Binary Operator &
if f is division function then
‘ Check ¢p2 & (0 — €,0 +€) ;

end

case Norm
‘ Compute Ly or Ly, norm |[¢p1]] gy or [[¢1 — 2| 5

case Max(Min)-Sibling

foreach Node gsiviing in Child(Parent(gues)) do
Max = Max(gsibling) ;
Min = Min(gsibiing) ;

end

end
return f(¢1, ...

if G |= ¢ then

| mark guow :

,Pn)

end

end

An example would be a decision on whether G = (z[t,t + 100] <
y[0, 100]).

In order to incrementally decide whether gnew = Eventually o,
we add a Boolean variable IsEventuallySatisfied to each node in
TRRT G. IsEventuallySatisfied is true, if and only if at least one
node along the path from gney along its parents to the root of G satisfies
o (honoring the time interval [a,b], on the path and filtering out other
nodes). Algorithm 3 shows how we compute and update Eventually
operator on TRRT.

To incrementally decide whether gnew ): (1 until @9, we add two
additional variables to each node in TRRT. The first Boolean variable is
alwayseiTillNow which indicates that along the path from gnew to its
parents in the interval [a, b], the proposition ¢, is always satisfied. The
other variable is Number0fy,TillNow € {0, 1,many}, which counts
the number of nodes that satisfy proposition 2. In Until proposition,
violation occurs when 1 does not hold until ¢2. Our method for
finding the violation is sketched in Algorithm 3.

The TRRT algorithm incrementally builds the tree by adding simu-
lation traces edge by edge. As a result, for the majority of formulas in
our semantics, checking only the new edge is enough to verify or find a
violation of the formula over G. However, for some temporal properties
we may have to go back in time or more concisely traverse the TRRT
G from the new leaf node upward, through its parents, towards the
root of the tree until we can determine the status of the property. In
the worst-case, that can take O(logn), where n is the size of TRRT
G. Since the size of the tree is finite, and by definition of the tree,
there is no loop in the tree, our algorithm always terminates.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate our approach, we have implemented our algorithm in the
C++ language. For simulating the circuit, we used Synopsys HSPICE
and developed the interface between HSPICE and our tool.

We show the results for two nonlinear systems. The first case study
involves a tunnel diode oscillator that we used as a proof of concept.
The second case study is a Phase Locked Loop (PLL) circuit.

1) Tunnel diode oscillator: To illustrate our methodology, we con-
sidered a tunnel diode oscillator that is a well-known nonlinear analog
circuit. The resonant tunneling of the tunnel diode allows the current



Algorithm 3 Temporal checking algorithm Monitor(G, gnew, ¥ )

Data: Temporal Formula ¢, TRRT G, new node gney
switch ¢ do
case v

‘ return v ;

case ¢1 * P2
‘ check if gnew = @1 * @2 // Analog properties

case 1 ® o
‘ check if gnew = 1 ® @2 // Temporal properties

case Eventually p[a,b]
if gnew = @ or Parent(qney).IspSatisfied then
‘ Qnew-IspSatisfied = true ;

end

case @1 until po
if Gnew = 2 then
Qnew -Number0f ¢, TillNow :Parent(q,,e,,,).Number[]fgogTillNow +
1
end
if gnew = 1 and Parent(quey).AlwayspiTillNow then
‘ Qnew-Alwaysep;TillNow = true
end
if gnew.Number0fy,TillNow = 1 and
Parent(qney ) -Alwaysp; TillNow=false then
‘ return violation ;
end
case J
for Every child node v; in Shift(qney, t) do
‘ T (gnew) = max(J (v;))-min(J (v3)) ;
end

if G |= ¢ then
| mark gaos ;

end

end

to decrease as voltage increases for some range of voltages. We used
the circuit shown in Figure 3.

+ v -

ir iR
A > —
Yic
R + +
C ==vc A AL
+ _ -
— E
T

Fig. 3: Tunnel-diode oscillator circuit

This circuit has a two-dimensional state-space. The state equations
are modeled as

- %(vmmxipvc) )
e = é(*id(vc)JriL) ©)

ia(ve) describes the nonlinear tunnel diode behavior.

We wished to verify whether or not for a given variation in the
voltage source and uncertainty parameters in tunnel-diode models and
for given initial conditions, the circuit satisfies the following oscillation
property. We modeled the voltage source variation as Vi, = Vo + p1,
where Vp = 300mwv and the tunnel diode uncertainty was modeled as
ia(x) = 2® — 1.52% 4 0.6x + p2. We assumed that the distribution of
both variation parameters (p1 and p2) was uniform.

The oscillation property under consideration is as follows [6].
For oscillation, the current ¢;, should cycle between 0.02 and 0.06
indefinitely. Within the time interval [0, 1us], infinitely often whenever
the Norm(ir) reaches 0.02, it will reach this value again within
the time interval [0,6e — 7]. Also, the same property applies for
iz, with amplitude 0.06. Formally VO[O0 : 1us](VO[0 : 0.6us](irn <
0.02)) AVO[0 : 1us] (VO[O : 0.6us](ir, > 0.06))

Figure 4 shows the results of the tunnel-diode analysis using TRRT.
Figure 4a shows the state-time space of the tunnel diode circuit with
the voltage source variation modeled by p; € [—0.05mv, 0.05mv]
and p» € [—0.005,0.005]. The TRRT time resolution was set to

At = 10ns, and we executed the algorithm for 20,000 iterations.
Figure 4b shows the projection of the state-time space into the time
dimension, which is the state-space of the circuit. As shown in figure
4b, for many simulation traces, the circuit oscillate fully; however,
for some branches of the TRRT, the oscillation was limited and
did not meet the specification. Those branches failed to satisfy the
design constraints for oscillation. Thus, this circuit is not verified.
Figure 4c Shows the same circuit for the same initial condition,
but with reduced variation parameters p; € [—0.005mwv,0.005muv]
and p» € [—0.0005,0.0005]. We didn’t find any violation of the
specification in this circuit.This example shows that even for a common
initial state, the bound on variation parameters can lead to the violation
of design specifications. The final experiment, shown in Figure 4d, was
the tunnel diode example. The parameters in the tunnel diode model
was set up by the same bounded variation as shown in Figure 4c, but
with a different initial state. In this case, the circuit would not oscillate
at all.

2) Phased-Locked Loop circuit: PLL is a circuit that generates an
output signal whose phase is related to the phase of an input reference
signal. PLL circuit typically consists of a reference signal generator, a
voltage-controlled oscillator (VCO), a phase-frequency detector (PFD),
a loop filter, and a feedback loop.

Loop
Filter

Fig. 5: Phase-Locked Loop (PLL) circuit

Figure 5 shows the basic architecture of a PLL. In our simulation,
we set the initial condition in the unlocked state of the PLL. When the
PLL is out of lock, the frequencies of the input and output signals are
different. The filter suppress the higher harmonics. Consequently, there
will be a DC component that will pull the average output frequency
of the VCO up or down until the PLL locks. When the output of
the filter is stable, PLL has locked to the input signal. We used a
PLL circuit similar to the one described in [5] with ®,.; = 1MHz
and fo = 1.01MHz. The input signal was generated through a fixed
sinusoidal voltage source. HSPICE simulation was performed at the
highest run level for maximum accuracy. To verify the uncertainty
parameters in PLL, we added variation parameters to sources at the
phase-detection block at each iteration. The variations were uniformly
generated from interval [—0.001,0.001]. We executed the TRRT for
30,000 iterations. Our PLL circuit had 17 states.

We used the output signal of the loop filter to verify the locking
of the PLL. When PLL locks, the output signal eventually becomes
stable, and there is no more deviation in the signal, Except for some
small deviations due to the phase-detector operations. We define the
PLL-locking-property as eventually forever the jitter on the
analog signal Norm(vi —v2) becomes less than 50muv in 2us interval
where v; and vz are outputs of the loop filter block. Therefore
eventually forever jitter on v1 — w2 is smaller than 50mwv. That property
means that the deviation of the given signal has to become less than
0.05 in a 2us interval, so that it can be considered stable. Thus, we
can assume that PLL has locked.

Figure 6 shows the deviation trace of the norm distance between the
loop filter’s output generated by TRRT under uncertainty parameters in
the phase-detector block. Our algorithm founds no violation in the pll-
locking-property, so we assume the output of the loop filter eventually
becomes stable forever.

A. Comparison of our algorithm to standard Monte Carlo simulation

To simulate n nodes for mAt time, Monte Carlo requires mn
simulation samples. On the other hand, to simulate the circuit for
the same time, assuming that the TRRT will be fully populated with
output degree of d for each node, the TRRT algorithm would simulate

d™ ! —2 nodes. That is equivalent to dm%lfz Monte Carlo simulation
samples (the number of the edges in the fully populated TRRT over
time). Therefore, TRRT is more efficient than the standard Monte Carlo
algorithm. As a result, to achieve the same state-space coverage as
Monte Carlo, we have an amortized logarithmic efficiency in simulation
performance and memory, since we are conceptually arranging Monte



initial state

(a) State-time space of TRRT after oscil-(b) Projection of TRRT’s state-time space(c) TRRT’s state-space projection for os-(d) TRRT’s state-space projection of non-
into state-space for oscillation with uncer-cillation of a verified circuit

lation with uncertainty
tainty

0.08 T T T

| P
T / RO . SO W 1 - / A
RN PRI [ETTI — 2 J nitial state
P / 1004 r 1
Iy i
r * 1 0.02 r ]
| R 4 E 3
. L . L | | 0.02 I I L 1 1 L r
02 0 02 04 06 08 112 0z 0 D2 D406 081 12

oscillating circuit

Fig. 4: Oscillation results for tunnel diode oscillator

0.4

0.2

0.2

-04

2e-005 42-005 6e-005 Be-005 0.0001

r

Fig. 6: The TRRT trace of signal deviation for a loop filter

o

initial state initial state

qi initial state

(a) Sampled points

(b) Rapidly Exploring Random Tree (c¢) Standard Monte Carlo

Fig. 7: Comparison of TRRT and Monte Carlo simulations

Carlo’s linear simulation traces in a tree data structure. Figure 7 shows
the TRRT versus Monte Carlo. To explore the given sampled points
in the state-space, RRT shares many path, however Monte Carlo has
many overlapping traces.

In the best case, if we fully populate the TRRT by running the
algorithm for d™~! samples, the TRRT is exponentially (O(d":n : )
more efficient than the standard Monte Carlo algorithm. In the worst
case, if we only provide m samples, each node in the final tree would
have only one output, node and it would be the same as a single
Monte Carlo simulation. Therefore for relatively small computational
cost, TRRT has higher performance efficiency and verification utility
than Monte Carlo simulations.

VI. RELATED WORK AND CONCLUSIONS

Zaki et al. survey recent literature on runtime monitoring and
verification of analog and mixed-signal (AMS) designs [18]. Re-
searchers have employed a variety of techniques to analyze the transient
behaviors of circuits in either an on-line or off-line fashion. Examples
of such approaches includes using interval arithmetic to validate the
behavior of the circuit [17], using linear hybrid automation as a
template monitor for online monitoring [4], and generating observers
from PSL properties to monitor the simulation [15], [16].

The specification language we used in our work was first developed
in [13], [11]. The tool described in those paper, AMT, synthesizes a
timed automaton that monitors simulation traces for property viola-
tions. In other work, [3] propose use use repeated SPICE simulation

to explore the state-space of analog circuits for all possible discrete
values.

In [14], the authors propose to introduce LTL properties into RRT to
verify safety properties of hybrid systems for falsification. In a similar
approach, [2] and [12] use RRT to generate counter-examples in analog
and hybrid systems. Recently [8], used p-calculus to reason about RRT
in discrete-time control systems.

In conclusion, we have presented a novel algorithm that uses a
time-augmented rapidly-exploring random tree for incremental runtime
monitoring and verification of analog circuits. Our approach is more
efficient and provides more usable verification results than standard
Monte Carlo simulations.

REFERENCES

T. Dang and T. Nahhal. Randomized simulation of hybrid systems for
circuit validation. Proceedings of Forum on Specification and Design
Languages (FDL), 2006.

T. Dang and T. Nahhal. Coverage-guided test generation for continuous
and hybrid systems. Formal Methods in System Design, 32(2):183-213,
20009.

T. R. Dastidar and P. P. Chakrabarti. A verification system for transient
response of analog circuits. ACM Transactions on Design Automation of
Electronic Systems, 12(3), 2007.

G. Frehse, B. H. Krogh, and R. A. Rutenbar. Time domain verification
of oscillator circuit properties. Electronic Notes in Theoretical Computer
Science (ENTCS), 153(3):1571-0661, 2006.

A. B. Grebene. The monolithic phase-locked loop: a versatile building
block. IEEE Spectrum, 8(3):38-49, March 1971.

S. Gupta, B. Krogh, and R. Rutenbar. Towards fromal verification of
analog desings. IEEE/ACM International Conference on Computer Aided
Design, pages 210-217, 2004.

J. Havlicek, D. Fisman, and C. Eisner. Basic results on the semantics of
Accellera PSL 1.1 foundation language. Technical report, Accelera, 2004.
S. Karaman and E. Frazzoli. Sampling-based optimal motion planning
with deterministic p-calculus specifications. In American Control Confer-
ence (ACC), June 2012.

S. M. LaValle. Planning Algorithms.
Cambridge, UK, 2006.

S. M. Lavalle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In Algorithmic and Computational Robotics: New
Directions, pages 293-308. A K Peters, Wellesley, MA, 2000.

O. Maler and D. Nickovic. Monitoring temporal properties of continuous
signals. FORMATS/FTRTFT, 2004.

T. Nahhal and T. Dang. A coverage-guided test generation tool for hybrid
systems. ARTIST WS: Tool Platforms for ES Modelling, Analysis and
Validation, 2007.

D. Nickovic and O. Maler. AMT: a property-based monitoring tool for
analog systems. FORMATS, 2007.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of LTL safety
properties in hybrid systems, 2009.

G. A. Sammane, M. H. Zaki, Z. J. Dong, and S. Tahar. Towards
assertion based verification of analog and mixed signal designs using psl.
Proceedings of Forum on Specification and Design Languages (FDL),
2007.

Z. Wang, N. Abbasi, R. Narayanan, M. H. Zaki, G. Al Sammane, and
S. Tahar. Verification of analog and mixed signal designs using online
monitoring. Proceedings of the 2009 IEEE 15th International Mixed-
Signals, Sensors, and Systems Test Workshop, 2009.

M. H. Zaki, S. Tahar, and G. Bois. A practical approach for monitoring
analog circuits. Proceedings of the 16th ACM Great Lakes symposium on
VLSI (GLS-VLSI’06), 2006.

M. H. Zaki, S. Tahar, and G. Bois. Formal verification of analog and
mixed signal designs: A survey. Microelectronics Journal, 39(12):1395-
1404, 2008.

[1]

[2]

[4]

[5]
[6]

[7]
[8]

[9]
(10]

Cambridge University Press,

[11]
[12]

[13]
[14]
[15]

[16]

[17]

(18]



