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Abstract—Fixed-point format is essential to most efficient
Digital Signal Processing (DSP) implementations. The conversion
of an algorithm specification to fixed-point precision targets the
minimization of the implementation cost while guaranteeing a
minimal processing accuracy. However, measuring such process-
ing accuracy can be extremely time consuming and lead to long
design cycles. In this paper, we study reference approaches to
measure fixed-point errors of Linear Time-Invariant (LTI) systems
without feedback. Unsurprisingly, we find the existing analytical
approach significantly faster than a straightforward simulation-
based estimation. However, we also show that such analytical
approach can incur high estimation errors for some particular
bitwidth configurations. Accordingly, we propose a new hybrid
approach, which is able to reduce by up to 4 times the error of
the analytical estimation, while still being more than 10 times
faster than the simulation-based estimation.

I. INTRODUCTION

The reduction of signal bitwidths is an effective way to
reduce area, delay and energy consumption of fixed-point sys-
tems. However, such a reduction also decreases processing ac-
curacy, which can result in functional failure when performed
carelessly. Thus, every time a signal bitwidth is reduced, the
system needs to be checked for functional correctness (i.e., if
the system still provides a minimum Signal-to-Quantization-
Noise Ratio, SONR). Such an iterative process of finding the
right bitwidth configuration is known as fixed-point refinement
and can take up to 30% of the total implementation time [1].

The elimination of Least-Significant Bits (LSB) of a signal
is performed by a quantizer, Q[-]. The latter is an operator
uniquely described by its fractional bitwidth, Wg, and its
quantization mode, which can be a simple truncation or some
form of roundoff. This quantizer, when acting on an input sig-
nal z, adds a quantization noise e to the signal, e = z — Q[z].
Such quantization noises propagate forward through system.
The aggregate power of the different quantization noises at
the output of the system is the magnitude typically monitored
throughout the fixed-point refinement process [2], [3].

Different methods have been proposed to estimate the
quantization noise (also known as fixed-point error) power at
the output of a system. On the one hand, the straightforward
simulation-based method computes the fixed-point error as
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the difference between the outputs produced by a reference
high-precision implementation and the particular fixed-point
implementation under evaluation [4], [5]. The latter, also
known as statistical method, can be very accurate but suffers
from very long simulation times. On the other hand, analytical
methods, such as the one described by Menard et al. [6] or
Shi and Brodersen [7], can deliver much faster estimates, but
for a limited scope of applications, e.g., LTI systems.

In this paper, we study these two reference approaches to
measure fixed-point errors of LTI systems without feedback
and propose a new one. Our hybrid approach is able to reduce
the estimation error of the reference analytical approach by
up to 4 times while still being more than 10 times faster than
simulation-based approach.

II. ANALYTICAL QUANTIZATION NOISE POWER MODEL

In this section we survey the analytical approach to estimate
quantization noise power used as reference in the rest of the
paper. Menard et al. [6] define the expectation of quantization
noise power at the output of a LTI system as
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The model includes two different types of components.
On the one hand, o; and p; are the variance and mean of
the quantization noise, e;, that is injected when a quantizer
i eliminates some LSB from a particular signal. On the
other hand, k; is the constant that defines the propagation of
quantization noise e; to the output of the system. Accordingly,
the process of modeling analytically the quantization noise
power at the output of a system can be divided in two phases:
(1) noise injection, and (2) noise propagation and aggregation.

A. Noise Injection

Oppenheim and Weinstein [8] presented standard models
for quantization errors based on linearizing the truncation of
signals. Error signals, assumed to be uniformly distributed,
white and uncorrelated, are injected whenever a truncation
occurs. This approximate model has served very well for
studying the quantization of continuous signals, such as in
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Fig. 1. Local correlation of quantization noises. (01 quantizes a continuous
signal producing the typical uniformly distributed quantization noise. How-
ever, Q2 removes one bit of the output of ()1 and the resulting quantization
error is discrete, being either 0 or 26—1.

analog-to-digital converters. However, Constantinides et al. [9]
provided a more accurate model for the truncation of signals
that have already been discretized, which is normally the case
in fixed-point system of multiple bitwidths. The variance and
mean of the quantization noise injected when truncating an
already quantized signal are defined as follows:

E(Q*W} 1
2 12
where W} and W2 correspond to the fractional bitwidth of
a quantizer (; and a subsequent quantizer (Q2, as shown
in Fig. 1. Note that this violates the original assumption of
uncorrelated quantization noise sources, as the quantization
noise generated in ()2 actually depends on (1. We refer to this
correlation as Local Correlation, since it is manifested at the
output of the quantizer and only relates successive quantizers.
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B. Noise Propagation and Aggregation

Since we are interested in measuring the quantization noise
power at the output of the system, the noise injected needs to
be propagated. The quantization noise travels through the Data
Flow Graph (DFG) of the system as any other signal. Thus,
in order to propagate the quantization noise to the output,
this needs to be convolved with the transfer function defined
from the injection point to the system output. In the case
of LTI systems, the mean and variance of the quantization
noise just need to be multiplied by a constant parameter
defined by the magnitude of the noise transfer function. This
parameter corresponds to k; in Eq. 1. Once propagated, all
the noise variances are added together and to the squared
accumulation of propagated noise means. The result is the
average quantization noise power at the output of the system.

Next, we show that this analytical model produces erroneous
results for some particular bitwidth configurations, where the
assumption of independence in the variances of the different
quantization noises does not hold.

III. DISTRIBUTED CORRELATIONS OF QUANTIZATION
NOISES

The reference analytical approach described in the previous
section can successfully model local correlations but fails at
capturing other types of correlations that can occur between
quantization noises. Fig. 2 shows an example DFG exhibiting
correlations that are not captured by the reference approach.
Based on Eq 1, the average output noise power at O3 corre-
sponds to:

E(eo,?) = 03 + 04 + (3 + pa)*. 3)

Fig. 2. Synthetic DFG exhibiting distributed correlation. The quantizers
Q3 and Q4 produce correlated quantization noises.
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Fig. 3. Distributed quantization noise correlation. The upper plot shows
the outputs O and Oz of Fig. 2, which are clearly different. The lower
plot shows the quantization noises generated by the Q3 and Q4 quantizers,
which, despite having different inputs, produce identical quantization errors.
Thus, the analytical model that assumes uncorrelated quantization errors will
not be accurate in this case. The corresponding bitwidth configurations are
indicated in the first line of Table I.

Assuming the first bitwidth configuration of Table I, Eq. 3
produces a 25% underestimation of the quantization noise
power. The reference value can be obtained by measuring the
actual quantization noise power in a long, and thus precise,
Monte Carlo simulation. Such an estimation error comes
from the wrong assumption that the quantization error of ()3
and ()4 are uncorrelated. Fig. 3 shows that, despite having
different inputs, ()3 and @4 produce identical quantization
noises, which obviously, are totally correlated. Accordingly,
we propose to modify the original analytical expression to
account for this correlation effect as follows:

2
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where a correlation term is added to Eq. 3, in which
~34 corresponds to a correlation coefficient between (3 and
4. Table I shows how this correlation coefficient varies
depending on the bitwidth configurations. The table also shows
the average quantization noise power according to Eq. 3,
the measured value and the corresponding estimation error.
Note that this type of correlation is different from the local
correlation described earlier in Section II-A. The new type
does not manifest at the output of the quantizer but once
the two quantization errors are added in their propagation
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Fig. 4. Relative error of the Analytical vs Statistical estimation approaches on a 16-point FFT. The statistical model experiences a consistent reduction
of the estimation error as the number of Monte Carlo (MC) runs increases. The analytical model produces faster estimates but it can incur relatively high
errors, up to 50%. Note that the simulation times reported here are for a single estimation. In practice, even the simplest fixed-point refinement optimization
requires a huge number (thousands to millions) of these estimations [10]. Thus short estimation times are crucial to effectively reduce implementation time.

TABLE 1

Distributed correlation coefficient. Different bitwidth configurations of the
DFG of Fig. 2 result in different correlation coefficients, y34. Accordingly,
the estimation of the average quantization noise power E(eOSZ), described
in Eq. 3, introduces a sizable error that decreases with the correlation value.

Bitwith Conf.

Q1 Q2 Q3 Qi 34 E(eo,?) Measured Error
9 9 8 8 1 5.72 7.63 25%
9 10 8 8 0.2 10.96 11.44 4%
9 9 7 8 0.45 20.98 22.88 8%
9 9 7 7 0.2 43.86 45.78 4%
9 9 6 6 0.05 226.97 228.91 1%

path towards the outputs. The latter can happen much later
in the DFG, and thus, we refer to this type of correlation as
Distributed Correlation.

The distributed correlation, illustrated with the synthetic
example of Fig. 2, also appears in real systems. For instance,
Fig. 5 shows a portion of a 16-point Fast Fourier Transform
(FFT) DFG that exhibits distributed correlations between
and )2, Q3 and @4, and Q5 and Q6. Actually, such distributed
correlations are responsible for the up to 50% estimation
error of the naive analytical noise model, as shown in Fig. 4.
Instead, the reference statistical model, based on Monte Carlo
simulations, is able to provide tighter estimates at expenses
of significantly longer simulation times. Clearly, an alternative
estimation method which can offer tighter estimations than the
analytical approach in a much faster time than the statistical
approach is of great interest.

For this reason, we propose to upgrade the reference an-
alytical approach with the notion of distributed correlations.
In order to capture such correlations, the analytical model of
Eq. 1 can be completed as follows:
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Fig. 5. Portion of a 16-point FFT DFG that exhibits distributed
correlations. The local correlations are indicated as solid resistors, while
the distributed correlations are indicated with dashed resistors. P1 and P2
correspond to two different subDFGs that propagate the quantization noises
before being added. This last addition triggers the distributed correlations
which are responsible of the estimation error of the analytical model shown in
Fig. 4. The values of the distributed correlations under two different bitwidth
configurations (black and gray) are indicated between brackets.

where +;; is the pair-wise distributed correlation coefficient
of a quantizer ¢ and a quantizer j. These new correlation
coefficients are very difficult to be computed analytically, as
their exact value will depend not only on the actual bitwidth
configuration of quantizers ¢ and j but also on predecessor
quantizers, as shown in the second line of Table I. Accord-
ingly, the following section introduces a solution to discover
such correlation coefficients based on selective Monte Carlo
simulations.



IV. OUR SOLUTION

In this section we describe a new approach to model average
quantization noise power capturing the distributed correlations
described in the previous section. We propose to combine the
strengths of the existing analytical and statistical approaches
in a hybrid one. On the one hand, the analytical approach
brings fast simulation times but limited precision. On the other
hand, the statistical approach brings high precision but slow
simulations. Therefore, our solution improves the accuracy of
the existing analytical analysis with the result of the statistical
simulation of selected parts of the application DFG.

A. Hybrid Noise Estimation

Fig. 6 sketches the proposed hybrid approach. For each
input kernel (i.e., an LTI digital signal processing algorithm),
an analytical model covering the whole input DFG is generated
as proposed by Menard et al. [6]. Besides, a pattern matching
algorithm traverses the input DFG searching for subDFGs
that are known to include distributed correlations, as the one
shown in Fig. 5. These subDFGs are prestored in a library.
The algorithm visits all the DFG nodes walking from inputs
to outputs. For each node, the matching algorithm produces
a small subDFG that only includes the node and immediate
neighboring nodes. This subDFG is pattern matched with the
DFGs stored in the library. If the matching is not successful,
the algorithms moves on to the next node. If there is a partial
matching, meaning that the subDFG corresponds to a cluster
of a stored DFG, more neighboring nodes are gradually added
to the subDFG until the partial matching disappears or there
is a perfect match. Every subDFG found in the library, i.e.,
it includes distributed correlations, is annotated and kept for
further analysis.

The library is common to all the kernels and it is built
based on the profiling of multiple kernels that have shown
large estimations errors of the analytical model, such as the
16-point FFT shown in Fig 4. Out of these kernels, a sensitivity
analysis is run in order to detect and isolate the smallest
clusters (subDFGs) that are responsible for the correlations.
For example, the library used to produce the experiments
presented in Section V includes 12 DFGs, where the most
complex one contains 16 nodes.

Then, for each correlated subDFG found, a separate statis-
tical model, comprising only the subDFG, is generated. These
statistical models can be simulated with random input values
to extract the correlation values without any loss of precision.
This obeys to the fact that quantization noise is independent
from the actual signal value in the targeted LTI systems [8].

Once all the models have been generated for a particular
kernel, these need to be evaluated for every different bitwidth
configuration. To combine both models, the contribution of
each of the correlated subDFGs to the overall power needs
to be first removed from the analytically result. Then, the
power values obtained in the local statistical simulations need
to simply be aggregated and added to remaining analytical
noise power.
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Fig. 6. Hybrid method. First, a conventional analytical model of the input
DFG is generated (arrow 1). Then the subgraphs of the input DFG that exhibit
distributed correlations are carved out and embedded in a statistical model
(arrow 2). For each bitwidth configuration, the analytical model is evaluated
and corrected by the correlation values provided by a selective simulation
(i.e., only if its contribution can be significant) of the statistical models.

However, as illustrated in Fig. 4, the execution of the
analytical model is significantly faster than the execution of
all the statistical models, and therefore, such a naive hybrid
method will suffer from excessively long simulation times.
Therefore, in our hybrid approach a metric based on the fast
analytical estimation is used to select which statistical models
of all the correlated subDFGs need to be executed. Thereby,
a great number of statistical simulations can be spared. The
selection criteria is detailed next.

B. Conditional Statistical Estimation

A conditional execution of the statistical model is proposed
in order to reduce the overall estimation time of our hybrid
approach. This basically consists in evaluating, based on an
upper bound estimate of the correlation value, whether the
execution of the statistical model can affect in a “noticeable”
way the current analytical noise estimate. Only then, the
statistical model will be executed.

Considering that the maximum value of a correlation coef-
ficient ;; is 1, the following inequality always holds:

27ii1/0i05 < (05 + 05). (6)

Note that the analytical estimation of the overall output error,
E(eoz), and the noise variances, o; and o, are already given
by the initial analytical estimation. Therefore, the condition
to decide on the execution of the statistical model can be
formalized as follows:

BE(e.?)

— = < (0; + 0j), (@)

where N is the number of quantizers contributing to the given
output and f is the ratio that considers the potential correlation
value to be negligible (e.g., 2% is used in the experimental
section). Accordingly, 5 can be used to bound the maximum
estimation error produced by the detected distributed correla-
tions.
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Fig. 7. Evaluation framework. The different quantization noise modeling
approaches are implemented as a compiler pass in the LLVM compiler
framework [11]. A kernel written in ANSI C is input to the system and
transformed into the LLVM IR by the LLVM FE. Our pass builds the kernel
DFG, runs analysis on it and dumps three MATLAB files: an Analytical model
based on the algorithm proposed by Menard et al. [6], the Statistical model,
which can be used as functional reference, and the Hybrid model proposed
in this paper.

V. EVALUATION

In this section the statistical and analytical reference meth-
ods to estimate average quantization noise power are evaluated
and compared with the hybrid method proposed in Section IV.

A. Methodology

To evaluate the various estimation approaches, we imple-
ment three main algorithms: a reference analytical method
proposed by Menard et al. [6], the statistical method based
on Monte Carlo simulations used by Sung et al. [4] and our
new hybrid method. The algorithms are written in C++ and
integrated as a compiler pass in the LLVM (formerly Low Level
Virtual Machine) compiler framework [11].

Fig. 7 shows the assembled evaluation framework. First,
the LLVM Front End (FE) generates the LLVM Intermediate
Representation (IR) from an input ANSI C description of the
kernel of interest. Our new compiler pass builds the DFG of
the kernel and inserts quantizer nodes at the inputs and outputs
of each operand. Such DFG is used to generate all the models.

The statistical model includes a MATLAB description of the
input functionality and a second version which is instrumented
with quantizer functions that emulate configurable fixed-point
precision in each of the signals. Both versions are driven by
the same randomly generated input values and the difference
between their outputs corresponds to the actual fixed-point
error, which is used to compute the average quantization noise
power. The generated statistical model function takes as input
a vector of bitwidths (bitwidth configurations) and a parameter
MC that indicates the number of Monte Carlo simulations used
to average the estimate. The higher MC, the more accurate the
estimation of the average quantization noise power, but also
the longer the estimation time. The statistical model of Fig. 4
illustrates such an effect.

To generate the reference analytical model, the DFG is first
traversed from outputs to input to identify locally correlated
quantizers (see Fig. 1). For each of these quantizers, noise
injection equations based on Eq. 2 are generated. Then, the
DFG is once more traversed from each of the quantizer nodes
to every kernel output in order to compute their corresponding
propagation factor (k; in Eq. 1). Finally, Eq. 2 is generated for
each kernel output. The generated analytical model function
takes as input a vector of bitwidths and produces a quantization
noise estimate for each of the outputs.

The proposed hybrid analytical model extends the reference
analytical model with some extra analysis. Firstly, a new
analysis searches for particular subDFGs in the input DFG that
are known to produce distributed correlations. The targeted
subDFGs are stored in a library, which can be extended once
new correlated patterns are found. Then, for each correlated
subDFG a new function with the corresponding statistical
model is generated. Finally, the global analytical model and
the partial statistical model are integrated in a single function
with the same interface as in the previous approaches (refer
to Section IV for further details on the hybrid approach).

The benchmarks used in our experiments are described in
Table II. Gauss3x3 is a 3 x 3 pixels image smoothing filter;
FIR31 is a 31-taps raised-cosine Finite-Impulse Response
(FIR) filter; DCT8x8 is a two dimensional 8 x 8 pixels
Discrete Cosine Transform (DCT), and FFT16, FFT32, FFT64
and FFT128 are 16-, 32-, 64- and 128-point Fast Fourier
Transforms (FFT) , respectively. All the benchmarks are fully
unrolled to exhibit as many quantizers as possible, which is
equivalent to full parallel implementations.

We run the experiments on a dual-core 2.4GHz processor
with 4 GB of memory, using the Mac OS X 10.7 distribution
and MATLAB R2012a.

B. Results

Table II shows the performance in simulation time (T) and
accuracy, in terms of standard deviation (SD) and maximum
value (M) of the percentage of estimation error, of the different
noise estimation approaches for the selected benchmarks. We
report two instances of the statistical model, one representative
for short and inaccurate estimations (MC = 500), and a
second one for long and accurate estimations (M C' = 10,000).
We also report two instances of our hybrid method, one where
the conditional analytical estimation is disabled (8 = 0)
and one where it is enabled (8 = 0.02). The error power
reference is generated with the statistical model configured
with MC' = 100,000; a value 10 times higher than in the
longest evaluation of the statistical approach. For a given
benchmark, the same 10,000 random bitwidth configurations
are generated for each of the estimation approaches.

To better understand the references, Fig. 4 illustrates the
properties of the reference analytical and statistical estimation
approaches for the FFT16 benchmark. The analytical model
is significantly faster than any of the configurations of the
statistical model. However, such an analytical model produces
a rather large estimation error for particular bitwidth configura-
tions. In contrast, the statistical model consistently reduces the
estimation error with the increase of Monte Carlo iterations.

The hybrid method proposed in this paper is not able
to find any correlation subDFG in the first 3 benchmarks,
and thus, it behaves exactly like the reference analytical
method. For the other benchmarks, the statistical modeling of
correlated subDFGs helps increasing the estimation accuracy
at expenses of estimation time. Notice, that our conditional
analytical estimation can successfully reduce simulation time
while marginally affecting the estimation error.



TABLE 1II
Benchmarks. Each benchmark is characterized by the number of quantizers (Q). The different estimation approaches are characterized by the standard deviation
(SD) and maximum value (M) of the relative estimation error, and the estimation time (T) relative to the Analytical approach. We include two instances of
the Statistical approach for different number of Monte Carlo simulation runs (MC) and two instances of our Hybrid approach for two different values of 3.

| Sta. (MC=500) | Stat. (MC = 10,000)

| Analytical [6] |  Hybrid (3 =0) | Hybrid (8 =0.02)

Name Q | Sb M T | SD M T |SD M |SD M T | SD M T

Gaus3x3 23 | 252 1074 10.85 | 0.59 294 44.00 | 0.73 538 | 0.73 538 1.00 | 0.73 538 1.00

FIR31 91 1.63 821 1080 | 038 1.61 66.74 | 0.19 1.31 | 0.19 1.31  1.00 | 0.19 1.31  1.00

DCT8x8 800 | 4.73  29.09 297 | 1.11  6.08 1635 | 041 8.67 | 0.41 8.67 1.00 | 041 8.67 1.00

FFT16 225 | 476 30.89 10.00 | 1.12 5.89 4491 | 0.88 52.08 | 038 13.16 948 | 038 1343 281

FFT32 589 | 494 31.64 376 | 1.16 6.31 14.43 | 0.67 3379 | 035 1356 7.89 | 036 1372 2.63

FFT64 1485 | 5.05 32.54 1.18 | 1.18 6.74 6.18 | 0.57 17.38 | 0.29 8.19 4.80 | 0.31 831 2.09

FFT128 3597 | 5.10 31.87 037 | 1.19 6.82 2.14 | 0.50 8.50 | 0.28 531 391 | 0.29 534 191

Geometric Mean \ 382 20.95 3.49 \ 0.89 451 16.76 \ 0.51 9.72 \ 0.34 647 282 \ 0.35 652 1.62
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Fig. 8. Accuracy vs speed Pareto space. The maximum error and the
standard deviation error of the evaluated noise estimation approaches is
plotted with their corresponding estimation time. The proposed method is
always Pareto optimal can even dominate very time-consuming Monte Carlo
simulations.

Fig. 8 plots the average results of the different estimation
methods in a Pareto space. On the left-hand side, the Pareto
space is defined by the simulation time and the maximum
estimation error, both normalized with respect to the values
of the analytical method. On the right-hand side, the error
axes represents the normalized standard deviation of the esti-
mation error. Note that while the reference analytical method
dominates the statistical methods for standard deviation error
(SD), this is not the case for maximum estimation error (M).
Accordingly, whenever the error of the analytical model is too
high for a particular application, the designer will have to fall
back to the statistical model and pay a huge simulation time
penalty. Interestingly, our proposed hybrid method represents
a new Pareto solution which is significantly faster than the
statistical method and offers a higher estimation accuracy than
the analytical method.

Particularly, our results show that the hybrid method pre-
sented in this paper is able to reduce significantly the maxi-
mum estimation error of the analytical approach, up to a factor
4. Also, the average standard deviation error of our approach
is the smallest of all the studied methods. This is achieved
with simulation times that are, in average, 1.62 times slower
than in the analytical approach, but more than 10 times faster
than in a statistical approach of similar accuracy.

VI. CONCLUSIONS

This paper describes a novel approach to monitor the
quantization error throughout the fixed-point refinement of
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