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Abstract—Parallel Discrete Event Simulation (PDES) enables
efficient validation of ESL models on multi-core simulation hosts.
Out-of-order PDES is an advanced scheduling technique which
allows multiple threads to run in parallel even in different
simulation cycles. To maintain simulation semantics and timing
accuracy, the compiler performs complex static conflict analysis
so that the scheduler can make quick and safe decisions at
run time and issue threads early. Often, however, out-of-order
scheduling is prevented because of the unknown future behavior
of the threads. In this paper, we extend the analysis in order
to predict the future of candidate threads. Looking ahead of
the current simulation state allows the scheduler to issue more
threads in parallel, resulting in significantly reduced simulator
run time. Our experimental results show simulation speedup up
to 1.92x with only negligible increase in compile time.

I. INTRODUCTION

The validation of Electronic System-Level (ESL) designs

is typically based on Discrete Event (DE) simulation. The

explicit parallelism in ESL models is reflected in multiple

concurrent threads controlled by the simulator. The simulator

schedules the threads according to the execution semantics of

the system-level description language (SLDL) used.

Traditional DE simulation, as implemented by the refer-

ence simulators for both SystemC and SpecC SLDLs, uses

a cooperative multi-threading model. This allows only one

thread to be active at any time, making it impossible to utilize

the multiple computation resources that today are commonly

available in multi-core hosts. [1], [2], [3] extend the simulation

kernel for synchronous PDES. Multiple OS kernel threads with

appropriate synchronization run in parallel in each simulation

cycle so that the available cores in the host can be utilized.

However, the number of parallel threads that can actually run

in each cycle, is often very limited. The global simulation time

restricts the usable parallelism in the model.

Out-of-order PDES (OoO PDES) [4] is an advanced tech-

nique that increases the multi-core CPU utilization by letting

suitable threads run in parallel even when they are in different

cycles. To preserve the simulation semantics and timing ac-

curacy, OoO PDES relies on static conflict analysis by the

compiler and dynamic checking in the scheduler to make

aggressive but safe scheduling decisions.

In this paper, we propose an optimization of OoO PDES

using prediction of potential conflicts. Our compiler generates

conflict information for multiple scheduling steps in advance

so that the scheduler can predict future potential conflicts.

While existing OoO PDES prevents threads from being issued

for any potential conflicts, our optimization uses conflict pre-

diction to eliminate false positives, allowing them to execute

as early as possible and run ahead as far as possible, so as to

increase the simulation parallelism.

After a brief discussion of related work, we review OoO

PDES in Section II. We then outline the idea of conflict

prediction in Section III and describe the optimized scheduling

algorithm and corresponding compiler support in Section IV.

Finally, Section V provides experimental results for several

embedded applications.

A. Related Work

PDES is a well-studied subject [5], [6], [7]. Recently, it has

gained attention again for ESL model validation as it allows

to utilize the multiple cores in today’s host PCs.

Synchronous PDES approaches are proposed in [1], [2], [3]

which extend the simulator kernels to run threads in parallel in

the same simulation cycle, i.e. same delta and time. However,

synchronous PDES imposes a total order on simulation cycle

advances, making them absolute barriers for thread execution.

Available CPU cores remain idle while waiting for the threads

mapped to other cores to reach the cycle barrier.

Out-of-order PDES [4] breaks the global time and cycle

barrier and issues multiple threads in parallel even if they are

in different simulation cycles. OoO PDES is a conservative

approach that speeds up simulation on multi-core hosts without

roll backs or sacrificing the simulation semantics and timing

accuracy. It relies on static conflict analysis at compile time

for quick scheduling decisions.

Parallel simulation on specialized hardware, such as Graph-

ics Processing Units (GPU), has been studied in [8], [9]. How-

ever, model partitioning is difficult on heterogenous simulator

units in [8], and the task dependency graph needs to be acyclic

for partitioning in [9].

The idea in this paper is similar to the hardware strategy of

branch prediction [10] which accelerates execution by looking

ahead for future status. In contrast to branch prediction which

updates possible conditional branches dynamically at run time,

however, our technique generates prediction information for978-3-9815370-0-0/DATE13/ c©2013 EDAA



scheduling statically at compile time. Since OoO PDES is

conservative, there is also no stalling or rolling back.

II. OUT-OF-ORDER PARALLEL DE SIMULATION

OoO PDES localizes simulation time to each thread and

instead of using global barriers, threads synchronize with each

other only when necessary [4].

Conservative static analysis of potential conflicts is the key

to fully preserve simulation semantics and timing accuracy.

We distinguish three types of hazards:

• Data hazards are caused by parallel or out-of-order

accesses to shared variables, namely read-after-write

(RAW), write-after-read (WAR), or write-after-write

(WAW).

• Timing hazards are caused by local time advances for

individual threads. For example, consider two threads, a

running thread thr and a candidate ready-to-be issued

thc. If thr may run with a time before thc after the next

scheduling step, and it is not clear whether or not thr’s

future statements have any conflicts with thc, then it is

dangerous to issue thc out-of-order (even though there

are no immediate data conflicts between thr and thc).

• Event hazards are caused by out-of-order event notifi-

cations. For example, when a running thread thr wakes

another thread thw, it is dangerous to issue thc out-of-

order since thw may impose hazards with respect to thc.

In case of any of such hazards, the OoO PDES scheduler

cannot issue threads out of the order.

For the OoO PDES conflict analysis, we define:

• Segment segi: statements executed by a thread between

two scheduling steps.

• Segment Boundary bi: SLDL primitives which call the

scheduler, e.g. wait, wait-for-time, par.

Here, segment boundaries bi start segments segi. Thus, a

directed graph is formed by segments. We define formally:

• Segment Graph (SG): SG=(V, E), where V = {v | vi is

segment segi started by segment boundary bi}, E={eij |
eij exists if segj is reached after segi}.

A corresponding segment graph can be derived from the

control flow graph of a design. For example, Fig. 1(a) and (b)

show a simple model written in SpecC SLDL and its segment

graph. Starting from the initial segment seg0, two separate

segments seg1 and seg5 represent the two parallel threads after

the par statement in line 19. New segments are created after

each segment boundary, such as waitfor 1 (line 8), wait e

(line 9), and so on, and segments are connected following the

control flow of the model. For instance, seg3 is followed by

seg2 due to the do-while loop in lines 7-11.

At run time, the scheduler needs to check whether a ready-

to-run thread at a particular segment can be issued out-of-

order, i.e. without conflict. OoO PDES compiles the following

data structures to detect potential conflicts among the N

segments in the model:

• Variable Access List: segALi is the list of the variables

that are accessed in segi. Each entry for a variable in this

list is a tuple of (Var, AccessType).
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(a) A simple design example
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(c) Variable access list, data conflict, next time advance, and event notification table

Fig. 1. Simple design example.

• Data Conflict Table (CT[N,N]):

CT [i, j] =

{

true if segi has data conflict with segj
false otherwise

Note that CT[N,N] is symmetric and can be built by

comparing pairs of the segment access lists.

• Next Time Advance Table (NT[N]):

NT[i] = min{ time increment for a thread in segi when it enters

the next segment }.
• Event Notification Table (ET[N,N]):

ET [i, j] =

{

true if segi notifies an event segj waits for
false otherwise

Note that ET[N,N] is asymmetric.

Fig. 2 shows the OoO PDES scheduling algorithm.
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Fig. 2. Out-of-order Parallel DE simulation scheduling.

The conflict checking at run time, as listed in Algorithm 1,

executes in constant time (O(1)) based on table lookups. The

data conflict table is checked in lines 13-14 to avoid data

hazards. The next time advance table serves in lines 15-16



to determine the time of a thread when entering into its next

segment. Finally, the event notification table is used in lines

17-18 to identify any other threads that may wake up due to

event delivery and run before the ready-to-run thread th.

Algorithm 1 Conflict Detection in OoO PDES

1: bool NoConflicts(Thread th)
2: {
3: for all th2 ∈ RUN ∪ READY,
4: where (th2.t, th2.δ) < (th.t, th.δ) do
5: if (Conflict(th, th2))
6: then return false end if

7: end for
8: return true
9: }

10:
11: bool Conflict(Thread th, Thread th2)
12: {
13: if (th has data conflicts with th2) then

14: return true end if /*check data hazards*/
15: if (th2 may enter another segment before th) then
16: return true end if /*check time hazards*/
17: if (th2 may wake up another thread to run before th) then

18: return true end if /*check event hazards*/
19: return false
20: }

III. STATE PREDICTION TO AVOID FALSE CONFLICTS

Out-of-order PDES issues threads in different simulation

cycles to run in parallel if there are no potential hazards.

Fig. 3(a) shows the scheduling of thread execution for the

example in Fig. 1. The threads th1 and th2 are running in

different segments with their own time. When one thread

finishes its segment, shown as bold black bars as scheduling

point, the scheduler is called for thread synchronization and

issuing.

The OoO PDES scheduling algorithm is very conservative.

Sometimes it makes false conflict detections at run time. For

instance, in Fig. 3(a), when th2 finishes its execution in seg5
and hits the scheduling point th2. 1 , th1 is running in seg2.

The current time is (1:0) for th1 and (0:0) for th2. As listed

in Fig. 1(c), the next time advance is (0:1) for seg2 and (2:0)

for seg5. Therefore, the earliest time for th1 to enter the next

segment, i.e. seg3, is (1:1), and for th2 is (2:0). Since th1 may

run into its next segment (seg3) with an earlier timestamp (1:1)

than th2 (2:0), the Conflict() in Algorithm 1 will return true at

line 16. The scheduler therefore cannot issue th2 out-of-order

at scheduling point th2. 1 .

However, this is a false conflict for out-of-order thread

issuing. Although th1 may run into next segment (seg3)

earlier than th2, there are no data conflicts between th1’s next

segment seg3 and th2’s current segment seg6. Moreover, the

next time advance of seg3 is (1:0). So th1 will start a new

segment no earlier than (2:0) after finishing seg3. It is actually

safe to issue th2 out-of-order at scheduling point th2. 1 since

th2’s time is not after (2:0).

If the scheduler knows what will happen with th1 in more

than one scheduling step ahead of scheduling point th2. 1 , it

can issue th2 to run in parallel with th1 instead of holding it

back for the next scheduling step.

This motivates our idea of optimizing out-of-order PDES

scheduling. With prediction information, as shown in Fig. 3(b),

th2 can be issued at both scheduling point th2. 1 and th2. 6 .

The simulation time can thus be shortened.
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(b) Optimized Scheduling

Fig. 3. Out-of-order PDES scheduling.

IV. OPTIMIZED OUT-OF-ORDER PARALLEL SCHEDULING

WITH PREDICTIONS

Out-of-order PDES relies on static code analysis for safe

scheduling decisions. The knowledge of future thread status

helps the scheduler to issue more threads out of the order for

faster simulation.

In this section, we will first discuss the static code analysis

to generate the prediction information and then the optimized

scheduling algorithm for out-of-order PDES using predictions.

A. Static Prediction Analysis

At run time, threads switch back and forth between the

states of RUNNING and WAITING. While RUNNING, the

threads execute specific segments of their code. The out-of-

order PDES scheduler checks the status of the threads by

looking up the data structures for the segments.

The Segment Graph illustrates the execution order of the

segments and their boundaries when the scheduler is called.

The future segment information from any current segment can

be derived from the Segment Graph at compile time.

We define the following data structures for static prediction

analysis:

1) Data hazards prediction:

• Segment Adjacency Matrix (A[N,N]):

A[i, j] =

{

1 if segi is followed by segj ;
0 otherwise.

• Data Conflict Table with n prediction steps

(CTn[N,N]) as follows:

CTn[i, j] =







true if segi has a potential data conflict
with segj within n scheduling steps;

false otherwise.

Here, CT0[N,N] is the same as segment data conflict table

CT[N,N]. However, CTn (n>0) is asymmetric.



Fig. 4(a) and (b) shows a partial segment graph and its

Adjacency Matrix. The Data Conflict Table is shown in

Fig. 4(c) where a data conflict exist between seg3 and seg4.

The Data Conflict Tables with 0, 1 and 2 prediction steps

are shown in Fig. 5(a), (b) and (c), respectively. Since seg2 is

followed by seg3 and seg3 has a conflict with seg4, a thread

in seg2 has a conflict with a thread who is in seg4 after one

scheduling step. Thus, CT1[2, 4] is true in Fig. 5(b). Similarly,

seg1 is followed by seg2 and seg2 is followed by seg3, so

CT2[1, 4] is true in Fig. 5(c).

The Data Conflict Table with n prediction steps can be built

recursively by using Boolean matrix multiplication. Basically,

if segi is followed by segj , and segj has a data conflict with

segk within the next n − 1 prediction steps, then segi has

a data conflict with segk within the next n prediction steps.

Formally,

CT0[N,N ] = CT [N,N ] (1)

CTn[N,N ] = A
′[N,N ] ∗ CTn−1[N,N ], where n > 0. (2)

Here, A’[N,N] is the modified Adjacency Matrix (e.g. Fig. 5(d))

with 1s on the diagonal so as to preserve the conflicts from

the previous data conflict prediction tables. Note that more

conflicts will be added to the conflict prediction tables when

the number of prediction steps increases.
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Fig. 5. Data structures for optimized out-of-order PDES scheduling.

Theorem 4.1: ∃MFP , MFP > 0, so that ∀n ≥ MFP , no

more conflicts will be added to CTn.

Proof: Eq. (1) and (2) ⇒ CTn = A′n ∗ CT .

In A′, A′[i, j] = 1 ⇐⇒ segj directly follows segi.

In A′2, A′2[i, j] = 1 ⇐⇒ ∃k that A′[i, k] = A′[k, j] = 1 or

A′[i, j] = 1. In other words, A′2[i, j] = 1 means that segj can

be reached from segi via at most 1 other segment (1 segment

apart). Hence, A′n[i, j] = 1 means segj can be reached from

segi via at most n other segments (n segments apart).

Since there are a limited number of segments in the Segment

Graph, ∃L that ∀i, j, segi and segj are either at most L

segments apart or they can never be reached from each other.

⇒ There exists a fixpoint MFP = L, that ∀n > MFP ,

A′n = A′MFP , and CTn = A′n∗CT = A′MFP ∗CT = CTMFP
.

Theorem 4.1 states that the number of prediction conflict

tables for each design is limited. The maximum number of

predictions is at most the length of the longest path in the

Segment Graph.

2) Time Hazards Prediction:

• Time Advance Table with n prediction steps (NTn[N]):

NTn[i] = min{thread time advance after n + 1 scheduling steps

from segi}. Here, NT0 = NT .

Fig. 5(e) shows the segment Time Advance Table with

Predictions (NTn) for the example in Fig. 4. If a thread is

now running in seg1, it will be in seg2 after one scheduling

step and in seg3 after two scheduling steps. The thread time

will advance by at least (3:0) after two scheduling steps since

seg2 starts from waitfor 1 and seg3 starts from waitfor 2.

Therefore, NT1[1] = (3 : 0).
3) Event Hazards Prediction: We need prediction informa-

tion for event notifications to handle event hazards.

• Event Notification Table with predictions (ETP[N, N]):

ETP [i, j] =



















(t△, δ△) if a thread in segi may wake up
a thread in segj with least
time advance of (t△, δ△);

(∞, 0) if a thread in segi will never
wake up another thread in segj .

Here, we have table entries of time advances.

Note that a thread can wake up another thread directly

or indirectly via other threads. For instance, th1 wakes up

th2, and th2 then wakes up th3 through event delivery. In

this case, th1 wakes up th2 directly, and th3 indirectly via

th2. We predict the minimum time advances between each

thread segment pair in respect of both direct or indirect

event notifications. The scheduler needs the predicted event

notification information to know when a new thread may be

ready to run for conflict checking at run time.

B. Out-of-order PDES scheduling with Predictions

The out-of-order PDES scheduler issues threads out of the

order at each scheduling step only when there are no potential

hazards. With the help of static prediction analysis, we can

optimize the scheduling conflict detection algorithm to allow

more threads to run out-of-order.

Algorithm 2 shows the conflict checking function with M

(0≤M≤MFP ) prediction steps. Note that when M=0, it is the

original out-of-order PDES conflict detection.



Algorithm 2 Conflict Detection with M Prediction Steps

1: bool Conflict(Thread th, Thread th2)
2: {
3: /*iterate the prediction tables for data and time hazards*/
4: for (m = 0; m<M; m++) do
5: if (CTm[th2.seg, th.seg] == true) then

6: return true; end if /*data hazards*/
7: if (th2.timestamp + NTm[th2.seg]≥th.timestamp) then
8: break; /*no data or time hazards between th2 and th*/ end if
9: end for

10: if (m > M && M < MFP ) then
11: return true; end if /*time hazards*/
12: /*check event hazards*/
13: for all thw ∈ WAIT do

14: if(ETP[th2.seg, thw .seg] + th2.timestamp<th.timestamp) then
15: /*thw may wake up before th*/
16: check data and time hazards between thw and th; endif

17: end for
18: return false;
19: }

Now, assume that th1 and th2 are two threads in the

simulation of a model whose Segment Graph is Fig. 4(a).

th1is ready to run in seg4 with timestamp (3:0), and th2 is

still running in seg1 with timestamp (1:0).

Conflict(th1) in Algorithm 1 will return true because th2 is

possible to enter seg2 with timestamp of (2:0) that is before

th1. Since the scheduler does not have information about the

future status of th2, it cannot issue th1 to run out-of-order at

the current scheduling step.

Conflict(th1) in Algorithm 2 will return false when M=1 or

2. With prediction information, the scheduler will figure out

that th1 (in seg4) will not have data conflicts with th2 after

its next scheduling step (then in seg2). Moreover, after th2

finishes seg2, the time for the next segment is at least (4:0),

which is after th1’s current one, i.e. (3:0). It is safe to issue

th1 out-of-order at the current scheduling step. As shown, the

prediction information helps the run-time conflict checking to

eliminate a false conflict.

C. Optimized out-of-order PDES scheduling conflict checking

with a Combined Prediction Table

We observe that CTm contains all the conflicts from CT0

to CTm−1 (m>0). In Algorithm 2, the checking loop in line

4-9 stops when the first conflict is found from the CTns.

We propose an optimized conflict checking algorithm (Al-

gorithm 3) by using the following data structure:

• Combined Conflict Prediction Table (CCT[N,N]):

CCT [i, j] =

{

k+1 min{k | CTk[i, j] = true};
0 otherwise.

As shown in Fig. 5(f), the number of prediction steps is

stored in CCT instead of Boolean values.

There is no loop iteration for checking the conflict predic-

tion table in Algorithm 3 since only one NxN combined table

is used instead of M NxN data conflict prediction tables.

Note that, Theorem 4.1 proves that only a fixed number of

data conflict tables with predictions are needed for a specific

design. The compiler can generate the complete series of

Algorithm 3 Optimized Conflict Detection with Combined

Prediction Tables for M steps

1: bool Conflict(Thread th, Thread th2)
2: {
3: /*check the combined prediction table for data and time hazards*/
4: m = CT [th2.seg, th.seg] - 1;
5: if(m ≥ 0) then /*There are data conflicts within M scheduling steps*/
6: /*th2 may enter into a segment before th and cause data hazards*/
7: if(th2.timestamp + NTm[th2.seg]<th.timestamp) then

8: return true; end if
9: else if (M < MFP )

10: /*hazards may happen after M scheduling steps*/
11: if(th2.timestamp + NTM [th2.seg]<th.timestamp) then

12: return true; end if
13: endif
14: /*check event hazards*/
15: for all thw ∈ WAIT do

16: if(ETP[th2.seg, thw .seg] + th2.timestamp< th.timestamp) then
17: /*thw may wake up before th*/
18: check data and time hazards between thw and th; endif
19: end for

20: return false;
21: }

conflict prediction tables and combine them into one table,

i.e. CCT[N,N]. With this complete combined prediction table

CCT , line 9-12 can be removed from Algorithm 3.

V. EXPERIMENTS AND RESULTS

We have implemented the proposed static prediction analy-

sis and the optimized out-of-order PDES scheduler in a SpecC-

based system design environment, and conducted experiments

on three multi-media applications.

To demonstrate the benefits of out-of-order PDES schedul-

ing using predictions, we show the compiler and simulator run

times with different number of predictions in this section 1.

TABLE I
EXPERIMENTAL RESULTS FOR EMBEDDED APPLICATIONS

Out-of-order PDES Out-of-order PDES

Simulator: without Predictions with Predictions

compile sim compile sim time max

time time time [sec] [sec] pred

[sec] [sec] / speedup / speedup steps

Edge Detection 2.0 42.3 2.8 / 0.83 37.1 / 1.15 8

spec 6.0 243.0 7.0 / 0.85 132.0 / 1.87 8

H.264 arch 6.5 243.0 7.0 / 0.94 132.8 / 1.89 7

Decoder sched 6.8 244.3 7.2 / 0.96 133.2 / 1.87 8

net 6.7 244.6 7.2 / 0.91 132.9 / 1.92 9

H.264 Encoder 38.0 2719.4 43.8 / 0.71 1448.8 / 1.88 62

Our first embedded application example, a Video Edge

Detector, calculates edges in the images of a video stream.

The application parallelizes the most computationally complex

function Gaussian Smooth in the design. Fig. 6(a) shows

the result with a test video stream of 100 frames with

1280x720 pixels. The simulation speed increases with more

prediction steps. With the maximum prediction information,

Table I shows a speedup of 1.15 with very small increase of

compilation time.

1All experiments have been performed on a symmetric multi-processing
(SMP) capable server running 64-bit Fedora 12 Linux. The SMP hardware
specifically consists of 2 Intel(R) Xeon(R) X5650 processors running at 2.67
GHz Each CPU contains 6 parallel cores, each of which supports 2 hyper-
threads per core.
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(a) the video edge detection model
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(b) the H.264 decoder model
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(c) the H.264 encoder model

Fig. 6. Simulation runtime and compilation time for OoO PDES with predictions

Our second application is a parallelized H.264/AVC Video

Decoder. The model uses four parallel slice decoders to

decode the independent slices in a video frame simultaneously.

This design model is of industrial-size and consists of about

40k lines of code. We use a test stream of 1079 video frames

with 1280x720 pixels per frame and simulate the model at

four different abstraction levels, i.e. specification, architecture

mapped, scheduling refined, and network linkage allocated.

Table I shows an average speedup of 1.89 for simulation with

maximum prediction information compared to the baseline

out-of-order PDES simulation without predictions. Note that

even for such a large design, the increased compile time due to

the static prediction analysis is negligible. Fig. 6(b) shows that

more simulation speedup can be gained with more prediction

steps.

The third application is a parallelized H.264/AVC Video

Encoder with parallel motion search. In our model, multiple

motion search units are processing in parallel so that the

comparison between the current image and multiple reference

frames can be performed simultaneously. The test stream is

a video of 95 frames with 176x144 pixels per frame. Table I

shows a speedup of 1.88 for simulation with complete predic-

tion information. As a large industrial design, the prediction

conflict tables get to the fixpoint after 62 prediction steps.

Fig. 6(c) shows the same trend of simulation speedup vs.

prediction steps.

VI. CONCLUSIONS AND FUTURE WORK

Out-of-order PDES is an advanced technique for fast multi-

core validation of ESL models. In this paper, we propose

an optimized scheduling algorithm using static prediction

analysis. The prediction information is derived from the Seg-

ment Graph at compile time and it helps the out-of-order

PDES scheduler to avoid false conflicts at run time, allowing

more threads to run out of order. Our experimental results

show significant gains in simulation speed with negligible

compilation costs.

In future work, we will optimize the thread scheduling order

and look into additional approaches to further improve the

simulation speed of ESL models.
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