
Hierarchical Propagation of Geometric Constraints
for Full-Custom Physical Design of ICs

Maximilian Mittag∗, Andreas Krinke†, Göran Jerke∗, Wolfgang Rosenstiel‡
∗Robert Bosch GmbH, Automotive Electronics, Reutlingen, Germany

Email: {maximilian.mittag, goeran.jerke}@de.bosch.com
†Dresden University of Technology, Germany

Email: andreas.krinke@ifte.de
‡University of Tübingen, Department of Computer Engineering, Germany

Email: rosenstiel@informatik.uni-tuebingen.de

Abstract—In industrial environments, full-custom layout de-
sign of analog and mixed-signal ICs is done hierarchically. In
order to increase design efficiency, cell layouts are reused in the
design hierarchy. Constraints forming relations between instances
in different hierarchical contexts are of critical importance. While
implementing a cell layout, these constraints have to be available
in the cell’s context. In this paper, a general definition of hierar-
chical constraints for a constraint-driven design flow is given.
Furthermore it is shown, how top-down declared constraints
can be propagated into another hierarchical context. Only by
propagation they become visible and verifiable for bottom-up
cell design. The feasibility of our proposed methodology is shown
by applying it to a modular Smart Power IC of the automotive
industry.

I. INTRODUCTION

The increasing complexity of IC layout together with short-
ening time-to-market schedules is tackled by layout synthesis
in the digital domain. The fact that custom analog and mixed
signal (AMS) IC layout design has not evolved as much as its
digital counterpart is mainly attributed to the circumstance,
that there are many more individual design requirements
(constraints) to be considered in the AMS domain. The reuse
of cell layouts is one of the approaches to meet tight time-to-
market schedules.

For reusing a cell, it is instantiated multiple times in
the design hierarchy. Each instantiation may pose constraints
on the design objects used to implement the cell’s layout.
These hierarchical constraints declared on instances impose
limitations in the solution space for the layout that are rooted
outside the cell itself. Conventional AMS design flows rely on
a bottom-up methodology for the implementation (see Fig. 1a).
A cell layout that is implemented ignoring these hierarchical
constraints may have to be modified later in the design
process when it becomes obvious that the constraints were
not met. The resulting design flow iteration across hierarchical
boundaries is time consuming and must be avoided.

This work has been partly funded by the German Federal Ministry of
Education and Research (BMBF) within the Research Project RESCAR 2.0
(project label 01 M 3195 B).

978-3-9810801-8-6/DATE12/ c©2012 EDAA

We propose to formalize these hierarchical constraints al-
lowing their declaration during a top-down design step. This
step happens before the layout implementation, as can be seen
in Fig. 1b). The implementation of a cell’s layout during
the bottom-up phase triggers the propagation of constraints
declared on instances of the cell in other hierarchy levels.
Only then they are visible and verifiable in that cell and design
iterations can be avoided.

A. Related Work in Constraint-Driven Physical Design

Constraint-driven design is a prerequisite on the path to
analog layout automation [2]. In pursuit of this goal, we
don’t want to achieve automatic optimization such as [3],
[4]. Besides the fact that hierarchy is not considered in these
optimizations, we rather want to give the layout designer full
control of how to achieve the specific optimization goals.

To declare constraints independently of the EDA tool, we
use some formalism of [2], [5] but a different methodology to
handle the constraints. Their proposed methodology can only
handle flat designs as hierarchy is not considered. Besides,
constraints are handled by design databases in a native way
[6], [7].

The design flow proposed by [1] relies on both, a uniformly
top-down schematic design phase and completely automated
layout generators on device and block level. Top-down layout
planning occurs only after finishing layouts on lower hierar-
chical levels. As opposed to device-level layout generators no

Fig. 1: a) Conventional bottom-up flow b) Enhanced flow
incorporating hierarchical constraints (adapted from [1])



automated technologies are used on block level layouts for
industrial AMS circuits yet. This makes iterations over hier-
archical borders time consuming and error prone, as already
finished layouts have to be modified manually accounting for
layout constraints from higher hierarchical levels.

In [8] a constraint-driven design methodology is intro-
duced. Assignment of constraint instances to design objects
is discussed and three different types are identified: top-down,
bottom-up and a combined assignment type. All assignments
are done in a single design hierarchy tree and no solution is
provided on how to make hierarchical constraints available in
subtrees.

B. Contribution of this Work

The contribution is twofold: First, we give a formal defi-
nition of hierarchical and non-hierarchical design constraints
in Section II. This definition is generic such that constraints
resulting from other physical domains than geometry can
be expressed. It is extensible as it allows the expression of
arbitrary constraints between cell instances. Second, we define
how these constraints are handled in a hierarchical layout in
Section III. Constraints have to be available at the hierarchical
level the designer is implementing, no matter where they were
declared. The application of this methodology for ensuring
bondability by constraining bond pad placement is shown in
Section IV followed by a conclusion and outlook on further
research.

II. CONSTRAINT DEFINITION

Constraints used in AMS designs can be application and
technology specific [9] and must be representable in the design
system. Therefore, the constraints used in a design system have
to be extensible to meet application specific needs of the IC
to design. The definition proposed in this section is based on
[10]. As only set theory is used, the definition of arbitrary new
constraint types is possible.

Each of the constraint instances (subsequently constraint)
relate a set of design objects. This set is denoted as members
M of a constraint. The relation between the members is
described by a set of constraint parameters P of arbitrary
type (e.g. numbers, points, enumerations, etc.).

Every constraint can be assigned to a specific constraint type
t, which serves as a classification property. The parameters P
are the same for each instance of the constraint type while the
parameter values may differ. The type also defines which kind
of design objects the constraint relates. We denote the set of
all constraint types of a design system T .

To describe a constraint instance c these properties are
grouped into a tuple c = (t,M, P ) where t ∈ T . E.g.: a
‘maximum distance’ constraint c1 between e1 and e2 of 5µm
is described as c1 = (maxdist, {e1, e2}, {5µm}).

The state (fulfilled or violated) of a constraint instance is
determined by evaluating a constraint-type specific verification
function verift. This function has to be developed for each
constraint type t ∈ T . It takes a constraint instance as input
and returns either true or false indicating the constraint’s state:

Algorithm: verifmaxdist(constraint c = (maxdist,M, P ))
Returns: true, if the distance between all elements in M are smaller than or

equal to p ∈ P , false otherwise
1: for all (e1, e2) ∈M ×M do
2: if distance(e1, e2) > p ∈ P then
3: return false //constraint violated
4: return true //constraint fulfilled

Fig. 2: verifmaxdist uses a geometric function distance() to
evaluate the state of the constraint instance

Fig. 3: a) Library (flat) view of a design and b) hierarchical
context of cell1 with the hierarchical levels Hcell1,1 to Hcell1,3

Constraint c = (t,M, P ) fulfilled ⇔ verift(c).
The function verift can contain arbitrary verification code

and ensures the extensibility to formulate application specific
constraint types. A verification function verifmaxdist for the
aforementioned example is shown in Fig. 2.

When implementing the layout of a cell, other cells are
instantiated (see Fig. 3a). This cell forms a design hierarchy
i.e. a hierarchical context, that is often represented by a
directed tree (see Fig. 3b). This tree can be represented in
set theory by a partially ordered set of instances where the
order is hierarchical instantiation. The leaf nodes of this tree
are elements of the process development kit library and/or
parametric layout generators (see cell3 in Fig. 3).

Constraints relating instances in the first hierarchy level of
one cell are local constraints, as they do not affect instances
further down the hierarchy (see C2 in Fig. 3). But in gen-
eral, constraints can form relationships between instances in
different contexts of the design. Their members are identified
using a list of instance names in the tree defined by the context
of the cell. We denote this subtree, where all members of a
constraint are instantiated the context of a constraint.

A constraint is called hierarchical, if one of the members
is not on the first hierarchical level (e.g. C1 as opposed
to C2 in Fig. 3). As these are declared where the member
instances are addressable, the constraint exists hierarchically
above the instances it affects. Hierarchical constraints have
to be available, i.e. visible and verifiable, in the context the
constrained instance will be implemented, which differs from
the context they were declared in. The process of making a
hierarchical constraint available in another context is referred
to as propagation and is defined in detail in the next section.

III. HIERARCHICAL CONSTRAINT HANDLING

In order to implement a cell, the constraints declared on any
of its instances must be available to the designer. To make
constraints visible and verifiable in a different hierarchical



Algorithm: propagate(contextH, constraint c = (t,M, P ))
Returns: void, constraint c is visible in all addressed contexts

1: for all m ∈M do
2: for all H̄ in the Design do
3: if m ∈ H̄ and H 6= H̄ then
4: create c̄ with parent c in H̄
5: set sibling property of m to c̄
6: call propagate(H̄ , c̄)

Fig. 4: Algorithm propagate recursively creates hierarchically
propagated sibling constraint in a different context H̄

Algorithm: verification delegate(context H̄,
constraint c̄ = (t,M, P ))

Returns: void, verification function of the originating constraint is called
1: for all m ∈M do
2: H ← context of m’s parent
3: if H 6= H̄ then
4: call verift with H and delegatet(H, H̄, c̄)

Fig. 5: Recursive delegation of verification of a propagated
constraint c̄

context, they are propagated through the design hierarchy.
The propagation is defined in the next subsection. Following
that the verification delegation of a propagated constraint is
described.

A. Hierarchical Constraint Propagation

A constraint c = (t,M, P ) declared within a cell cell1
relates the design elements M = m1,m2, ...,mn in the
context Hcell1 of this cell. If one of the cells of M is also
present in the context of another cell cell2, the constraint
will have to be propagated to a constraint c̄ = (t, M̄ , P̄ ) in
Hcell2. After propagating the constraint, it is visible during the
implementation of cell2.

The propagation algorithm that creates a sibling constraint
c̄ of the parental constraint c is shown in Fig. 4. Because the
origin of a propagated constraint is relevant for the layout
implementation, it has to be saved in the newly created
constraint, which can be seen in line 4. As every member
m ∈ M can cause a propagation, there has to be a sibling
property for each m, which is set in line 5. The two properties
provide a navigable connection between the two contexts,
which is needed for verification purposes.

B. Delegation: Verification of Propagated Constraints

To aid making a design decision, a constraint’s state has to
be visible in the current context. Therefore, the verification
function for the constraint has to be called. As the members
may not be visible and accessible in the propagated context,
the verification has to be delegated to the parent constraint in
the original context. The verification function is called in this
context and the result is fed back to the propagated constraint.
Only that way it is ensured that all necessary information for
the verification function is accessible.

The delegation as shown in Fig. 5 is not constraint-type
specific. This recursive algorithm will continue to delegate
the verification until the constraint instance, from which the
propagation was started, is reached.

The function delegatet, which is called in line 4, takes a
parental and sibling context as well as the sibling constraint

as input and returns the constraint in the parental context.
It is constraint-type specific as it changes the parameters P
and/or the members M of the sibling constraint depending on
the context of the parent. Similar to the verification function
verift itself, the delegatet function has to be defined when a
hierarchical constraint type is defined.

IV. EXPERIMENTS AND RESULTS

The introduced methodology of propagating constraints
through a design hierarchy was applied to an industrial Smart
Power IC. Due to high currents and voltages bond pads in
these ICs are placed irregularly on the chip area near to or on
top of the transistor arrays that form the power stages [11].

To build self-contained power stage blocks the pads were
instantiated in these block contexts, making the use of hier-
archical constraints an essential need. In Fig. 6 the simplified
layout of the IC is shown. The constraints resulting from
each block instance were propagated into the power stage
cell, before detailed placement was done. This ensured that
the placement of the bond pads was correct-by-construction
regarding bondability for each instantiation of the power stage
cell.

In the following, the implemented geometric constraint
types restricting bond pad placement are introduced. They are
implemented as Cadence Custom Constraints in the Virtuoso
Design Environment [7]:

• Relative bond path length over chip
• Absolute bond path length
• No crossover of bond paths
• Bond path angle between wire and chip border
For each constraint type a verification function was devel-

oped, using the proprietary tool-specific functional language
SKILL [12]. As all the implemented constraint types limit ge-
ometric placement, a single delegation function was sufficient
as shown in Fig. 7.

The correctness of the propagation and delegation functions
was validated by applying the methodology and comparing
reported errors to those of a proprietary package assembly
rule checker.

A. Propagation of Constraints to a Cell’s Context

To validate the propagation mechanism we compared the
number of propagated constraints in a hierarchical top-level
layout to the one in a flattened top-level layout. The top-level
layout contained the package, 82 instances of a bond pad and 8

Fig. 6: a) Layout of power stage instances in top cell.
b) Propagated constraints in power stage cell (from instance
1 = blue, from instance 2 = red)



Algorithm: delegategeom(contexts H̄ and H,
constraint c̄ = (t, M̄, P̄ ))

Returns: constraint c, that is transfered from context H̄ to H
1: c = (t,M, P̄ )← empty constraint with copy of P̄
2: trans ← transformation matrix from H̄ to H
3: for all m̄ ∈ M̄ do
4: if m̄ ∈ H then
5: m̄.position = trans ∗ m̄.position
6: M ←M ∪ m̄
7: return c

Fig. 7: Algorithm delegategeom returns a constraint c in which
the member coordinates of the propagated constraint c̄ are
transfered from context H̄ to H by coordinate transformation

TABLE I
SUMMARY OF DECLARED CONSTRAINTS

Number of constraint types 4
Constraint instances (flat top-level lay-
out)

584

Constraint instances (hierarchical layout) local 328
hierarchical 256

Propagated constraints in cell power-
stage per instance of cell bondpad

4·8 =32

Sum of propagated constraints in cell
powerstage

32·8 =256

instances of a power stage cell. The power stage cell contained
8 bond pads itself and was to be developed as one single layout
that could be reused for every instance in the top level context.
The final flat top layout contained 146 bond pads all together.

We used the flat layout to declare local constraints for the
bond pad placement. As each bond pad was attached to each
of the constraint types introduced in the previous subsection,
we had 584 constraint instances in a flat top-level layout. Of
these constraints 328 were declared on bond pad instantiations
in the top layout, while 256 constraints were declared on bond
pads resulting from power stage instantiations. This is shown
in the upper part of Table I.

Then we used the hierarchical layout and declared the same
total number of constraints on the bond pads. After applying
the propagation algorithm introduced in Fig. 4, we inspected
the power stage cell and discovered 256 constraints in that
context (see lower part of Table I). All relevant constraints
had been propagated from a hierarchical top level context to
the power stage cell context.

B. Verification Delegation to Top Context

To show the feasibility of the propagated constraints’ ver-
ification, we used a simple form of error injection. First we
moved bond pads in the top cell context. Then we flattened the
top layout and exported it to a proprietary package assembly
rule checker. We compared the reported results of the assembly
rule checker to the errors reported by the local constraints
defined on bond pads in the top context.

Then we moved bond pads in the power stage cell con-
text randomly. The constraint verification of the propagated
constraints could be run in that context. Delegation was used
to obtain the results immediately after bond pad movement.
To compare them to the reported errors by the assembly rule
checker the top layout had to be flattened after a context
switch.

The reported errors were the same no matter if generated
in the flattened top layout or the hierarchical one. This shows
that delegation is functioning properly.

V. CONCLUSION AND OUTLOOK

We introduced a formal definition of design constraints,
which form relations between cell instances in a hierarchical
design. Top-down declared hierarchical constraints are made
visible for bottom-up layout design by propagation: Creating
constraint siblings in a hierarchically lower context. The
verification within the context of a sibling is possible only
by delegation to the originating constraint. We validated the
proposed algorithms by implementing geometric placement
constraints for bond pads and applying them to both, a
hierarchical and a flat design to compare the reported errors
by hierarchical constraints to those of a proprietary package
assembly rule checker.

The benefits of the methodology were twofold: First, when
implementing the layout of a cell, the constraints imposed on
the bond pads (resulting from the multiple instantiations of
that cell in other contexts) were visible and verifiable in that
cell’s context. The cell layouts were correct-by-construction
regarding bondability. The time used for package assembly
rule checking on a flattened layout shortly before tape out
was reduced by about 20%.

Second, constraint violations became visible as soon as the
placement of any instance containing bond pads was changed
regardless of its hierarchical level. Normally these errors are
discovered only at the end of layout design when final package
assembly rule checks are done. The methods introduced in
this paper greatly assisted in keeping track of design closure
regarding bondability of the final chip layout.

Future research will focus on extending this methodology to
allow for more complex constraint types, which are functional
depending on other constraints.

REFERENCES

[1] G. Gielen and R. Rutenbar, “Computer-aided design of analog and
mixed-signal integrated circuits,” Proc. IEEE, pp. 1825 –1854, 2000.

[2] G. Jerke and J. Lienig, “Constraint-driven Design - The Next Step
Towards Analog Design Automation,” in Proc. of the Intl. Symp. on
Physical Design. ACM, 2009, pp. 75–82.

[3] A. Nassaj, J. Lienig, and G. Jerke, “A constraint-driven methodology for
placement of analog and mixed-signal integrated circuits,” in 15th IEEE
Intl. Conf. on Electronics, Circuits and Systems, 2008, pp. 770–773.

[4] A. Nassaj, J. Lienig, and G. Jerke, “A new methodology for constraint-
driven layout design of analog circuits,” in 16th IEEE Intl. Conf. on
Electronics, Circuits and Systems, 2009, pp. 996 –999.

[5] J. Freuer, G. Jerke, J. Gerlach, and W. Nebel, “On the verification of
high-order constraint compliance in IC design,” in Design, Automation
and Test in Europe, Proc. ACM, 2008, pp. 26–31.

[6] D. Mallis, D. Cottrell, E. Leavitt, and B. Pfeil, Si2 OpenAccess API
Tutorial, 9th ed. Silicon Integration Initiative, Inc., 2009, oA 2.2 DM4.

[7] Cadence Design Systems Inc., “Speeding design of custom silicon,”
http://w2.cadence.com/whitepapers/Virtuoso WP.pdf.

[8] G. Jerke, J. Lienig, and J. B. Freuer, “Constraint-driven design method-
ology: A path to analog design automation,” in Analog Layout Synthesis,
H. E. Graeb, Ed. Springer US, 2011, pp. 269–297.

[9] J. Scheible, “Constraint-driven Design - Eine Wegskizze zum analogen
Designflow der nächsten Generation,” MPC-Workshop, pp. 1–9, 2010.

[10] A. Müller and B. Walliser, “Constraint Management im Full-Custom-
Entwurfsablauf,” ITG FACHBERICHT, pp. 181–184, 2003.

[11] B. Murari, F. Bertotti, and G. Vignola, Smart Power ICs: Technologies
and Applications. Springer, 1995.

[12] T. Barnes, “Skill: a cad system extension language,” in Design Automa-
tion Conference, Proc., 1990, pp. 266 –271.


