
Cyber-Physical Cloud Computing:
The Binding and Migration Problem

Kirsch, C.∗, Pereira, E.†, Sengupta, R.†, Chen, H.‡, Hansen, R.†, Huang, J.†, Landolt, F.∗,
Lippautz, M.∗, Rottmann, A.∗, Swick, R.†, Trummer, R.∗ and Vizzini, D.†

∗Department of Computer Sciences, University of Salzburg
Email: {christoph.kirsch,florian.landolt,michael.lippautz,andreas.rottmann,rainer.trummer}@cs.uni-salzburg.at

†Department of Civil and Environmental Engineering, University of California, Berkeley
Email: sengupta@ce.berkeley.edu, {eloi,jiangchuan,rhansen,ryan.swick,dvizzini}@berkeley.edu

‡Department of Mechanical Engineering, University of California, Berkeley
Email: haoc@berkeley.edu

Abstract—We take the paradigm of cloud computing developed
in the cyber-world and put it into the physical world to create a
cyber-physical computing cloud. A server in this cloud moves
in space making it a vehicle with physical constraints. Such
vehicles also have sensors and actuators elevating mobile sensor
networks from a deployment to a service. Possible hosts include
cars, planes, people with smartphones, and emerging robots like
unmanned aerial vehicles or drifters. We extend the notion of a
virtual machine with a virtual speed and call it a virtual vehicle,
which travels through space by being bound to real vehicles and
by migrating from one real vehicle to another in a manner called
cyber-mobility. We discuss some of the challenges and envisioned
solutions, and describe our prototype implementation.

I. INTRODUCTION

The key innovations in cyber-physical cloud computing
(CPCC) [1] are to have servers move in space and carry
sensors and/or actuators. Like regular cloud computing, CPCC
customers get a virtual machine (VM) running on a real server.
Since a CPCC server moves in space, so does a CPCC VM.
Hence we call it a virtual vehicle (VV). The CPCC server
is called a real vehicle (RV). By leveraging virtualization
technology [2] and mobile agent research [3], [4], we can
also have VVs hop or migrate over a network from one RV
to another. This means virtual vehicles have two kinds of
mobility: a small-time-scale hop, we call cyber-mobility, and a
larger-time-scale motion with the real vehicle called physical
mobility. When a VV is bound to an RV, the VV exhibits
physical mobility. When it migrates it exhibits cyber-mobility.
CPCC, just like regular cloud computing, is meant to work at
scale, i.e., at least for tens of vehicle providers, hundreds of
real vehicles, and potentially thousands of virtual vehicles.

Since a virtual vehicle moves in space, we envision a
programming model for virtual vehicles that exposes their
location. This is one implication of making servers move in
space. We intend writing programs like “do c every x

This work has been supported by the National Science Foundation
(CNS1136141), the European Commission (ArtistDesign NoE on Embedded
Systems Design, 214373), the Austrian Science Fund (RiSE NFN on Rigorous
Systems Engineering, S11404-N23), the Fundação para a Ciência e Tecnologia
(SFRH/BD/43596/2008), and the National Science Foundation (CNS1136141)

978-3-9810801-8-6/DATE12/ c©2012 EDAA

units of space” where c is some computation permitted
on usual cloud VMs. Adding sensing and actuation to this sug-
gests a powerful programming model for sampling problems in
time and space. The innovation in the programming model is to
make space a first-class concept. This makes it different from
hybrid systems or embedded computing where only time is a
first-class concept [5]. Our approach to programming model
research for CPCC will be to add space to models in embedded
computing. The second implication of CPCC servers moving
in space is logical mobility. Since CPU, memory, and I/O
are all virtualized, we propose virtualizing space and time as
well. In a CPCC programming model it should be perfectly
legitimate to program “do c at location x” when there
exists no machine at location x. This is to be made meaningful
by the runtime system using physical mobility and cyber-
mobility to move a real vehicle to x and hosting the virtual
vehicle holding the program on it.

Sensor networks, when organized as cyber-physical cloud,
change from a deployment to a service. For example, a virtual
vehicle can be seen as an Amazon Elastic Compute Cloud
(E2C) unit [6] plus a virtual speed. If one has contracted a
VV that accepts a program like “do c every 10m and
1s” then one must have contracted for a VV with a speed
in excess of 10 m/s. Whether the cloud realizes this 10-m/s
virtual vehicle using ten 1-m/s real vehicles or realizes two 10-
m/s virtual vehicles using one 50-m/s real vehicle should be a
matter of no concern to the programmer. This is the meaning
of virtualizing speed (or space and time). The abstraction
resembles the Logical Execution Time (LET) [7] model where
time is a specification with semantics. Whether the runtime
system implements it or not is a question to be evaluated or
proven. The important part is to have a specification that can
derive a behavior from the program that is also measurable on
the runtime system executing the program.

Next we discuss the binding and migration problem of
CPCC through a candidate solution (Section II), and then de-
scribe our prototype implementation of a CPCC infrastructure
(Section III), followed by a summary of current and future
work (Section IV).



II. BINDING AND MIGRATION

We assume a virtual vehicle is a Turing-equivalent machine
with a virtual speed. Since such a machine has a location in
space, or even motion in space, if c denotes some computation,
we envisage programs such as “do c every x units
of space & t units of time” where both space x
and time t are logical as previously discussed. A semantics
would then specify the behavior of such programs as a flow

〈c0, x0, t0〉 → 〈c1, x1, t1〉 → 〈c2, x2, t2〉 → ...

where the ci denote computations specified by programs on
the virtual vehicle, xi the specified location of the i−th
computation and ti its specified execution time. The virtual
speed of the virtual vehicle relates to this flow as a constraint.
If the virtual speed is v m/s then we might impose

Xi+1 −Xi

Ti+1 − Ti
< v

as a condition for the behavior to be in conformance with
its virtual vehicle. The development of the semantics may
accompany the development of the programming model left to
the future. The overall problem consists of how to instantiate
a runtime system of real vehicles that meets the behavior
specified by the virtual vehicles.

Figure 1 illustrates our envisioned design. The (blue) dots
denote real vehicles and the (orange) discs denote compu-
tations emanating from the various virtual vehicles, i.e., the
tuples 〈c, x, t〉. The runtime system needs algorithms to bind
each virtual vehicle to a real vehicle and to determine when
to change the binding and migrate the virtual vehicle.

To solve the binding problem illustrated in Figure 1 we
make an assumption. If ti and ti+1 are the times of the
i−th and (i+1)−th computations emanating from the virtual
vehicle, and t is the current time, then the tuples 〈ci, xi, ti〉
and 〈ci+1, xi+1, ti+1〉 are both known to the runtime system
at time t. In other words, the logical time and space of the
(i + 1)−th computation must be announced at the execution
time of the i−th computation. Next we assume the linear
interpolation

x(t) = xi +
xi+1 − xi

ti+1 − ti
(t− ti)

and use x(t) as the position of the virtual vehicle at every
time t in the interval (ti, ti+1). By giving a virtual vehicle a
position in logical space at every time, we can now leverage
the idea of Voronoi cells for partitioning the Euclidean space
regarding the locations of real vehicles. Given a set of locations
(in this case, the locations of real vehicles) in the Euclidean
plane, a Voronoi cell for a given location p corresponds to
all the points whose distance to p is not greater than their
distance to any other location. The black lines in Figure 1
illustrate the boundaries of the Voronoi cells (also known as
Voronoi tessellation) for all real vehicle locations. Our binding
algorithm design has the following steps:

• Given a time t, build a probability distribution for the
geographic locations of the logical space locations of

Fig. 1. Binding of virtual vehicles to real vehicles.

all computations produced by all virtual vehicles in the
system. If the stochastic process is stationary, then the
distribution is the same for all t.

• If one has m real vehicles then tessellate the entire
operating area of the cloud into m cells by minimizing the
continuous multi-median function for m medians. This
can be done using techniques in [8].

• Allocate each virtual vehicle to a Voronoi cell based on
its logical position and thus to the real vehicle in the
Voronoi cell.

• Program each real vehicle with a sequencing algorithm
used to determine the sequence in which the real vehicle
will travel through the 〈c, x, t〉 tuples presented to it by
the various virtual vehicles bound to it. This is illustrated
by the black curve with an arrow in Figure 1.

Common sequencing algorithms in the literature include “first-
come, first-served”, the “nearest task policy” [9], or optimal
solutions to the traveling salesman problem [8], [9]. The latter
is more desirable, though it is NP-hard. For approximation
algorithms see [10]. Our own contributions are approximation
algorithms for the multiple-vehicle TSP [11].

III. INFRASTRUCTURE

We have developed a virtualization infrastructure for CPCC
called Tiptoe [12] based on the Xen hypervisor [2]. Tiptoe
runs bare-metal on Intel hardware and has been tested on
a quadcore 19-inch rack server machine as well as on a
dualcore Pico-ITX embedded computer (which weighs around
150 grams including WLAN and SSD).

The Xen hypervisor implements a so-called virtual machine
monitor (VMM), which (para-)virtualizes the underlying hard-
ware (computer) into so-called domains, or virtual machines,
of which each appears as an (almost) exact copy of the
hardware [2]. The virtual machine monitor only implements
basic (non-real-time) domain scheduling services as well as
domain memory and I/O isolation. There is one privileged
domain and a dynamic number of unprivileged domains, which
may run any (almost) unmodified systems software, if it runs
on the underlying hardware without the virtual machine mon-
itor, such as Linux or Windows. The privileged domain runs



Fig. 2. Schematic overview of Tiptoe.

Linux and serves two important and distinct purposes: domain
management and device abstraction. Domain management
includes creating, monitoring, and destroying unprivileged
domains. Device abstraction is performed by running device
drivers exclusively in the privileged domain, and not in any
unprivileged domain or in the virtual machine monitor. An
unprivileged domain that wishes to communicate with a device
may only do so through a virtualized version of the device,
which is connected through the virtual machine monitor to the
actual device driver running in the privileged domain [2].

Tiptoe enhances Xen in three distinguished categories:
(1) domain scheduling through a hybrid EDF-credit sched-
uler for mixed real-time and non-real-time workloads [12],
(2) sensor virtualization through high-bandwidth sensor data
multicast for efficient sensor data distribution, and (3) domain
migration through runtime-level snapshotting and domain pre-
booting for low-latency, low-overhead migration performance.
The work on multicast (2) and migration (3) is new.

Tiptoe implements what we call a virtual vehicle monitor
(VVM), which virtualizes the underlying hardware (sensors,
computer, storage, network, actuators) into virtual vehicles of
which each appears as an abstract version of the hardware,
as opposed to domains, which are (almost) exact copies of
the underlying hardware. A virtual vehicle is a domain that
essentially runs a light-weight, single-address-space operating
system with a Scheme interpreter on top. Figure 2 provides a
schematic overview of Tiptoe.

A. Sensor Virtualization

Our goal is to enable multiple virtual vehicles to access
multiple, possibly high-bandwidth sensors of the underlying
hardware at the same time without overloading any processing
elements. The problem is that, by the very nature of virtual-
ization, domains and virtual vehicles in particular are isolated
from each other in memory and I/O as well as from the
underlying hardware. Moreover, virtual vehicles change over
time, i.e., they are created, executed, migrated, and destroyed
dynamically at runtime.

Our solution follows the same path that Xen has already
taken for storage and network I/O with additional support
of device-to-domain multicast functionality. Given a sensor
device, the appropriate Linux device driver is installed and

executed in the privileged domain. A daemon called eyed
which we developed from scratch processes in the user space
of the privileged domain the video feed obtained through the
V4L2 video capture API for Linux [13]. The daemon can
handle multiple sensors of the same device type (e.g., front-
and rear-facing cameras) and is designed in a way that its
process management code is largely decoupled from the actual
frame capturing logic. This separation facilitates the reuse of
the management code for other sensor devices. Using the so-
called libxmc library, which we also developed from scratch,
the daemon maintains sensor-to-vehicle mappings to keep
track of which virtual vehicle is interested in receiving data
from which sensors, and distributes sensor data to the possibly
changing set of virtual vehicles. Control data and actual sensor
data is communicated through so-called XenStore storage [14]
and so-called XenSocket connections [15], respectively.

The actual multicast functionality based on XenSocket is
implemented in our libxmc library. Each sensor-to-vehicle
mapping is represented by a XenSocket connection. Whenever
data is available from a given sensor, the eyed daemon
forwards the data to all XenSocket connections for that sen-
sor. The connected virtual vehicles may then asynchronously
receive the data. In our experiments, we have already been
able to multicast a 300-KB/s video feed to three virtual
vehicles hosted on the same server, incurring negligible CPU
utilization.

B. Virtual Vehicle Migration

Our goal is to migrate virtual vehicles with low latency
and low overhead on wireless networks. Migration should be
so cheap that, whenever beneficial, it may even become the
rule rather than the exception while leaving ample bandwidth
for other uses such as video streaming. The problem is,
however, that the existing migration facilities in Xen only
support migration on domain level where all of a domain’s
memory content is transferred at least once per migration
regardless of any runtime-level information. Migration in Xen
transfers a domain’s memory content while the domain is still
running. For correctness the memory content that has changed
during the last transfer is re-transmitted until the point in
time when the memory content changes faster in between
two transfers than the available transfer bandwidth. At an
efficiently computable approximation of that point, the domain
is suspended, the changed memory content is transferred once
more, and finally domain execution is resumed on the target
machine. This method works for any software running in a
domain including whole operating systems and provides low
latency in the sense that actual domain downtime may be
in the order of a few milliseconds for software that exhibits
locality in memory access behavior. However, total migration
time is at least proportional to a domain’s memory size which
may be in the order of MBs and even GBs resulting in high
bandwidth requirements [16]. The bandwidth requirements
may be somewhat reduced by applying memory compression
algorithms on migrating domains [17], which is nevertheless
still not sufficient for our purposes.



Our solution is based on runtime-level snapshotting as well
as on domain pre-booting. On each server, the previously
mentioned virtual vehicle manager maintains a number of
pre-booted and then suspended domains as targets for virtual
vehicle migration. Upon migrating a virtual vehicle, its domain
is immediately suspended to snapshot the vehicle state whose
size is in the order of a few KBs in our current setup.
This includes virtual vehicle data as well as the state of
the vehicle’s network stack. The state is then transferred to
a pre-booted domain on the target server. Finally, the pre-
booted domain completes its boot process, advances to the
received state, and then resumes the execution of the migrated
virtual vehicle. The result is low-latency and low-overhead
migration performance. Snapshotting at the language runtime
level significantly reduces the bandwidth requirements of Xen
migration but ties the use of the migration facility to the
language runtime; it is not possible to migrate arbitrary binary
code, as with Xen’s native migration, but only code written in
a high-level programming language extended with support for
migration. Domain pre-booting is an optimization of runtime-
level snapshotting to further reduce latency.

Hosting a scalable number of virtual vehicles requires
domains with small memory footprint. We therefore chose
the GUK microkernel [18] as foundation of a virtual vehicle
operating system (VVOS). GUK is a single-address-space,
lightweight microkernel originally designed to support a JVM
running inside a Xen domain. GUK implements basic thread
scheduling and device drivers for virtual I/O devices only.
A virtual I/O device provides a well-defined interface that
abstracts the low-level details of the underlying real I/O device,
which is only accessible to the privileged domain. Any access
to a virtual I/O device is routed to the privileged domain which
then accesses the real I/O device on behalf of the connected
domain. Moreover, since multiple domains may share a single
I/O device, the privileged domain performs I/O scheduling for
all incoming I/O requests from all domains.

Virtual vehicles need network access to migrate but also to
relay sensor data to the ground station. We integrated the lwIP
library [19] into GUK, providing TCP and UDP connectivity
to domains hosting virtual vehicles. We extended lwIP to allow
for the migration of live TCP and UDP connections, i.e., live
TCP and UDP connections are kept alive across any number
of migrations. For prototyping virtual vehicle behavior, we
integrated Chibi Scheme [20] into our software stack. Chibi
is an implementation of the Scheme programming language,
specifically of R5RS [21]. We supplemented Chibi’s libraries
to expose the C APIs offered by the platform, such as lwIP,
to programs written in Scheme.

IV. CURRENT AND FUTURE WORK

We aim at devising models, algorithms, and protocols for
solving the binding and migration problem of CPCC as well
as developing a diverse testbed for CPCC (in simulation and
for real) that includes several types of hosts such as cars,
buses, people with smartphones, and unmanned aerial vehicles
(UAVs). So far we developed a low-cost lightweight Flying

Wing UAV based on the Zephyr airframe, and the JAviator—
a high-performance quadrotor UAV built from scratch [22].
The UAVs are equipped with an autopilot and will carry
a computational platform for CPCC such as the previously
mentioned Pico-ITX board. We plan to equip the UAVs with
sensors ranging from CO2 concentration sensors to EO/IR
cameras. We have also started working on an Android port
of our virtualization infrastructure so that virtual vehicles may
seamlessly migrate across UAVs and smartphones.

REFERENCES

[1] S. Craciunas, A. Haas, C. Kirsch, H. Payer, H. Röck, A. Rottmann,
A. Sokolova, R. Trummer, J. Love, and R. Sengupta, “Information-
acquisition-as-a-service for cyber-physical cloud computing,” in Proc.
Workshop on Hot Topics in Cloud Computing (HotCloud), 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. Symposium on Operat. Syst. Princ. ACM, 2003, pp. 164–177.

[3] J. E. White, “Mobile agents, software agents,” MIT, Tech. Rep., 1997.
[4] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”

Commun. ACM, vol. 42, pp. 88–89, March 1999.
[5] C. Kirsch and R. Sengupta, Handbook of Real-Time and Embedded Sys-

tems. CRC Press, 2007, ch. The Evolution of Real-Time Programming.
[6] http://aws.amazon.com/ec2/.
[7] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered

language for embedded programming,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 84–99, January 2003.

[8] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algo-
rithms for vehicle routing in a stochastic and dynamic environment,”
vol. 56, no. 6, pp. 1259–1274, 2011.

[9] D. Bertsimas and G. van Ryzin, “Stochastic and dynamic vehicle routing
with general inter-arrival and service time distribution,” Advances in
Applied Probability, 1991.

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Dover Publications, 1998.

[11] S. Rathinam and R. Sengupta, “3/2-approximation algorithm for two
variants of a 2-depot hamiltonian path problem,” Oper. Res. Lett., pp.
63–68, 2010.

[12] S. Craciunas, C. Kirsch, H. Payer, H. Röck, and A. Sokolova, “Pro-
grammable temporal isolation in real-time and embedded execution
environments,” in Proc. Workshop on Isolation and Integration in
Embedded Systems (IIES). ACM, 2009.

[13] “The linuxtv project,” 2011. [Online]. Available: http://linuxtv.org
[14] Citrix Systems Inc., “XenStore,” March 2011,

http://wiki.xensource.com/xenwiki/XenStore.
[15] X. Zhang, S. McIntosh, P. Rohatgi, and J. Griffin, “XenSocket:

A high-throughput interdomain transport for virtual machines,” in
Proc. ACM/IFIP/USENIX 2007 International Conference on Middle-
ware, ser. Middleware ’07. Springer, 2007, pp. 184–203.

[16] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proc. 2nd
ACM/USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2005, pp. 273–286.

[17] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine mi-
gration with adaptive, memory compression,” 2009 IEEE International
Conference on Cluster Computing and Workshops, pp. 1–10, 2009.

[18] Oracle Inc., “GUK,” March 2011,
http://labs.oracle.com/projects/guestvm/shared/guk/index.html.

[19] A. Dunkels, “Minimal TCP/IP implementation with proxy support,”
Master’s thesis, SICS, February 2001.

[20] A. Shinn, “Chibi-Scheme - Small Footprint Scheme for use as a
C Extension Language,” January 2011, http://code.google.com/p/chibi-
scheme/.

[21] R. Kelsey, W. Clinger, J. Rees, H. Abelson, R. Dybvig, C. Haynes,
G. Rozas, D. Bartley, R. Halstead, D. Oxley, G. Sussman, G. Brooks,
C. Hanson, K. Pitman, and M. Wand, “Revised 5th report on the
algorithmic language Scheme,” ACM SIGPLAN Notices, vol. 33, pp.
26–76, 1998.

[22] S. Craciunas, C. Kirsch, H. Röck, and R. Trummer, “The JAviator: A
high-payload quadrotor UAV with high-level programming capabilities,”
in Proc. AIAA Guidance, Navigation and Control Conference, 2008.


